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Abstract

The growth of solar energy resources in recent years has led to increased calls for
accurate forecasts of solar irradiance for the reliable and sustainable integration of
solar into the national grid. A growing body of academic research has developed
models for forecasting solar irradiance, identified metrics for comparing solar forecasts,

and described applications and end users of solar forecasts.

In recent years, many disciplines are developing ontologies to facilitate better commu-
nication, improve inter-operabiity and refine knowledge reuse by experts and users of
the domain. Ontologies are explicit and formal vocabulary of terms and their relation-
ships. This report describes a step towards using ontologies to describe the knowledge,
concepts and relationships in the domain of solar irradiance forecasting to develop a
shared understanding for diverse stakeholders that interact with the domain. A pre-
liminary ontology on solar irradiance forecasting was created and validated on three

use cases.
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Chapter 1

Introduction

Spurred by declining photovoltaic (PV) module prices, favorable government policies,
and growing concerns about mitigating climate change, recent years have seen a rapid
growth in the proliferation of solar electric systems. Since 2006, the installed cost of
solar PV systems have dropped by 73% while in the same time period, the total
installed capacity of solar in the US has increased by a staggering 9,900% [1] (see
Fig. [1.1). In 2015, for the first time in U.S. history, more solar PV was added to
the electric grid than natural gas fired generation. By 2020, solar energy is expected
to be cost-competitive with other forms of electricity, even without subsidies [13].
Energy from solar technologies are expected to provide nearly a quarter of the world’s

electricity, by the year 2050 [14].



US Solar PV Installations and Price
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Figure 1.1: For the last decade, falling installed cost of solar ($ per kW)
have coincided with increase in solar deployed (MW installed) on the grid.
Adapted from [I]

As PV markets continue to grow, and the installed cost as well as the total levelized
cost of energy (LCOE) from solar continues to decrease, the reliable and sustainable
integration of solar into the national grid becomes a challenging problem. Electricity
is unique as a commodity - through a combination of generation, transmission and
distribution, electricity has to be made available the instant it needs to be consumed.
Uncertainty in consumer demand, generation system outages, and transmission con-
gestion create everyday challenges for grid operators and utilities. The variable, inter-
miattent and non-dispatchable nature of solar energy introduces additional uncertainty

and variability in grid operations [I1].

At current low levels of solar energy generation connected to the grid, solar variability
can be mitigated by using ancillary generator backups. For the electric grid of the

future with significantly high penetration of solar electric generation, such methods



may not be reliable, affordable or sustainable [15].

To address this, studies and industrial reports have called for high-precision solar
power forecasting that can provide value to participants in the electric grid value chain
[7,18, 10, 12}, 16]. Short-term (minutes-few hours) solar power forecasts are essential for
power plant operations, grid balancing, real-time unit dispatching, trading on energy
markets. Medium-term (few hours-day ahead) aid in unit commitment, reducing idle
backup capacity, demand scheduling and reducing transmission congestion. Longer
range forecasts are useful for resource adequacy planning and energy policy objectives

7.

The power and energy produced by solar electric systems depends on the total amount
of solar irradiance incident at the location of the installation. Solar irradiance, in turn,
depends on time, location, meteorological and atmospheric conditions. Most research
is focused on forecasting solar irradiance, while using a mathematical model that
accounts for the electrical, material, and orientation characteristics of the installation

to calculate solar power forecast (see Fig[L.2).
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Figure 1.2: Solar power output from an installation can be generated by
means of a solar irradiance forecast, physical characteristics of the installa-
tion and a simple mathematical model. Adapted in part from [2]

1.1 Solar Irradiance & Forecasting

Research in solar irradiance forecasting aggregates diverse areas of knowledge includ-
ing atmospheric physics, remote sensing, forecasting theory and machine learning.
Solar forecast models range in complexity - from simple location-specific geometrical
formulations to complex ensemble assemblages of sky cameras, atmospheric sensors,

and satellite imagery, each with its own dimensions of temporal and spatial applica-

bility (see Table [2.2)).

Models can also be classified based on their input characteristics and output speci-
fications, instrumentation requirements, data availability and resolution. These at-
tributes are neither distinct, nor exclusive. Indeed, models may share common at-

tributes. Models also have specific temporal and spatial domains.

Models can also be evaluated on the basis of their performance - accuracy, specificity,



precision, responsiveness and latency. Industry standards for forecast metrics and
validation are slowly emerging [2, 4], with broad goals of producing more reliable

forecasts, with a realistic expectation of forecast precision.

Solar irradiance itself can be resolved into individual components based on the path
of incoming radiation through the atmosphere. Individual components of solar irra-

diance may have diverse and independent applications, each with different end users.

The growing diversity in forecast models, inputs, outputs, performance characteris-
tics, instrumentation requirements, applications, temporal scales, spatial scales, and
end users requires careful organization and representation of knowledge about solar

irradiance forecasting.

1.2 Ontologies

In recent years, ontologies have emerged as a way to represent knowledge of a par-
ticular domain. Ontology - a term borrowed from philosophy, presently has wide
applications in computer science, artificial intelligence and knowledge representation
communities. Ontologies are “an explicit and formal specification of a conceptualiza-
tion” [I8], representing a set of concepts, events and relations that are specified to

create a vocabulary for a domain. Computational ontologies can formally model a



system, its constituent entities and relationships among them [19].

Modern semantic ontologies can facilitate sharing common understanding of structure
of information between communities of interest, either human or software agents.
Ontologies also allow reuse of domain knowledge. Large and complex ontologies can
be built by integrating existing and well-defined ontologies. By separating domain
knowledge from operational, ontologies promote inter-operability, translating between

different methods, models and paradigms [20].

This report is a step towards representing implicit and explicit domain knowledge of
solar radiation modeling and forecasting using ontologies in anticipation of a growing
market in solar energy generation. A thorough literature review reveals no com-
prehensive semantic ontology to represent information and knowledge about solar

irradiance forecasting.

A formal representation and informatic systems can reduce data uncertainty and
improve the model selection process as a function of the constraints imposed by
different operational conditions [2I] . The continual modernization of the electric
power grid through integration of digital and information technologies with dynamic
distributed energy resources underscores the need for a formal ontology for solar

forecast modeling [22].

The thesis will briefly survey the categories of models for solar forecasting: Clear



Sky, Parameterized, Numerical Weather Models, Stochastic Models, ANN models
and Persistence Models) and review ontological model development methodologies:
METHODONTOLOGY [23], Ontology 101 [20] , SENSUS[24] . A formal ontology
for solar forecasting will be developed using free and open-source ontology editor,
Protégé software [25]. The model will be evaluated by testing against select models

from solar forecast meta-surveys.






Chapter 2

Solar Forecasting

This chapter introduces the basics of solar irradiance, and reviews widely used models
for forecasting solar irradiance. Subsequently, metrics for evaluating solar forecast,

applications and intended end-users of solar forecasting are briefly reviewed.

2.1 Solar Irradiance Basics

Irradiance is solar, short-wave radiation flux incident on Earth[26]. The total short-
wave radiation received by a horizontal collector on the surface of the Earth is a sum

of many parts - beam, diffuse and albedo. (see Fig. 2.1])

Beam irradiance is the irradiance that is transmitted directly from the sun to the



incident horizontal surface in a straight-line path. Beam irradiance is sometimes re-
ferred to as Direct Normal Irradiance (DNI). Diffuse irradiance is the sum of all other
scattered solar radiation that falls onto the horizontal incident surface. The diffuse
component consists of radiation scattered off of the atmospheric molecules, parti-
cles and clouds. Diffuse irradiance is synonymous with Diffuse Horizontal Irradiance
(DHI) [26], 27]). Albedo is the irradiance that is reflected by the ground and objects on
the ground. Global Horizontal Irradiance (GHI) is the sum of all irradiance. Albedo
effects are insignificant compared to beam and diffuse irradiance, therefore GHI is

essentially the sum of DNI and DHI.

Extraterrestrial Horizontal Irradiance (EHI) is the irradiance measured just outside
the Earths atmosphere on a plane tangential to the atmosphere, as shown in Fig-
ure [2.1] Extraterrestrial Horizontal Irradiance can be accurately calculated to a high
degree of precision, as it is primarily a function of solar distance and global position

26] [28].

The clear sky irradiance is the maximum GHI incident on Earth, measured during
periods of no cloud cover. Many models do not directly utilize the clear sky irradiance,
but rather make use of the clear sky index, which is the ratio of GHI during overcast

conditions to the clear sky irradiance [29].

Concentrated Solar Power (CSP) systems and dual-axis trackers, i.e. PV panels that

follow the position of the sun through the day, are sensitive to DNI. Most PV panels

10



for residential or small scale applications are sensitive to both GHI and DNI.

Atmosphere

Scattering

Earth’s surface

Figure 2.1: Energy from the sun takes multiple paths to the surface of the

Earth.

Component Summary Symbol
EHI Irradiance at top of the atmosphere Ig

DNI Irradiance directly from the sun Ip

DHI Irradiance from the sky Ip
Albedo Irradiance reflected by ground -

GHI Sum of DHI, DNI, and Albedo (usually negligible) Ig

CSI Maximum GHI measured during clear skies Io

Table 2.1
Summary of solar irradiance terminology. Image Credit: Alex Hirzel

2.2 Solar Forecasting Models

Solar radiation at the top of the atmosphere is constant over time, while the solar
irradiance that reaches any point on earth’s surface is a function of atmospheric
and weather conditions above the location of interest. Cloud cover, aerosol and

dust particles absorb and scatter radiation as solar irradiance passes through the

11



atmosphere. All solar irradiance forecast models essentially offer a means to capture

this relationship.

The section briefly reviews existing widely used models for estimating solar irradiance
on the surface of the earth, with special consideration given to identifying the temporal

and spatial domain of the forecast horizons (See Table [2.2)).

Models Spatial Temporal
Persistence Point Scale Short Term
Sky Camera Microscale & Mesoscale Medium Term
Satellite Based Mesoscale Short & Medium Term
ARIMA Microscale Short & Medium term
Radiative Microscale & Mesoscale Medium & Long term
Empirical Microscale & Mesoscale Long Term
ANN Microscale Short & Medium term
NWP Mesoscale & Global Medium & Long term
Table 2.2
Spatial and Temporal domains of solar forecasting models. Adapted from
[3 7, ]

The terms that define spatial and temporal domains for the rest of this report are

described in Table 2.3 and Table 2.4

Temporal Domain Forecast Range
Short Term Oh-6h
Medium Term 6h-24h

Long Term 24 h-72h

Table 2.3
Summary of solar irradiance terminology

12



Spatial Domain Forecast Range (radius)

Point Scale Single site, usually < 0.01 km
MicroScale 0 km -1 km
Mesoscale 1 km - 10 km
Global > 10 km
Table 2.4

Summary of solar irradiance terminology

2.2.1 Persistence Models

Persistence models are naive forecast models predicated on the assumption that the

solar irradiance at the current time step is likely to persist for the next time-step

o, = I, (2.1)

Their precision and accuracy decreases with forecast duration, and are known to be
best suited for very short-term and near term (< 1 hour) forecasts [3] at a point-scale
spatial domain. Persistence models are most useful for benchmarking other models.
A more advanced model may not offer much value if it cannot out-perform a trivial

persistence model.

13



2.2.2 Empirical Models

Empirical models are solar irradiance models based largely on empirical observations,
and are not described through any mathematical or physical relationship between the

inputs to the models.
2.2.2.1 Sunshine Based Models

First proposed by Ansgtrom [30] in 1924, sunshine duration based models establish
a simple regressive relationship for the ratio of average daily GHI, I, to CSI, I,
as a function of the ratio between the average daily sunshine duration, Sy, to the

maximum sunshine duration, S,, for a particular location

e _ g + bg (&), (2.2)

where a and b are linear Angstrom model constants. Alternatively, Prescott [31]

defined the linear relationship in terms of EHI, denoted as I,

I S
]—G = a, + b, <§d> (2.3)

14



While the regression constants a and b are empirically derived from measurements
made from ground level stations, they have a physical significance. The variable a
represents the overall atmospheric transmission on completely overcast days when
Sa/So = 0. On a completely clear sky day, when S;/S, = 1, the sum of the terms
(a + b) is theoretically equal to 1. In the Prescott model, the sum (a + b) represents
the fraction of radiation received on clear sky days while accounting for dispersion of

solar irradiation due to atmospheric effects.

The values of a and b, and additional emperical constants ¢ and d for higher order
equations have been developed for many locations across the world as summarized in
Table[2.5] Detailed reviews of global solar radiation modeling using sunshine duration

models for many more locations are available in [32] and [33].

In [34], a model for estimating the DNI was postulated as

— = cos(as) = (2.4)

where «a; is the solar elevation angle, but hasn’t found widespread application, aside

from a few locations[35, [36], 37].

Quadratic [38] and higher order regressive [39] [40] models were developed to miti-
gate the sensitivity of linear models to periods of extreme cloud conditions, overcast

(Sa/S, = 0) or clear-sky (S4/5, ~ 1) [41].

15



There is no consensus on the benefits of second or third order regressive models
over linear Angstrom models. Higher order regression relationships where shown to
outperform linear models for some locations [42] [43] [44] [45] [46], performed the same
as linear models in some locations [47], [48] [49] [50] and produced mixed results for
yet other locations [51] [52]. A complete review of sunshine duration based quadratic

regression models is available in[53].

Location a b C d
Algeria [54] 0.309 0.368 0 0
China [55] 0.2223 0.6529 0 0
Egypt [56] 0.228 0.527 0 0
India [47] 0.2281 0.5093 O 0
Ttaly [57] 0.117  0.692 0 0
Jordan [58] 0.174  0.615 0 0
Libya [45] 0.1000 0.8740 -0.255 O
Oman [46] 0.9428 -1.202 0.9336 0
Pakistan [59] | 0.3480 0.3200 0.0700 0
Spain [60] 0.1840 0.6792 -0.113 O
Turkey [61] 0.2408 0.3625 0.4597 -0.3708
U.S.A[62] 0.81 -3.34 7.38 -4.51
Table 2.5

Values of constants in the higher order Angstrom-Prescott model
empirically derived from measurements made at ground level stations for
locations across the world

2.2.2.2 ASHRAE Models

The ASHRAET72 (American Society of Heating, Refrigerating and Air Conditioning
Engineers, 1972) model [63] is a clear-sky model developed to estimate the monthly-

average hourly GHI, I, incident on horizontal surface at sea level.

16



The model estimates DNI as a function of the zenith angle, z, and three time depen-

dent parameters,

Ig=P-R.e Q/scl®) (2.5)

The values for constants P and () were empirically derived from experimental data
obtained from observation stations. ASHRAE provides values of all the constants for
the 215 day of every month, along with a basic contour map of R (a non-parametric
empirical constant) values for locations in the United States. The ASHRAE model
can be extended to estimate GHI, and can also be adopted for locations at any altitude

I64).

The updated ASHRAE2005 model[65] provided a calculation for parameterizing R
using visibility index V' - a variable measured at over 2000 ground weather monitoring

weather stations [66] across the world.

In a comprehensive review of fifty-four clear-sky models conducted in 2012 [67],
ASHRAET2 and ASHRAE2005 models were only two of the three models that only
needed one input (zenith angle z) for computing hourly GHI and DHI values. Yet,
ASHRAE models were only two of the fifteen models to meet the stringent criteria
for a ’good model’ (5% <Mean Bias Error (MBE) <+5% and RMSE<15% ) across
fifty-two rigorous stages of testing. In a similar comprehensive review of fifty-four

models to compute the hourly DHI conducted in 2013 [68], ASHRAE2005 emerged as

17



the best model and ASHRAET72 model emerged as the third best model to meet the
stringent criteria for a 'good model’ (10% <MBE <+10% and RMSE<30% ) across

eighteen rigorous stages of testing.

2.2.3 Temperature Based Models

Air temperature data is measured at practically every single meteorological station
in the world. Inspired by relative success in incorporating temperature data in crop
simulation models, [69] advocate for using using ’'simple and robust’ temperature

measurements for solar irradiance forecasting

I
[—G = a + btz + Ctmaw + AN + e, (2.6)
where N is the cloudiness Index, and a, b, ¢, d and e are constants whose values are

available for most locations in the world.

Some authors [70] [71] [72] [73] have proposed location-agnostic analytics derivations
for the constants that explicitly relate all the coefficients to climatological variables.
While such models were shown to produce results comparable to other empirical
models for a few locations [61], their performance at any arbitrary location is as yet

remained un-examined.

18



Despite the limitations of location-agnostic models, empirical models for obtaining
the monthly average daily GHI can be implemented for most locations in the world.
The average daily sunshine duration, and air temperature are routinely measured at

most meteorological stations across the world[66].

The prevalence of easily obtainable modeling and ease of computing GHI make empir-
ical models the ideal first step in providing long term system energy output estimation

and optimal solar energy system design and sizing.

2.2.4 Radiative Models

Even in ideal conditions with no cloud cover, a significant portion (25%) [74] of all EHI
is lost before it reaches the ground. Irradiance on a clear day is well characterized as a
function of elevation, ground angle, and the optical density of the atmosphere. Aerosol
concentration, water vapor, turbulence, particulate matter and other atmospheric
factors that contribute to adsorption or scattering of irradiance as it passes through

the atmosphere [27, [75].

Clear-sky radiative models attempt to account for these effects using Radiative Trans-
fer Modeling (RTM) - remote sensing instruments on satellites or ground measuring
stations that model irradiance as a function of altitude, location and atmospheric

conditions on clear sunny days.

19



2.2.4.1 The SOLIS and Ineichen Model

The launch of the Meteosat Second Generation (MSG) satellite in 2005 provided
improved possibilities of monitoring Earth’s atmosphere in real time [76]. MSG had
higher spatial (km) and temporal (15 minute) resolution than previous satellites.
MSG was also equipped with the ability to retrieve additional atmospheric parameters

like cloud, water vapor, ozone and aerosol parameters.

The Solis clear-sky model describes a method of using the improved capabilities of
the MSG satellite derived data along with RTM to obtain spectrally resolved global

irradiance data. The hourly DNI was given by

I =1,-cm7) (2.7)

where 7 is the optical depth and m is the air mass.

While this relationship is valid for uniform path lengths of monochromatic radiation,

the Solis model was extended to the multiple wavelength bands of incoming solar
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radiation [77]. The DNI, GHI and DHI are given respectively by

Ig =1, exp (— 7;) ) (2.8a)

sin” o

I =1, exp (— T ) - sin ay (2.8b)

sin? o,

Ip =1, exp (— Td ) (2.8¢)

where 7, 7, and 74 are beam, global, and diffuse total optical depths, b, g and d are
the corresponding fitting parameters obtained from RTM a4 is the solar elevation

angle.

Instead of using monthly averaged parametric constants for atmospheric conditions
used in the earlier ASHRAE and sunshine duration based models, the Solis model
obtains high resolution diurnal clear-sky irradiance values. This is made possible by
integrating radiative transfer model (RTM) calculations on the atmospheric param-
eters obtained at 100 km x 100 km resolution every day with the cloud information

obtained through satellites at a 15km x 15km resolution every fifteen minutes.

The Solis model was shown [77] to be flexible to changes in the atmospheric state,
and hence provides solar irradiance data with higher accuracy, temporal and spatial

resolution in real time than earlier models.
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The Ineichen model [78] was proposed as an analytic approximation of the SOLIS
clear-sky model. Owing to the time consuming nature of obtaining beam, global and
diffuse optical depths (7, 7, and 7,) and the corresponding fitting parameters (b, g
and d) in real time, the Ineichen Model provides analytical derivations of the fitting
parameters. The inputs to the model are aerosol optical depth and water vapor
column, both of which can be obtained for more than 500 locations in the world

through the Aerosol Robotic Network (AERONET) database [79)].

A complete derivation for the parametrization of different coefficients is available
in [78]. The DNI, GHI and DHI values obtained from the simplified Ineichen model
are shown[78] to compare well (RMSE of 1% for GHI, 2% for DNI and 5% for DHI)

with the original Solis Model.

In a comprehensive review of eighteen radiative models for solar resource mapping per-
formed in 2012 [80], the Ineichen model emerged as the second best model to forecast
DNI within the uncertainty of broadband measurements from the best instruments
with state-of-the-art calibration and radiometric techniques. The Ineichen model was
also shown to have "universal validity’ due to its accurate and reproducible results
though it only uses three inputs whereas other models require 5 or more atmospheric

inputs.
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2.2.5 Time Series Models

A time series is a series of observations collected at regular successive intervals. Time
series models attempt to forecast trends in a data variable based on statistical mod-
eling of observed patterns in the past [81]. Solar irradiation has distinct daily and

seasonal time-varying components.
2.2.5.1 ARMA Models

Auto Regressive Moving Average (ARMA) models are a class of mathematical models
with applications in fields with a large amount of historical data like finance, engi-
neering and statistics. ARMA models provide a statistical description of stationary
stochastic processes, using polynomials of two parts, an auto-regressive (AR) part

and a moving average (MA) part (see Equation [2.9).

P q
I, = Z Oili—i + Z i€, (2.9)
=1 7j=1
AR MA

where I can be any component of solar irradiance (Ig,Ip,Ig,Ip or I¢), ¢ and € are the
parameters of the model, and e is the white noise error term. Equation describes

a time dependent variable X at any time-interval, as a combination of weighted sum
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of p most recent AR terms, and sum of ¢ most recent random variations from the
average over g terms. Equation|2.9|can be employed to forecast solar irradiance terms

using procedures described in [82] [83].

1. Identification - Specify response series, run stationarity tests and identify can-

didate ARMA models

2. Estimation - Estimate the order a,b and parameters ¢, ¢, a non-trivial problem

and an active area of research.

3. Forecasting - After model is trained, specify forecast intervals

2.2.5.2 ARIMA Models

ARMA models assume that time series models are stationary, i.e., the joint conditional
probability distribution of the stochastic process is assumed to remain constant even
when shifted in time. In reality, many real world time series data, including solar
irradiance, have a time-dependent trends and periodicity. Solar irradiance varies

through the day, and has seasonal variability.

A method to forecast non-stationary time series was first proposed by [84] in the form
of Auto Regressive Integrated Moving Average (ARIMA) models. ARIMA models

are a general class of statistical models that can be converted to stationary stochastic
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process using ’differencing’. ARIMA models are a generalization of ARMA models.

p q
=1 7j=1

N——
AR MA

where I¢ is the component of solar irradiance, rendered stationary by differentiating
d times, ¢ and 0 are the parameters of the model, and € is the white noise error term.

The term I? is the integrated back to recover the forecast for I.

ARIMA models can be adopted to forecast solar irradiance using a procedure de-

scribed in [85].

1. Plot the data, identify patterns, and unusual observations.
2. Transform data to stabilize variance

3. Difference until irradiance data is stationary

4. Select appropriate AR and MA models

5. Consider appropriate seasonal models appropriate for seasonality of solar irra-

diance through the year

6. Calculate forecasts
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2.2.6 Artificial Neural Network Models

Artificial Neural Networks (ANN) are general purpose computational intelligence ma-
chines that can be trained to learn, and subsequently recognize patterns in data.
Computational ANNS are inspired by biological neurons. In ways similar to how
neurons function, ANNs are collection of small interconnected processing units where
information is passed along their interconnections [86]. The network acquired knowl-
edge through a learning knowledge using the weights on the interconnections to store

information.

The topography of a generic multilayer feedforward ANN is shown in Fig[2.2] Each
neuron is connected to the neurons of the previous layer through ’adaptive sunaptic
weights’ [86]. In the learning phase, sets of inputs and outputs are passed to the
network. The networks attempts to match the input data with the output data,
adjusting weights to match the desired output. If the output does not match within
a specific tolerance, the training algorithm adjusts the weights to reduce error. Over
multiple passes of training data, the system learns to identify meaningful patterns
in the input-output pairing. The most popular training algorithms used in ANNs
is the back-prorogation algorithm, where the algorithm tries reduce total error by

modifying node interconnection weights along a gradient.

26



Input #1 —

Input #2 —

Input #3 —

Input #4 —

Figure 2.2: Model of an ANN, (image modified from original code by Kjell
Magne Fauske)

ANN have been successfully applied in many mathematical and statistical domains
including regression analysis, data mining and classification, processing, robotics,
numeric control and game theory. Real world applications include medical diagnosis,

image recognition, text mining, and more recently solar irradiation forecasting.

Reviews of solar irradiance forecasting widely available in literature [87, 88| [89] [O0]
describe most relevant input parameters for accurate solar forecasting. Models have
used combinations of day of the year, air temperature, relative humdity, latitude, lon-
gitude, altitude, rainfall, cloud cover, wind-speed and atmospheric pressure. In addi-
tion, models also use archived irradiance data in combination with other archived data

to perform time series forecasts. Models also range in diversity of model topography;,
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with different input layers, network size and numbers of nodes at each layer.

ANN models, by their very nature, are 'black-box’ models. It is difficult to interpret
the causal or statistical relationship between single or multiple input parameters to
the output. ANN models biased to the quality and quantity of training data available,
and are prone to overfitting. A model trained for a specific location with a particular

network configuration might not work for a different location or network parameters.

Despite these limitations, ANN models offer a number of advantages over traditional
methods of statistical regression. ANN can model complex non-linear relationships
between input and output variables, detect patterns in data without the need for
parametric models or variables. ANNs are also very easy to implement with most

modern computational software.

Recent advances in machine learning approaches, like feature selection and transfer
learning [91] can help resolve the tradeoff between models that can generalize and

over-fit to a set of input and model parameters.

2.2.7 Cloud Imagery Models

Cloud imagery models are predicated on the fact solar irradiance on the surface of

earth (GHI) has an inverse relationship with the amount of cloud cover [92]. The
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amount of cloud cover can be estimated through satellites or ground-based measure-

ment stations.

2.2.7.1 Satellite Derived Models

Progress in the fields of atmospheric radiative transfer modeling (RTM) has permitted
greater predictive accuracy [93] by using parameterization of individual atmospheric

factors.

The REST2 (Reference Evaluation of Solar Transmittance, 2 bands) model [93] fore-
casts DNI without the need for the computational complexity of spectral radiative
models. Much like the Ineichen model, the REST2 obtains a parameter for spectral

transmittance due to aerosols.

The DNI is obtained from a product of individual transmittances as show in

Ig = TpT,T,T, T, T,1,, (2.11)

where Tg, T,, T,, T,, T, T, are the transmittances due to Rayleigh Scattering,
uniformly mixed gases absorption, ozone absorption, nitrogen dioxide absorption,

water vapor absorption, and aerosol extinction respectively.
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Inputs to this model are derived from radiometric measurements made from a network
of more than 500 sites across the world through the AERONET [79] database. Details

of such calculations, along with calculations for GHI and DHI, are available in [93].

In a comprehensive review of 18 radiative models for solar resource mapping per-
formed in 2012 [80], REST2 emerged as the best model to forecast DNI. A condensed
version [94] of the REST2 model was developed for easier estimation of worldwide
clear-sky radiation data. In [04], the condensed REST2 model was shown be in

‘excellent agreement’ with the full REST2 model.

Input parameters for the REST2 model are available for more than 5400 stations
around the world. The wide availability of model input parameters makes REST2
a good candidate for short-term operational planning, and the parametrization of
physically-observed atmospheric conditions without the need for time intensive com-
putational processes making the condensed REST2 model a minimal input option for

long-term planning scenarios.

2.2.7.2 Sky Imagers

Sky Imagers are ground based cloud monitoring stations that offer intra-hour and
sub-kilometer solar irradiance forecasts. Sky imaging instrumentation constitutes a

rapid image capture camera equipped with a fish-eye lens, enclosed in a protective
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environmental housing. Most sky-imagers come equipped with in built in image
processing algorithms to detect and forecast cloud movement. The spatial resolution
depends on the number of pixels on the imaging camera, the position of the sun in
the sky, topography, cloud distance and height. The temporal resolution depends on

the operational ability of the image processing algorithms [95].

Irradiance forecasting using sky imagers occurs through three steps -

1. Cloud Decision Algorithm - Sky imaging cameras take a series of images that
are processed through cloud decision algorithms. Due to Rayleigh scattering
phenomena, clear skies appear blue. Individual pixels of the raw images are
compared against a clear sky library. Pixels with a red-blue ratio higher than

the threshold in the library are classified as a cloud.

2. Cloud Motion - Cloud motion is determined by cross-correlation of two con-
secutive sky images. Some post-processing elimiates erroneously small motion
vectors, and the remaining vectors are averaged to obtain an averaged velocity

and direction of cloud motion.

3. Cloud Forecasting - Cloud cover at any time t; is estimated from the cloud

position and average cloud motion at ¢_; obtained in the previous two steps.
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2.2.8 Numerical Weather Prediction Models

Numerical Weather Prediction (NWP) models use mathematical models and com-
puter simulations to forecast weather variables several hours in advance for large
tracts of earth’s surface. NWP models treat the atmosphere as a fluid, using ther-
modynamics to estimate the state of the fluid in the near future. The current state

of weather is used as inputs to the model that produces about 125 output variables

including GHI.

Out of many available NWP models, the North American Model (NAM), Global
Forecast System (GFS) and European Center for Medium-Range Weather Forecast

(ECMWF) are most commonly used for solar irradiance forecasting.

NWP Models NAM GFS ECMWF
Spatial Domain Continental US Global Global
Spatial Resolution 0.11° 0.5° 0.25°
Temporal Resolution 1h 3 h 6 h
Forecast Horizon 36 h 180 h 240 h
Forecasts per day 4 4 2
MBE 57.5 37.4 31.4
RMSE 134.2 110.5  123.2
Table 2.6

Summary of NWP forecast models, adapted from [9]
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2.2.8.1 NAM

National Oceanic and Atmospheric Administrations (NOAA) publishes the NAM
forecast for (12 km x 12 km) grids spanning the entire continental United State.
NAM forecast is a composite of over 125 weather variables. GHI forecast is made
available through an internal assimilation of radiative transfer models, affected only

by the atmospheric conditions present directly above each grid point.

This forecast is published four times every day, providing hourly output available up
to 36 hours ahead. In addition, forecast of a 3-hour temporal resolution is available

up to 84 hours ahead.

In a comprehensive review [9], NAM forecasts were found to be less accurate than
other NWP models, despite its specialized application to the continental United

States. (See Table [2.6])

2.2.8.2 GFS

GFS is a global forecast, also published by NOAA. GFS has a larger spatial resolution,

larger temporal resolution and a longer forecast horizon than NAM forecasts.

Similar to NAM, GHI forecasts in GF'S are obtained through radiative transfer models
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that account for the attenuating effect of absorption of solar radiation as it passes

through earth’s atmosphere.

2.2.8.3 ECMWF

Similar to GFS, ECMWF is a global forecast published by an intergovernmental
consortium based in Europe. ECMWF provides medium range forecasts at larger

spatial resolution, larger temporal resolution and a longer forecast horizon than both

GFS and NAM forecasts.

Despite this, in a comprehensive review [9], ECMWF forecasts were found to be more

accurate than other NWP models (See Table

Medium-term solar forecasts are generally regarded to be more accurate when derived
from NWP models. However, NWP models face significant challenges in forecasting
solar irradiance in cloudy conditions due to limitations posed by complex cloud micro-
physics and real-time computation of their radiative properties. Consequently, NWP

models are expected to show inherent regional biases due to micro-climatic conditions

[9].

The temporal and spatial domains of the forecasting models are summarized in Ta-

ble 2.2 and Figure 2.3
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Figure 2.3: Spatial and temporal domains of solar irradiance models,
adapted partly from [3]

2.3 Forecast Metrics

Accurate solar forecast facilitates more efficient integration of solar into utility re-
sources, reduce curtailment of solar grid resources. Forecasts provide advance warning

to render smooth transitions between solar and other energy resources.
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To understand the value that solar forecasting provides, it is important to develop
metrics to measure and assess the impact of forecasts have on integrating solar into

the national grid [4].

The United States’ Department of Energy (DOE) Sunshot Initiative identified [90]

criteria to evaluate the usefulness of a forecasting metric:

1 simple and easily understandable

T provides actionable insights

T input data is manageable and acquirable, and

T practical to make operational and planning decisions.

The Sunshot Initiative further identified a suite of comprehensive value-based and

custom-developed metrics for Solar forecasting metrics for a diverse set of applications,

forecast horizons and spatial domains. These metrics can be broadly divided into the

following categories -

1 Statistical metrics are useful for evaluating the overall performance of fore-
casts, and for quick comparison between the performance of different forecast

models.
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Type

Metric

Description

Pearson’s coefficient

Linear correlation between forecast
and measured solar irradiance
Evaluating overall accuracy,

RMSE ..
penalizing large errors (square)
. Evaluating overall accuracy of the forecasts,
. RMQE .. .
Statistical penalizing large forecast errors (quadratic)
MaxAE Evaluating largest forecast error
MAPE Evaluating uniform forecast error
Evaluating statistical similarity between
KSI
forecast and measured
MBE Evaluating forecast bias
OVERPer Evaluating statistical similarity between
large forecast errors
Skewness Evaluating assymetry of forecast error distribution
Kurtosis Magnitude of peak forecast distribution
Uncertainity Renyi entropy . ..
. - fi f f
metrics Standard Deviation Quantifies uncertainity of forecast
Ramp Swinging door algorithm Extracts ramps in solar power output
Characterization sne & ) ps I s P P

Economic Metrics

95th percentile of forecast errors

Amount of non-spinning reserves to compensate
for forecast errors

Table 2.7

Solar forecasting metrics adopted from [4] 5., [6]

1 Uncertainty Quantification metrics measure the amount of deviation, vari-

ation or uncertainty of a forecast

1 Ramp Characteristics identify the start and end points of ramps in solar

power output

1 Economic metrics measure the costs of maintaining spinning-reserves to com-

pensate for inaccurate forecast errors.

A complete listing of applicable error metrics is described in Table
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2.4 Applications & End-Users

Accurate solar forecasting has applications offering value to multiple stakeholders in
the electric grid. Long-term forecasts of utility-scale solar may be used for reliability
planning and scheduling of generation sources. Medium-term forecasts of roof-top
solar at the distribution end may be employed in forecasting demand within a load-
serving entity’s service territory. Competitive electric markets may use short-term
solar forecasts for bidding and trading energy services. Table offers a comprehen-

sive review of solar forecasting applications, end users and temporal domains.

Users Applications Time-Horizon
Reliability planning Long Term
Congestion management Medium Term
ISO/RTO Unit commitment & dispatch Short & Medium Term
Load-flow, ramps & curtailment Short & Medium Term
Security. maintenance & outage Medium & Long Term
System planning Long Term
Outage management Medium Term
Distribution Utilities Load forecasting Medium Term
Smart Grid management Short & Medium Term
Load Serving Entity  Scheduling & balancing Short & Medium Term
Energy Traders Bidding strategies Short & Medium Term

Research labs

. Integration & simulation studies All Terms
Project developers

Table 2.8
Adapted from [10, 111, 12]

Independent Systems Operators (ISO) and Regional Transmission Organizations) are
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independent neutral parties that responsible for the management and control of elec-
tricity across multiple states in the US territory, under regulation by the Federal
Energy Regulation Commission (FERC). RTOs typically perform the same tasks as
ISOs, but over a larger service territory. ISO/RTO administer regional wholesale
electricity markets and plan for long term system reliability. Load serving entities
are typically electricity utility companies that have vertically integrated generation,
transmission and distribution services, while distribution utilities are smaller utilities
that lack generation capabilities, either due to local energy policy or lack of ade-
quate capacity. Energy traders are utilities or third party agents that participate in

wholesale energy markets by buying and selling energy services.

The ultimate end-users may vary based on application, region and the nature of the

regulation of electricity markets.

2.5 Summary

Models for accurate forecasts of solar irradiance integrates knowledge from diverse
disciplines like atmospheric science, cloud physics, statistical mechanics, remote sens-
ing, machine learning, and data mining. This chapter reviewed Various models for
forecasting solar irradiance have been developed, each with its own model inputs,

spatial and temporal domains.

39



In addition, this chapter also briefly reviewed grey literature discussing metrics for
comparing and evaluating solar forecasts, applications and end users of accurate solar

forecasts.

As the body of research in solar forecasting grows, there is a need to develop a
shared and common understanding of this domain. The next chapter reviews the
use of ontologies to facilitate knowledge sharing and reuse of information by agents

interacting in the domain of solar forecasting.
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Chapter 3

Ontology and Ontology

Development Methodology

The term ’ontology’ comes from Greek works ontos for ’being’ and logos for 'word’.
Ontology as a philosophical discipline has long been defined as a ’systematic expla-
nation of being’. Led by Plato and followed by his student Aristotle, it is know as
a study of objects, properties, events, processes and relations in all aspects of being

[97].

41



3.1 Ontologies

Modern human activity is interdisciplinary, with people, organizations and software
agents operating in a common space. Due to differing technical backgrounds, exper-
tise, knowledge hierarchies, agents in the same environment may lack a shared under-
standing of the domain in which they interact [08]. As an example, solar forecasting
models integrate knowledge from fields like cloud physics, statistical mechanics, arti-
ficial intelligence, machine learning and statistics. Software experts developing appli-
cations for the smart grid may lack an understanding of the underlying concepts and
terminologies used in solar forecasting models. End users like energy market bidders
and load serving utilities may have their own approach to structuring and organizing
information and data that might not be congruent with the input requirements of
solar forecasting models. Project developers may have goals, needs and expectations

from solar forecasts that existing forecast models may not be able to meet.

Such differences in the definitions of concepts, structures, objects and relationships
leads to poor communication, limiting inter-operability and reduces the potential for

sharing knowledge and information about the domain of interest.

In recent years, ontologies have emerged as means to formally model the knowledge

and structure of a system. Ontologies represent knowledge of a domain as a set
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of concepts, and relationships between pairs of concepts [20]. Ontologies are also a
formal conceptualization that expresses a shared view of a domain between different
parties [19] or a way of describing hierarchies or taxonomies in classified knowledge

networks, expressed in a formal machine readable format.

As expressed in [20], the general goals of developing an ontology are to

1 share a common understanding of the structure of information among human

and software agents,

1 enable reuse of information and domain knowledge,

1 make domain assumptions and descriptions underlying an implementation ex-

plicit,

T separate domain knowledge from operational knowledge, and

1 formally analyze terms and relationships that constitute domain knowledge to

foster reuse and extension.

In addition, ontologies facilitate communication among humans and software agents
without semantic ambiguity and provide foundations for inter-operability. Formal
ontology development saves time and effort in building similar knowledge systems, and

clarify the structure of knowledge through explicit domain knowledge definitions [99].
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3.2 Ontology Language

The features of an ontology can also vary by the language used to describe the on-
tology. This thesis uses OWL, a standard ontology language from the World Wide
Web Consortium (W3C). OWL is a formal semantic language that offers a rich set
of differential logic operators (e.g., intersection, union) that allows complex concepts

and relationships to be built from simpler concepts.

In OWL, any domain can be modeled through a shared vocabulary of individuals,

properties and classes.

3.2.1 Individuals

Individuals represent objects in the domain of interest. In OWL, individuals have to
be explicitly defined as same or different to each other. In Fig[3.1] Artificial Neural

Network model (ANN), Global Horizontal Irradiance (GHI) and Cloud Cover are all

instances or objects in the knowledge domain of solar forecasting.
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Figure 3.1: Representation of individuals in the solar forecasting ontology

3.2.2 Properties

Properties describe features and attributes of individuals. OWL offers the following

type of properties

1 Datatype properties - describe relationships between objects and data values
T Annotation properties - used for adding metadata, version information

1 Object properties - binary relationships that link two individuals. In OWL,

object properties may have the following characteristics

— Functional - at most one individual is related to another individual through
the property. In Fig[3.2] hasOutput is a property that describes the rela-

tionship between ANN and GHI, i.e., ANN hasOQutput GHI.

— Inverse functional - the inverse of a property is functional. For example,
in Fig[3.2] the property isInputOf is the functional inverse of the property

hasInput.
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— Transitive - if a transitive property relates individual a to b, and the same
property relates b to ¢, then the a and ¢ are related through the same
property.

— Symmetric - if a symmetric property relates a to b, then the same property
relates b to a.

— Asymmetric - if a property relates a to b, then b cannot be related to a the
same property.

— Reflexive - when a property relates an individual to itself.

— Irreflexive - when a property cannot relate an individual to itself.

hasinput

Cloud
Cover

7/
_- fslnputOf

-
- -

= =~  isOutputOf
~

X GHI

hasOutput

Figure 3.2: Example of properties that establish relationships between
individuals in the solar forecasting ontology

3.2.3 Classes

Classes are the basic building blocks of an OWL ontology. Classes are sets that contain

individuals whose descriptions precisely describe the class membership requirements.
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Classes can have sub-classes that represent specification in addition to the what they

may inherit from their super-class.

hasOutput

Figure 3.3: Examples of individuals, properties and classes in the OWL
solar forecasting ontology

OWL lets classes be defined by the relationships between individuals. In Fig [3.3
ANN is a member of a class 'Models’, where "Models’ is a set of individuals that are
connected to another individual through the property hasInputs. OWL also supports
the creation of anonymous classes through a restriction on object properties. These

concepts are explored in a greater detail in Chapter

3.3 Ontology Development Methodologies

Many approaches have been proposed for formally developing ontologies. The rest of

this section reviews common and widely used ontology development methodologies.
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3.3.1 Uschold and King

The methodology by Uschold and King is among the first published ontology devel-

opment methods. The approach is proposed in a set of stages -

1. Identification - Identify domain vocabulary, purpose, intended use, end-users,

scope, terms. Define a set of competency questions.

2. Building

T Ontology capture - Identify and textually define concepts and relationships.

1 Ontology coding - Transform words into formal ontology language using

an ontology editor

1 Integrate existing ontologies

3. Evaluation Verify if classes, attributes and instances of classes meet require-

ments and purpose specified during the first stage.

4. Documentation - Document all the results from previous stages to aid in next

iteration of ontology development.
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3.3.2 SENSUS

SENSUS is a natural language based ontology developed to provide a broad con-
ceptual structure for work in machine translation [24]. In contrast to other early
ontology development methodologies which were developed from scratch, SENSUS

was developed by extracting information from existing electronic resources.

Rather than develop a step by step or iterative process, SENSUS outlines the following

principles for practitioners to bear in mind while designing an ontology -

1 Do not over-commit on representational choices

T Should be extensible

T Should be extended based on needs identified during actual use

1 Should integrate horizontally with other ontologies

T Structure ontology on organizing principles, conceptual clustering
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3.3.3 METHODONTOLGY

METHODONTOLOGY uniquely identifies the process of knowledge acquisition, doc-
umentation and evaluation as being activities within an iterative ’life-cycle’ of ontol-

ogy development.

The life-cycle is described in the following stages -

1. Specification - Identify domain vocabulary, purpose, intended use, end-users,

scope, terms, granularity, etc.

2. Conceptualization - Structure domain knowledge as a conceptual model using
domain vocabulary. Build Glossary of Terms, concepts, verbs, class attributes

and instances of classes.

3. Integration - Inspect meta-ontologies and reuse existing ontologies

4. Implementation - Use a development environment that looks for the most
appropriate definitions, detects incompleteness, inconsistencies and redundant

knowledge.

The following activities occur concurrently with the iterative life-cycle process

1 Knowledge Acquisition - brainstorming, interviews with experts, literature
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review

1 Evaluation - verification for correctness and validation to check if ontology

adequately represents the system it was built for.

1 Documentation - Document as you go along in every stage.

3.3.4 On-To-Knowledge

On-To-Knowledge [100] introduces an ontology development methodology focused on
bridging the gap between semantic descriptions of concepts for IT applications and

human agents. This process is described in the following steps-

1. Feasibility Study - Identify problem and opportunity areas, potential solu-
tions and put it in wider organizational perspective. Decision support for fea-

sibility.

2. Kickoff - Generate requirement specification document containing

T Goal

7 Domain

1 Applications supported
T Knowledge sources
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1 Potential users and use-case scenarios
1 Competency questions-concepts and relations
1 Reusable ontologies
3. Refinement - Produce mature and application-oriented target ontology based
on kick off specification
1 Gather ’baseline taxonomy’ or relevant concepts derived in kick off phase
1 Develop 'seed ontology’ after eliciting knowledge from domain experts

T Transfer seed to 'target ontology’ using formal expression languages

4. Evaluation - Prove the usefulness of developed ontology

1 Check if target ontology supports competency questions
1 Test in the target application environment using feedback from beta users

1 Trace usage patterns, iterate to identify areas most used or not used

5. Maintenance Change specifications based on developments in the real world.

Cyclic refinement and evaluation phases

3.3.5 ONTOLOGY 101

Ontology 101 [20] presents an intuitive method for building ontologies. Unlike other

methodologies, Ontology 101 is not presented as a step by step process, but instead as
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a set of stages that need to be accounted for through the complete iterative process.

1 Formulate competency questions to determine the domain and scope of the

ontology.

T Reuse existing ontologies

1 Build a Glossary of Terms

1 Identify classes from Glossary of Terms

1 Iterate over classes to identify properties and attributes

1 Specify range of values for attributes

1 Identify instances, run test case and repeat

As an informal methodology, Ontology 101 provides guidelines individuals with lim-
ited prior knowledge of onotology development. Due to its ease of implementation
and widespread use, the rest of this report will use Ontology 101 methodology to

develop solar forecasting ontology.
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3.4 Summary

As described by [20], most ontologies follow come common principles ontology devel-
opment is an iterative process, with no single and correct way to model a domain.
The merits of an ontology rely on the the ability of the ontology developer to model
ontological concepts semantically closely to objects and relationships in the domain

of interest.

Many terms in the natural language lack a well defined semantic, particularly in
interdisciplinary fields. Different people with different backgrounds and expertise may
have different associations with the terms used to describe the knowledge of a domain.
The challenges of achieving inter-operability rely on the skill of the ontology developer.
Ontologies also need to be evolve with the domain, however regular updates and

maintenance of the ontology can be a resource intensive.

Despite these limitations, explicit description of a domain of knowledge in a com-
mon vocabulary through an ontology remains a useful means for researchers to share

information about a domain.

While there are advantages and challenges to each of the ontology development ap-
proaches, Ontology 101 is the only methodology described exclusively using Protégé

software . In recent years, Protégé software has emerged as the leading ontology
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engineering tool, with over 300,000 users. Protégé software is a free, open source

ontology editor that supports OWL semantic language (among others).

As an informal methodology, Ontology 101 provides guidelines individuals with lim-
ited prior knowledge of onotology development. Due to its relative ease of implemen-
tation and widespread use, the rest of this report will develop the solar forecasting
ontology using Ontology 101 methodology. Due to its easy-to-use graphic user inter-

face. the report will use Protégé software ,
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Chapter 4

Ontology for Solar Forecasting

This chapter develops a solar forecasting ontology using the development methodology
"Ontology 101’ [20]. Sections in this chapter may combine multiple steps in describing

the development process.

4.1 Specification

The first step of developing an ontology is defining the domain and scope of the
ontology. The solar forecasting ontology developed in this report integrates knowledge
from academic papers, grey literature and expert reports on solar forecasting. The

domain will model solar forecasting models, forecasting metrics, solar forecasting
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applications, end-users and the relationships between those concepts. This ontology
is intended to be used by project developers to compare solar forecasting models, and
choose most appropriate model for their use-case scenario, while working within the

limitations of data and instrumentation availability.

The domain and scope of this ontology can be further defined by enumerating a list of
competency questions that the ontology is expected to answer. A complete ontology
should contain enough information to answer these questions, with the level of detail

and representation necessary for the intended users of the ontology.

4.1.1 Competency Questions

While by no means exhaustive, Table enumerates a sample of competency ques-
tions for illustrative purposes. In addition to identifying competency questions, Ta-
ble also picks out the important terms that need to be explained to the user. Our
ontology will make ’statements’ about these terms through relationships between
them. At this stage, terms and relationships are expressed in the natural language

without worrying about overlap of concepts.
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Competency questions Class Property Class
What do I need for the model to work? ForecastModels  hasInputs ForecastInputs
What models can I use this specific data for? | ForecastInputs islnputTo ForecastModels
What does my model tell me? ForecastModels  hasOutputs ForecastOutputs
How good is the forecast? ForecastModels hasForecastMetrics ForecastMetrics
Can I use this model at this location? ForecastModels hasGeographicAttribute Lat & Long.
Who uses solar forecasts? What uses? EndUsers isResponsibleFor Applications
Table 4.1

A sample of competency questions

4.2 Related Ontologies

Reusing existing and validated ontology saves time and effort. Many concepts de-
fined in an different ontology can be directly imported, with little modification, and
applied to the domain of interest. Reusing existing ontologies may be an important
requirement to ensure inter-operability among interdisciplinary and diverse ultimate

users and their respective knowledge systems.

Many ontologies are designed for reuse under different contexts, with many publicly
available ontologies specifically intended for use by the broader community. This
section briefly reviews existing and publicly available ontologies that were considered

for importing into the solar forecasting ontology.

4.2.1 Date and time

OWL - Time |is a list of temporal concepts built for describing time related content of
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Web pages. The ontology provides a vocabulary for expressing facts about topological

relations among instants and intervals described using datetime information [101].

Our ontology imports some salient features of the OWL-Time ontology - Interval and
Instant. Intervals are spans of time that have an beginning and an end, while Instants
are intervals with zero length. Intervals can be used to express notions of time with

regards to concepts of time like duration, overlaps, begins, ends, and finishes by.

Duration can be intervals of days, hours, seconds in terms of a predicate that enforces
data property to specify time in units of seconds, minutes, hours, days, weeks, months
and years. An interval can use multiple descriptions to describe the same duration in

time.

Our ontology can be extended to include other OWL-Time concepts like TimeZone,
which may be relevant for forecast models like NWP have to parse through forecast

reports from a central repository.

4.2.2 Location

OWL - Basic-GEOis a Resource Description Foundation (RDF) vocabulary that pro-
vides semantic definitions for latitude, longitude and other spatial concepts. As a

basic ontology, it does not cover the more complex concepts like polygon or boundary
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used by GIS services. While OWL- Basic-GEO was formally imported into our solar
forecasting ontology, our representation for spatial concepts reuses the Basic-GEO

formulation.

4.2.3 Units

Units of Measurement (OM) [102] is an OWL ontology of the domain of quantities and
units of measure with particular reference to the fields of science and engineering. OM
was designed to improve the annotation and interpretation of quantitative research

data.

Each unit is expressed in terms of a set of base units depending on the SI system
of units. Units are combined with prefixes such as milli or kilo to represent a mul-

tiplicative factor. For example, electromagnetic irradiance is defined in SI terms as

W M2

Our ontology imports features of OM most relevant for describing the domain of solar

forecasting.
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4.2.4 Weather

Many ontologies have been developed to describe concepts in the domain of weather
and weather forecasting Weather Station, Weather-ON'T and WeatherOntology.
However, these ontologies were found to be too extensive for application in our solar
forecasting ontology. Since these ontologies reused modified concepts of OWL-Time
and Units, there was a risk of obfuscating domain knowledge due to overlapping

classes, predicates and concepts.

4.2.5 Concentrated Solar Power

In [21], the authors describe a very simple ontology largely serves as a proof of concept
for formally representing knowledge of solar radiation modeling and forecasting by the
means of ontologies, with particular reference to concentrated solar power systems.
While domain and scope of this ontology are somewhat limited, some concepts like
temporal and spatial domain of forecast models were reused for creating our solar

forecasting ontology.
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4.3 Defining classes and hierarchy

Using competency questions motivated in [4.1, we enumerate a list of all terms and
their properties we’d like to describe. Subsequently, we develop a class hierarchy and
define the properties of the concepts. The features of an ontology can also vary by

the language used to describe the ontology.

4.3.1 Class Hierarchy

From the list of terms generated in table Protégé software offers flexibility in
describing the concepts either in terms of classes or individual instances. In this

design methodology, terms that have independent existence are selected as classes.

Classes are organized into a hierarchical taxonomy, where subclasses inherit the prop-
erties of their superclass. An instance of a subclass by definition will be an instance

of the superclass.

For example, the instance ANN in Fig can also be expressed as a subclass ANN
that inherits the properties and relationships of the class ForecastModels. Through
inheritance, the class ANN also hasInputs some ForecastInputs and hasOutputs some

ForecastOutputs. Here, instance AN N; may refer to a single particular ANN model
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Figure 4.1: Refactoring some instances as classes and organizing them in
a hierarchical taxonomy

as implemented in [2].

Terms Description Attribute
Forecast Models  Physical or statistical approximation of solar irradiance Class
ANN Artificial Neural Networks forecast models Subclass to Class
ANN; ANN forecast model as implemented in [2] Instance
Forecast Inputs Inputs to a forecasting model Class
Forecast Outputs Outputs to a forecasting model Class

Table 4.2

Glossary of terms resolved into classes and instances

4.4 Defining properties and relationships

OWL lets classes be defined by the relationships between concepts. In Table [2.2]

short, medium and long terms are the temporal domains of forecast models. In
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OWL, these concepts can represented by classes and relations as show in Table [4.3]

Class Relation Class

Persistence hasTemporalDomain  Short Term

Sky Camera hasTemporalDomain Medium Term

Satellite Based hasTemporalDomain Short OR Medium Term

ARIMA hasTemporalDomain  Short OR Medium Term

Radiative hasTemporalDomain Medium OR Long Term

Empirical hasTemporalDomain Long Term

ANN hasTemporalDomain  Short OR Medium Term

NWP hasTemporalDomain Medium OR Long Term
Table 4.3

Temporal domains of solar forecasting models in Table expressed as
classes and relations. Adapted from [3], (7], [§]

These relationships are explicitly encoded in the development process of the ontology

as shown in Fig[4.2] where models like NWP are subclasses of the class ForecastMod-

els, but are connected to the class MediumTerm through the relation hasTemporal-

Domain.

4.5 Using Reasoners

In the hierarchical model of classification, the Protégé software environment that

supports two kinds of hierarchies -

T Asserted hierarchy - Manually named and explicitly constructed.

1 Inferred hierarchy - Infer facts that are not explicitly stated in the data model
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Figure 4.2: Defining relationships between classes

using reasoners.

Reasoners are a key component of working with OWL ontologies that use logical rea-
soning to test for consistency in asserted relations. Reasoners can test the membership
of a class, classification hierarchy and check the logical consistence of an ontology.
Advanced reasoners can also support automatic reasoning to generate inferred hier-

archies.

In Protégé software , consider the creation of a new subclasses of ForecastModels
called ShortTermForecastModels. We assert that this subclass has a superclass called
ForecastModels. The Asserted hierarchy of classes simply shows (see Fig that

ShortTermForecastModels is a subclass of ForecastModels, along with other classes
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Figure 4.3: Asserted hierarchy of classes

explcitly defined earlier. We create two additional classes representing the temporal

domains Medium Term and Long Term.

In addition, we specify the property that ShortTermForecastModels is equivalent to
the class of ForecastModels that are connected to the class ShortTerm through the
relation haveTemporalDomain. The default Protégé software Reasoner FACT++

supports automatic reasoning to generate inferred hierarchies as seen in Fig. [4.4]

Fig. helps answer competency questions like - "What models can I use for short
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Figure 4.4: Inferred hierarchy of classes

term forecasting?’ without explicitly encoding every single relationship in the knowl-

edge model.

coded into the knowledge model.

Similarly, the temporal domain relationships in Table Teftab: Applications can be en-

dummy class called ForecastHorizon and a subclass called LongTermForecastHorizon.
Here we specify that membership of this class is defined by the relation End-users,
Applications or Forecast Models have temporal domain as Long Term. Since end-
users do not have a temporal domain by default, they can inherit a relationship to

the temporal domain by proxy through the application they are responsible for. The
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actual data property assertion in Protégé software is shown in Fig 4.5

Description: LongTermHorizon mEEE
Equivalent To
© (EndUsers

and (isResponsibleFor some

(Applications

and (hasTemporalDomain some LongTerm)))) or ((Applications or
ForecastModels)
and (hasTemporalDomain some LongTerm))

SubClass Of
© ForecastHorizon

Figure 4.5: Class hierarchy relationship to identify dummy class
LongTermForecastHorizon

The inferred hierarchy of this class is shown in Fig [4.6]

Fig shows the relationships between all concepts in the domain based on their
temporal horizon. Concepts can thus be members of named or anonymous subclasses

based on their relationships inferred through the use of reasoners.

4.6 Domain Knowledge Validation by Use Case

Semantics of an ontology are verified through the use of reasoners to avoid overlap of
concepts and relationships. Reasoners test for logical consistency, and if objects and

properties are linked correctly based on defined rules and axioms.

Beyond such logical checks using reasoners, a systematic evaluation of an ontology

can help users make informed decisions about choosing an ontology that best fits
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Figure 4.6: Inferred hierarchy of the dummy class LongTermForecastHo-

rizon
their needs. Ontologies have to be further validated to test that they address the

requirements that motivated their creation.

Validation of ontologies through illustrating use-cases is a common practice to de-
termine if an ontology is accurate, adaptable and clear [I03]. Accurate ontologies
comply to the knowledge experts of the domain, and correctly represent the concepts

of the world. Ontologies should be understandable, and offer a conceptual foundation

for a range of anticipated uses.
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The use-cases that follow are by no means exhaustive, but serve as a means to illus-

trate the quality of the ontology.

4.6.1 Identifying appropriate end-users based on constraint

on forecast models

Consider a real world scenario where a software developer or research lab develops a
solar forecasting model using Artificial Neural Networks. The researchers are inter-
ested in identifying the stakeholders in the smart-grid that would benefit from such

a model.

We illustrate this use-case through a named class created for demonstration purposes.
In the knowledge model, end-users are not explicitly related to forecast models. How-
ever, forecast models have temporal domains in which they are most effective. ANN
are outperformed by other forecast models models for long term forecasts, and are
most appropriate for short and medium term forecasts. In the ontology, ANN are

connected to temporal domain through the hasTemporalDomain relationship.

Similarly, grid applications are connected to temporal domain through the hasTem-
poralDomain relationship. In Table 2.8 applications are within the domain of specific

end users. In the ontology, end-users are connected to temporal domain through the
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isResponsibleFor relationship. For example, Independent Systems Operators (ISO)

are directly responsible for unit commitment in the grid.

Therefore, the end users most likely to use ANN models are a subset, or subclass of all
end users. For demonstration purposes, in the ontology a new named subclass called
ANNEndUsers, a subclass under EndUsers, to represent this class of users. The users

of this class were specified using the class hierarchy relationships shown in Fig

Description: ANNEndUsers MEEE

Equivalent To

@ EndUsers and isResponsibleFor some
(Applications and hasTemporalDomain some
(TemporalDomain and isTemporalDomainOf
some ANN))

SubClass Of
@ EndUsers

Figure 4.7: Class hierarchy relationship to identify dummy class of end
users that may use ANN forecast models

The inferred hierarchy of this class is shown in Fig 1.8, ANNEndUsers is a subclass

of all EndUsers who are likely to use ANN models.
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Figure 4.8: Inferred hierarchy of the dummy class ANNEndUsers, identi-
fying the end users most likely to use ANN models.

4.6.2 Identifying appropriate applications based on con-

straint on available data

Consider a real world scenario where a project developer has no access to weather,
atmospheric or archived power output from a solar generation site of interest. In
this use case scenario, the developer is interested in identifying the grid applications
that could benefit from forecasting solar irradiance using just parametric constants

available for most locations in the US.

We illustrate this use-case through a named class created for demonstration pur-

poses. In the knowledge model, applications are not explicitly related to input data
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for forecast models. However, in the ontology, input data is related to forecast mod-
els through the isInputTo relationship. Inversely, forecast models are connected to
data through the inverse relationship haslnput. For example, AtmosphericData is

connected to ANN models through isInputTo relationship.

As discussed earlier, forecasting models are connected to temporal domain through
the hasTemporalDomain relationship, and grid applications are connected to temporal

domain through the hasTemporalDomain relationship.

Therefore, the applications most benefit from using irradiance data to forecast solar
irradiance, are subclass of all applications. For demonstration purposes, in the ontol-
ogy a new named subclass called ParametricConstantsApplications, a subclass under
Applications to represent this class of users. The members of this class were specified

using the class hierarchy relationships shown in Fig

Description: ParametricConstantsApplications

Equivalent To

@ Applications and hasTemporalDomain some
(TemporalDomain and isTemporalDomainOf
some (ForecastModels and hasInput some
ParametricConstants))

SubClass Of
@ Applications

Figure 4.9: Class hierarchy relationship to identify dummy class of appli-
cations that may use solar irradiance forecast through parametric constants
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The inferred hierarchy of this class is shown in Fig[4.10, ParametricConstantsAppli-

cations is a subclass of all EndUsers who are likely to use ANN models.
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Figure 4.10: Inferred hierarchy of the dummy class Parametric-
ConstantsApplications, identifying grid applications that can be addressed
if only parametric constants were available as inputs to a class of solar irra-
diance models

4.6.3 Selecting appropriate models based on constraints on

end-users

Consider a real world scenario where a software developer is developing solar forecast-
ing tools for a specific end user, in this instance, a Load Serving Entity. In this use
case scenario, the developer is interested in identifying all solar forecasting models
that could be used to forecast solar irradiance according to parameters that could

most benefit their client. At this stage of the development process, the developer
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does not have knowledge of specific grid applications. Subsequent to implementing
forecasting models, the developer would like to identify the "best’ forecast models for
his clients, where the criteria for comparing and evaluating merits of models is based

on expert opinion, and widely accepted standards.

We illustrate this use-case through a named class created for demonstration pur-
poses. In the knowledge model, forecast models are not explicitly related to end-
users. However, in the ontology, In the ontology, forecast models are connected to
temporal domain through the hasTemporalDomain relationship. Conversely, tempo-
ral domains are connected to forecast models through the inverse relationship isTem-

poralDomainOf.

Similarly, grid applications are connected to temporal domain through the hasTempo-
ralDomain relationship. In Table 2.8, applications are within the domain of specific
end users. In the ontology, end-users are connected to temporal domain through
the isResponsibleFor relationship. Inversely, applications are connected to end-users
through the inverse relationship IsResponsibilityOf. For example, unit commitment

in the grid is the direct responsibility of Independent Systems Operators (ISO).

Therefore, the appropriate forecast models for the specific end user LSE are subclass
of all end users. For demonstration purposes, in the ontology, a new named sub-
class called ModelsForLLSE, a subclass under ForecastModels to represent this class

of forecast models. The members of this class were specified using the class hierarchy
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relationships shown in Fig[4.11

Description: ModelsForLSE MEEE

Equivalent To

@ ForecastModels and hasTemporalDomain some
(TemporalDomain and isTemporalDomainOf
some (Applications and isResponsibilityOf some
LSE))

SubClass Of
@ ForecastModels

Figure 4.11: Class hierarchy relationship to identify dummy class of appli-
cations that may use solar irradiance forecast through parametric constants

The inferred hierarchy of this class is shown in Fig[4.10] ModelsForLSE is a subclass

of all ForecastModels most appropriate for end users like LSEs.

Subsequent to identifying all forecasting models most appropriate for end users like
LSEs, the developer can identify appropriate forecasting models based on available
data similar to use-case 2 discussed earlier. When not constrained by choice of avail-
able data as inputs to forecast models, the developer can compare the outputs of
forecasts from different models using widely accepted industry standards developed
by experts at NREL [4, 5] and US DOE [6]. This knowledge is also modeled in the

domain as an asserted class as show in Fig.

A description for each of the error metrics is encoded in the ontology using annota-

tions, and data property assertions are used to encode datatype values like percentage.

The class hierarchy asserted in Fig. [4.13| represents the current knowledge of experts
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Figure 4.12: Inferred hierarchy of the dummy class ModelsForLLSE is a

subclass of all ForecastModels most appropriate for end users like LSEs.

in the domain. Metrics for evaluating solar forecasts is a currently evolving research
topic, with the most recent suite of metrics published just a year before the writing

of this report.

As knowledge of this field expands to identify most appropriate metrics for specific
grid applications, our ontology can be easily extended to model that relationship

using existing object property assertions and axioms.
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Figure 4.13: Asserted hierarchy of metrics for evaluating solar forecasts,
adapted from NREL [4, 5] and US DOE [6]

4.6.4 Summary

This chapter develops SF-ONT, a formal ontology that maps the domain knowledge
of solar irradiance forecasting using Ontology 101, an ontology development method-
ology. The ontology is expressed in OWL using the software package Protégé software

. The top-level concepts in solar irradiance forecasting are expressed in the form of a
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hierarchical taxonomy as shown in Figure Relationships in classes are expressed
through object properties, while data properties are used to express properties of

individuals. Fig is an overview of the comprehensive ontology.

lass hierarchy: owl:Thing
%S|
v

@ Applications
@ EndUsers
& entity
) ForecastAttributes
) ForecastData
) ForecastHorizon
) ForecastMetrics
» ) EconomicMetrics
» @ RampMetrics
> ) StatisticalMetrics
» @ UncertainityMetrics
» @ ForecastModels
@ GeographicUnit
> © ModelAttributes
> & SpatialDomain
» & TemporalDomain
@ TemporalUnit
> @ unit

4 VVVYVYYVYY

Figure 4.14: Top level concepts in solar irradiance forecasting expressed
as classes in SF-ONT

SF-ONT is available for download and use at https://github.com/akantamn /sf-ont

The semantic and syntactic consistency of the ontology was tested using reasoners
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configured for the ontology development environment Protégé software . Several use-
cases were employed to illustrate how the ontology anticipates the requirements of
the users. Use cases also validate the transfer from the real world to the semantic

knowledge model of the ontology.

Ontology metrics:

Metrics

Axiom 2139
Logical axiom count 980
Declaration axioms count 439
Class count 160
Object property count 89

Data property count 11
Individual count 163

DL expressivity SHOIF(D)

Class axioms

SubClassOf 394
EquivalentClasses 40
DisjointClasses 5
Hidden GCI Count 41

Figure 4.15: Summary of SF-ONT ontology metrics

The use cases described in this chapter are by no means exhaustive, and the ontology
developed here is by no means ’complete’. Ontology development is by nature an

iterative process.

At present, this ontology identifies all the top level concepts in the domain of solar
irradiance forecasting, and models their relationships within the context of the current
knowledge in the domain. As knowledge in the domain expands, this ontology can be
extended from the basic building box, modified and maintained to suit the evolving

needs of the users.
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Chapter 5

Summary

Accurate forecasts of solar irradiance can help with the reliable and sustainable in-
tegration of solar energy resources into the national grid, providing value for many
grid applications. In recent years, a growing body of academic research has developed
models for forecasting solar irradiance, integrating knowledge from fields like atmo-
spheric science, cloud physics, statistical mechanics, artificial intelligence and machine
learning. Experts from national labs and industry have identified metrics for compar-
ing solar forecasts, and described applications that will benefit from accurate solar

forecasts.

Due to differing technical backgrounds, expertise, knowledge hierarchies, terminolo-

gies, technical knowledge, and expectations, the diverse stakeholders in the world
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of solar forecasting may lack a shared understanding of the domain in which they

interact.

This report describes a step towards improving communication, inter-operability and
the potential for sharing knowledge and information about solar forecasting, using

ontologies.

Firstly, the report describes the basics of solar irradiance and forecasting, and reviews
academic literature on recent advancements in improved solar forecasting models,
with special reference to their spatial and temporal domains. The report also identifies
grid applications and end-users that will benefit from accurate solar forecasts. The
report also reviews recent developments in developing a suite of metrics for evaluating

solar forecasts.

Subsequently, the report describes ontologies and briefly reviews methodologies for
developing ontologies. Using Ontology 101, an ontology development methodology,
the report then describes SF-ONT - a formal ontology that maps the knowledge
domain of solar irradiance forecasting. SF-ONT is available for download and use at

https://github.com/akantamn /sf-ont

Lastly, the report describes the testing and validating of solar forecasting ontology

for accuracy and completeness using built-in Protégé software reasoners.
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https://github.com/akantamn/sf-ont

The ontology described in this report identifies all the top level concepts in the domain
of solar irradiance forecasting, and models their relationships within the context of
the current knowledge in the domain. As knowledge in the domain expands, this
ontology can be extended from the basic building box, modified and maintained to
suit the evolving needs of the users. As the ontology continues to be tested, validated
and refined in practice by ultimate users, the shared vocabulary of the ontology can
be useful for developing standards and practices. Even when standards are developed
independently, ontologies can help interface between standards and practices from

different expert fields relevant to the domain.
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