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Abstract

Interactive Theorem Proving (ITP) is one of the most rigorous methods used in
formal verification of computing systems. While ITP provides a high level of con-
fidence in the correctness of the system under verification, it suffers from a steep
learning curve and the laborious nature of interaction with a theorem prover. As
such, it is desirable to investigate whether ITP can be used in unexplored (but high-
impact) domains where other verification methods fail to deliver. To this end, the
focus of this dissertation is on two important domains, namely design of parameterized
self-stabilizing systems, and mechanical verification of numerical approximations for
Riemann integration. Self-stabilization is an important property of distributed sys-
tems that enables recovery from any system configuration/state. There are important
applications for self-stabilization in network protocols, game theory, socioeconomic
systems, multi-agent systems and robust data structures. Most existing techniques
for the design of self-stabilization rely on a ‘manual design and after-the-fact verifica-
tion’ method. In a paradigm shift, we present a novel hybrid method of ‘synthesize in
small scale and generalize’ where we combine the power of a finite-state synthesizer
with theorem proving. We have used our method for the design of network protocols
that are self-stabilizing irrespective of the number of network nodes (i.e., parameter-
ized protocols). The second domain of application of ITP that we are investigating
concentrates on formal verification of the numerical propositions of Riemann integral
in formal proofs. This is a high-impact problem as Riemann Integral is considered
one of the most indispensable tools of modern calculus. That has significant applica-
tions in the development of mission-critical systems in many Engineering fields that
require rigorous computations such as aeronautics, space mechanics, and electrody-
namics. Our contribution to this problem is three fold: first, we formally specify and
verify the fundamental Riemann Integral inclusion theorem in interval arithmetic;
second, we propose a general method to verify numerical propositions on Riemann
Integral for an uncountably infinte class of integrable functions; third, we develop a
set of practical automatic proof strategies based on formally verified theorems. The
contributions of Part II have become part of the ultra-reliable NASA PVS standard
library.
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Chapter 1
Introduction
1.1 Preface

Interactive Theorem Proving (ITP) represents the most rigorous formal verifica-
tion technique for mission-critical computing systems [1]. Nonetheless, ITP is known
to be time consuming given the burdensome nature of interaction with a theorem
prover. As such, it is desirable to investigate whether ITP can be combined with
more automatic techniques in unexplored (but high-impact) domains where other
verification methods fail to deliver. To this end, the focus of this dissertation is
on two important domains, namely design of parameterized self-stabilizing systems,
and mechanical verification of numerical approximations for Riemann integration. A
solution for these two problems is highly desirable in the design and verification of
many mission-critical systems (e.g., air traffic management systems). Specifically, the
interaction with the physical environment implies complex models of continuous and
discrete mathematical nature [2]. For instance, the design of a safe algorithm to avoid
collision between unmanned aircrafts includes the verification of non-linear arithmetic
propositions on real-valued continuous functions, which is a well-known problem that
faces arduous complications in automated reasoning systems [3, 4, 2, 5, 6]. In addi-
tion to this, in the absence of a human pilot in an unmanned aircraft/spaceship there
will be vital enquiries to design ultra-reliable distributed protocols [7, 8, 9, 10, 11].
Self-Stabilization (SS) is a highly desirable property of these protocols [9]. However, a
chief challenge associated with their formal designs is the complexity of verifying the
correctness of their safety properties [9]. For example, the design of parameterized
self-stabilizing protocols algorithmically is known to be an open problem. Moreover,
the problem of adding convergence to finite state automata is NP-hard (in the size of
state space) [12, 13, 14]. Most existing techniques for the design of self-stabilization
rely on a ‘manual design and after-the-fact verification’ methods which are limited to
specific heuristics. Automatic finite-state synthesizers do exist [13, 15, 16, 17] but they
are efficient only in small scopes given the complexity of adding convergence problem
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Table 1.1: Total size of PVS theories developed in the dissertation.

Total number of lemmas Total size PVS + proof scripts
Part I 319 4473
Part II 99 2928
Total 418 7401

(i.e., small finite number of processes) [15, 16]. This dissertation includes two parts.
First, we propose a hybrid method for the synthesis and verification of parameterized
self-stabilizing protocols, under the concept of synthesize in small scale then general-
ize. The first step of this method is done by automatic synthesizer [15, 16, 17]. By
contrast, the generalization step is done by means of interactive prototype verification
system (PVS). The mechanical convergence proofs we provide are based on symbolic
mathematical reasoning. Thus there are no restrictions on the number of processes
or their variables. In the second part of the dissertation we provide a novel automatic
strategy to prove numerical propositions on Riemann Integral within a formal proof.
A solution for this problem is demanding and very challenging (e.g., for the design
of unmanned aircraft system) [6, 4]. Our design for this strategy required a proof
for the fundamental Riemann Integral Inclusion Theorem for a specific type of inte-
grable functions. The strategy combines several theories of real analysis and interval
analysis in an automatic fashion. This yields a significant reduction in the human
exertions that are required for the mechanical but not automatic verifications, saving
the users thousands of proof steps. Table 1.1 presents a summary of the complexity
of the PVS theories we developed in this dissertation in terms of the total sizes of the
PVS files and their proof scripts.
Organization of the first part of the dissertation. Section 1.2 provides a brief
overview of PVS. In Chapter 2 we introduce the first problem, backgound and re-
lated work. Chapter 3 provides basic concepts of protocols and presents their formal
specifications in PVS. Then, Chapter 4 formally presents the problem of adding con-
vergence to protocols. Chapter 5 present the specification and verification of our
approach of the design and verification of parameterized weakly self-stabilizing pro-
tocols in PVS. Chapter 6 demonstrates reusability and generalizability for strongly
self-stabilizing protocol of in the context of sorting protocol on rings and chains.
Chapter 7 discusses the significance of this research,concluding remarks, and presents
future extensions of part I. Organization of the second part of the dissertation.
Chapter 8 provides some basic concepts and results from existing work. Chapter 9
presents an abstract algorithm for the approximation of Riemann Integral with its
proof of soundness. Chapter 10 discusses the usability of RiemannSum R2I and
its soundness statement in formal proofs of numerical propositions automatically,
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and presents some case studies. Finally, Chapter 11 makes concluding remarks and
presents possible research expansions of the results of Part II.

1.2 The Prototype Verification System (PVS)
Since in this disertation we use the Prototype Verification System (PVS) [18, 19] as
the theorem prover of choice, we provide a brief introduction to PVS in this sec-
tion. PVS is an environment for formal specification and verification that includes a
specification language, a type checker and a theorem prover (that enables automated
deduction). The basic unit of abstraction in PVS is a theory whose parameters may
include constants, types or theory instances. Each THEORY contains axioms, defini-
tions, assumptions and theorems. The following specification represents an example
template of a PVS theory.

Example: THEORY

BEGIN
// The definitions, axioms, assumptions and theorems come here

END Example

PVS also contains built-in libraries of theories whose theorems can be imported in
specifications. A PVS expression can be considered as a predicate logic formula that
may include the usual universal/existential quantifiers, arithmetic and logical opera-
tors, lambda abstraction and functions. In general, the PVS specification language
is based on typed higher-order logic that supports some built-in and uninterpreted
user-defined types. For example, we specify the basic concepts of state, variables
and their domain as uninterpreted types state: Type+, Variable: Type+, Dom: Type+,
where ‘+’ denotes the non-emptiness of the declared type. (In PVS, “userDefined-
Type : TYPE+ = []" declares the type userDefinedType.) The PVS language also
enables us to define constrained types (e.g., prime numbers) using predicate subtypes
and dependent types. During type checking, these constrained types may cause proof
obligations (e.g., proving non-emptiness) that are called Type-Correctness Conditions
(TCCs). The PVS theorem prover includes two sets of automated reasoning tools,
namely the primitive inference procedures and utilities. The primitive (inference)
procedures include rules for propositional and quantified expressions, term rewriting,
induction, simplification and data and predicate abstraction. There are also utility
tools integrated with the primitive procedures to improve the efficiency of automated
reasoning. These tools include a symbolic model checker, a Satisfiability Modulo
Theory (SMT) solver, a random testing tool and a tool for evaluating ground ex-
pressions, called PVSio. The users should use the aforementioned machinery in a
semi-automatic fashion to prove theorems. The users can create scripts that combine
inference procedures, called proof strategies. The proofs are saved as scripts that can
be edited by users for reuse and greater efficiency.
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Part I

Parameterized Self-Stabilizing
Protocols
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Chapter 2
Introduction

2.1 Preface

In this part we present a novel hybrid method for verification and synthesis of param-
eterized self-stabilizing protocols where algorithmic design and mechanical verification
techniques/tools are used hand-in-hand. The core idea behind the proposed method
includes the automated synthesis of self-stabilizing protocols in a limited scope (i.e.,
fixed number of processes) and the use of theorem proving methods for the generaliza-
tion of the solutions produced by the synthesizer. Specifically, we use the Prototype
Verification System (PVS) to mechanically verify a synthesis algorithm for automated
generation of weakly stabilizing protocols. Then, we reuse the proof of correctness
of the synthesis algorithm to establish the correctness of the generalized versions of
synthesized protocols for an arbitrary number of processes. We demonstrate the pro-
posed approach in the context of an agreement and a graph coloring protocol on the
ring topology 1. We also mechanically verify a strongly stabilizing sorting2 protocol
on unidirectional rings and chains using the idea of convergence stairs 3.

2.2 Background and Related Work
Self-stabilization is an important property of dependable distributed systems as it
guarantees convergence in the presence of transient faults. That is, from any state/-
configuration, a Self-Stabilizing (SS) system recovers to a set of legitimate states

1Published in [20]
2In preparation for submission to the Journal of Formal Methods in System Design
3Section 6.1.1
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(a.k.a. invariant) in a finite number of steps. Moreover, from its invariant, the ex-
ecutions of an SS system satisfy its specifications and remain in the invariant; i.e.,
closure. Nonetheless, design and verification of convergence are difficult tasks [21, 22]
in part due to the requirements of (i) recovery from arbitrary states; (ii) recovery
under distribution constraints, where processes can read/write only the state of their
neighboring processes (a.k.a. their locality), and (iii) the non-interference of conver-
gence with closure. Methods for algorithmic design of convergence [23, 24, 25, 26] can
generate only the protocols that are correct up to a limited number of processes and
small domains for variables. Thus, it is desirable to devise methods that enable au-
tomated design of parameterized SS systems, where a parameterized system includes
several families of symmetric processes that have a similar code up to variable re-
naming. This paper presents a novel method based on the philosophy of synthesize in
small scale and generalize, where we exploit (1) algorithmic methods for the design of
small SS systems, and (2) theorem proving techniques for generalizing small solutions.
The proposed method has important applications in both hardware [27] and software
[28] networked systems, be it a network-on-chip system or the Internet. Numerous
approaches exist for mechanical verification of self-stabilizing systems most of which
focus on synthesis and verification of specific protocols. For example, Qadeer and
Shankar [29] present a mechanical proof of Dijkstra’s token ring protocol [21] in the
Prototype Verification System (PVS) [19]. Kulkarni et al. [30] use PVS to mechan-
ically prove the correctness of Dijkstra’s token ring protocol in a component-based
fashion. Prasetya [31] mechanically proves the correctness of a self-stabilizing routing
protocol in the HOL theorem prover [32]. Tsuchiya et al. [33] use symbolic model
checking to verify several protocols such as mutual exclusion and leader election.
Kulkarni et al. [34, 35] mechanically prove (in PVS) the correctness of algorithms
for automated addition of fault tolerance; nonetheless, such algorithms are not tuned
for the design of convergence. Most existing automated techniques [36, 37, 38, 25]
for the design of fault tolerance enable the synthesis of non-parametric fault-tolerant
systems. For example, Kulkarni and Arora [37] present a family of algorithms for
automated design of fault tolerance in non-parametric systems, but they do not ex-
plicitly address self-stabilization. Abujarad and Kulkarni [24] present a method for
algorithmic design of self-stabilization in locally-correctable protocols, where the local
recovery of all processes ensures the global recovery of the entire distributed system.
Farahat and Ebnenasir [26, 25] present algorithms for the design of self-stabilization
in non-locally correctable systems. Jacobs and Bloem [39] show that, in general,
synthesis of parameterized systems from temporal logic specifications is undecidable.
They also present a semi-decision procedure for the synthesis of a specific class of pa-
rameterized systems in the absence of faults. To summarize, there are two important
challenges: (1) most existing methods for mechanical verification of self-stabilization
are problem specific, which provide little room for reuse of verification efforts, and
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(2) existing synthesis methods do not directly address the design of SS parameterized
systems.

Figure 2.1: A Hybrid method for the synthesis of parameterized
self-stabilizing protocols.

The contributions of this part are two-fold: a hybrid method (Figure 2.1) for
the synthesis of parameterized self-stabilizing systems and a reusable PVS theory
for mechanical verification of self-stabilization. The proposed method includes a
synthesis step and a theorem proving step. In [26, 25, 14, 40] the authors enable
the synthesis step where they take a non-stabilizing protocol and generate a self-
stabilizing version thereof that is correct by construction up to a certain number
of processes. This paper investigates the second step where we use the theorem
prover PVS to prove (or disprove) the correctness of the synthesized protocol for an
arbitrary number of processes; i.e., generalize the synthesized protocol. The synthesis
algorithms in [26, 25, 14, 40] incorporate weak and strong convergence in existing
network protocols; i.e., adding convergence. Weak (respectively, Strong) convergence
requires that from every state there exists an execution that (respectively, every
execution) reaches an invariant state in finite number of steps. To enable the second
step, we first mechanically prove the correctness of the Add_Weak algorithm from [25]
that adds weak convergence. As a result, any protocol generated by Add_Weak will be
correct by construction. Moreover, the mechanical verification of Add_Weak provides a
reusable theory in PVS that enables us to verify the generalizability of small instances
of different protocols generated by Add_Weak. If the mechanical verification succeeds,
then it follows that the synthesized protocol is in fact correct for an arbitrary number
of processes. Otherwise, we use the feedback of PVS to determine why the synthesized
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Table 2.1: Total size of PVS theories developed in Part I.

File Size PVS Proof-script size
Add_Weak 247 341
Coloring_m_n 232 342
Binary_Agreement 297 701
ChaiSort_m_n 607 1706
Total(319 lemmas) 1381 + 3020 = 4473

protocol cannot be generalized and re-generate a protocol that addresses the concerns
reported by PVS. We continue this cycle of synthesize and generalize until we have a
parameterized protocol. Large part of the framework that we developed to prove the
soundness of Add_Weak algorithm for weak convergence, can also be reused for

the mechanical specification and verification of self-stabilizing protocols designed
by means other than our synthesis algorithms. We demonstrate the reusability of the
framework in the context of a coloring protocol (Section 5.3) and a binary agreement
protocol (Section D.1). Furthermore, we present a method for mechanical verification
of strong convergence and we demonstrate it for the design of a self-stabilizing sorting
algorithm on unidirectional rings and chains. These case studies illustrate how the
PVS theory we developed can be reused for the verification of strong stabilization.
Nevertheless, the mechanical verifications of these protocols is really lengthy. This
is due to the very precise type theoretic nature of theorem proving, the complexity
of adding convergence problem, in addition to the involvement of lengthy inductive
proofs. For instance, even a slight change on the actions of the protocol or on the
topology, would change the proofs fundamentally. Thus, as our synthesis in the
small scope is automatic, the actions and the topologies may change from one case
to another unpredictably. Consequently, the automation of the proofs was highly
challenging. In particular, it requires proving general theories that are applicable to
larger families of automatically synthesized protocols. To illustrate the difficulty of
this task, we present a summary of the mechanical proofs sizes of our theories in PVS
( Listing 2.1 ).Organization. Section 1.2 provides a brief overview of PVS. Section
8.2 introduces basic concepts and presents their formal specifications in PVS. Then,
Section 4.2 formally presents the problem of adding convergence to protocols. Sections
5.1 and 5.2 respectively present the specification and verification of Add_Weak in PVS.
Sections 5.3, D.1, 6.1 and 6.2 respectively demonstrate reusability and generalizability
in the context of a graph coloring protocol, a binary agreement protocol and a sorting
algorithm on rings and chains. Section 7 discusses the significance of this research
and related work. Finally, Section 7.2 makes concluding remarks and presents future
extensions of this work.
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Chapter 3
Preliminaries and Basic Concepts

3.1 General Framework for Shared Memory Pro-
tocols in PVS

In this section, we present a reusable frame-work for shared memory protocols that
is used throughout this dissertation. Particularly, we present the fundamental types,
functions, and parameters to specify basic concepts such as protocols, state predicates,
computations prefix and convergence. We also present their formal specifications in
PVS. The definitions of protocols and convergence are adapted respectively from
[34, 21].

3.1.1 Protocols
A protocol includes a set of processes, a set of variables and a set of transitions. Since
we would like the specification of a protocol to be as general as possible, we impose
little constraints on the notions of state, transitions, etc. Thus, the concepts of state,
variable, and domain are all abstract and nonempty. Formally, we specify them by
uninterpreted types state: Type+, Variable: Type+, Dom: Type+. A state predicate is
a set of states specified as StatePred: TYPE = set[state]. The concept of transition is
modeled as a tuple type of a pair of states Transition: Type = [state,state] [34]. Likewise,
the type of the set of transitions that are constructed by the actions of the protocol
is defined naturally as a set of transitions, Action:Type =set[Transition]. An action of
a protocol can be considered as an atomic guarded command “grd → stmt", where
grd denotes a Boolean expression in terms of protocol variables and stmt is a set of
statements that atomically update protocol variables when grd holds. An action is
enabled iff (if and only if) its guard grd evaluates to true. To capture this restriction
throughout this dissertation we formalize an action of a process j in a protocol by
means of tabular construct of PVS where we use blank entries whenever the protocol
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is silent. Hence a transition of a protocol - from a state s - will be defined as (s,
action(j,s)). We provide concrete examples in sections 5.3 and 6.1. The types Dom,
Variable, and Action can be finite or infinite types in our PVS specifications 1.

3.1.2 Distribution and Atomicity Models
We model the impact of distribution in a shared memory model by considering read
and write restrictions for processes with respect to variables. Due to the inability of
a process Pj in reading some variables, each transition of Pj belongs to a group of
transitions. For example, consider two processes P0 and P1 each having a Boolean
variable that is not readable for the other process. That is, P0 (respectively, P1) can
read and write x0 (respectively, x1), but cannot read x1 (respectively, x0). Let 〈x0, x1〉
denote a state of this protocol. Now, if P0 writes x0 in a transition (〈0, 0〉, 〈1, 0〉),
then P0 has to consider the possibility of x1 being 1 when it updates x0 from 0 to
1. As such, executing an action in which the value of x0 is changed from 0 to 1 is
captured by the fact that a group of two transitions (〈0, 0〉, 〈1, 0〉) and (〈0, 1〉, 〈1, 1〉)
is included in P0. In general, a transition is included in the set of transitions of a
process iff its associated group of transitions is included. Formally, any two transitions
(s0, s1) and (s′0, s′1) in a group of transitions formed due to the read restrictions of
a process Pj meet the following constraints, where rj denotes the set of variables Pj
can read: ∀v : v ∈ rj : (v(s0) = v(s′0)) ∧ (v(s1) = v(s′1)) and ∀v : v /∈ rj : (v(s0) =
v(s1))∧ (v(s′0) = v(s′1)), where v(s) denotes the value of a variable v in a state s that
we represent by the Val:[Variables,state -> Dom] i.e Val(v, s) function in PVS.

To enable consistent reusability of our PVS specifications, we will specify our
distribution model set of axioms as predicates in the abstract formal types and defi-
nitions of a process, protocol, and group transition, so one should mechanically prove
them whenever a constant of these types is declared, as explained in Sections 5.3 and
6.1.1. Moreover, this technique will help the the user to use them in the mechanical
proofs using the command typepred of PVS whenever the need be.

For instance, since a process p is a tuple of a subset of variables that are readable
by that process, a subset of variables that are writable by that process, and its set of
transitions. Then the axiom:

AXIOM Every writable variable in a process p is a readable variable.

is implemented formally in the definition of the type of a process as a predicate as
illustrated in Listing 3.1. Observe that if a user instantiated the first set of variables
with a set that is not a superset of the second set of variables then PVS will issue un-
provable TCC (type check condition) obligation. This technique in PVS will discover

1https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/
addweakconv

https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/addweakconv
https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/addweakconv
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any possible inconsistency in the specification immediately thus the user should be
able to revise the specification accordingly, saving huge time and effort.

1 p_process: TYPE = {p:[ set[Variables],set[Variables],Action ]
2 |subset?(proj_2(p),proj_1(p))}

Listing 3.1: Processes

Similarly, a protocol prt is a tuple of a set of processes, variables, and set of transitions.
However, the property that x of type Transition belongs to the transitions of prt iff x
belongs to the transitions of one of its processes must be valid for any protocol. Thus
we implement this property in the protocol 2 type definition as given in Listing 3.2:

1 nd_Protocol: TYPE = {prt:[ set[p_process], set[ Variables],
Action ]|

2 (forall (proc:{p:p_process|member(p,proj_1(prt))}):
3 proj_3(proc)⊆ proj_3(prt)
4 ∩ (proj_3(prt)={x:Transition|
5 Exists(pp:p_process|pp ∈ proj_1(prt)):
6 x ∈ proj_3(pp))})}

Listing 3.2: Protocols

Transition groups of a transition x due to a process p. In the following formal
specifications, v is of type Variable, p is of type p_process, t and t′ are of type Transition,
and non_read Listing 3.4 and transition_group Listing 3.3 are functions that respectively
return the set of unreadable variables of the process p and the set of transitions that
meet ∀v : v ∈ rj : (v(s0) = v(s′0)) ∧ (v(s1) = v(s′1)) and ∀v : v /∈ rj : (v(s0) =
v(s1)) ∧ (v(s′0) = v(s′1)) for a transition t = (s0, s1) and its groupmate t′ = (s′0, s′1).

1 transition_group(p:p_process,x:Transition,prt:nd_Protocol):set[
Transition] = { x1:Transition| member(p,proj_1(prt))

2 ∩ (FORALL (v1:Variables| member(v1,proj_1(p))):
3 Val(v1,proj_1(x)) = Val(v1,proj_1(x1))
4 ∩ Val(v1,proj_2(x)) = Val(v1,proj_2(x1)))

6 ∩ (FORALL (v:Variables|member(v,Non_read(p,prt))):
7 Val(v,proj_1(x)) = Val(v,proj_2(x))
8 ∩ Val(v,proj_1(x1)) = Val(v,proj_2(x1)))}

Listing 3.3: transition_group(p,x): returns transition group of a
transition x due to a process p

2We use the name nd_protocol to remind the reader that all considered protocols in this part are
non-deterministic.
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Where member(x,X) and subset?(X,Y) respectively represent the set membership
and subset predicates in a set-theoretic context, and proj_k is a built-in function in
PVS that returns the k-th element of a tuple x. Moreover, in PVS x’i can be used
alternatively with proj_i. We use both of the two notations of PVS throughout the
dissertation.

1 Non_read( pp:p_process,pprt:nd_Protocol):set[Variables] = {v|member
(pp,proj_1(pprt)) AND member(v,proj_2(pprt))AND NOT member(v,
proj_1(pp)) }

Listing 3.4: non_read: function

The projection of a protocol prt on a state predicate I, denoted Proj(prt, I), in-
cludes the set of transitions of prt that start in I and end in I. One can think of
the projection of prt as a protocol that has the same set of processes and variables
as those of prt, but its transition set is a subset of prt’s transitions confined in I.
We model this concept by defining the following function, where Z is instantiated by
transitions of prt. (proj_k is a built-in function in PVS that returns the k-th element
of a tuple.)

Proj(Z: Action, I: StatePred): Action =
{t:Transition | t ∈ Z

∧
t‘1 ∈ I

∧
t‘2 ∈ I}

Example: Coloring on a ring of n > 3 processes with m > 2 colors. The
coloring protocol, denoted Coloring(m,n), includes n > 3 processes located along
a bidirectional ring. Each process Pj has a local variable cj with a domain of
m > 2 values representing m colors. Thus, the set of variables of Coloring(m,n)
is VColoring(m,n) = {c0, c1, ..., cn−1}. As an example of a state predicate, consider the
states where no two neighboring processes have the same color. Formally, Icoloring =
∀j : 0 ≤ j < n : cj 6= cj⊕1, where ⊕ and 	 denote addition and subtraction modulo
n. Each process Pj (0 ≤ j < n) has the following action:

Aj : (cj = cj	1) ∨ (cj = cj⊕1)→ cj := other(cj	1, cj⊕1) (3.1)

If Pj has the same color as that of one of its neighbors, then Pj uses the function
“other(cj	1, cj⊕1)" to non-deterministically set cj to a color different from cj	1 and
cj⊕1. The projection of the actions Aj (for 0 ≤ j < n) on the predicate Icoloring is
empty because no action is enabled in Icoloring. The coloring protocol has applications
in several domains such as scheduling, bandwidth allocation, register allocation, etc.
It is known that if m > d, where d is the max degree in the topology graph of the
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Figure 3.1: The action of the Coloring(m,n) protocol

protocol, then the coloring problem is solvable. For this reason, we have m > 2 for
the ring.3.

Example: Read/Write restrictions in Coloring(3, 5). In the coloring protocol,
each process Pj can read {cj	1, cj, cj⊕1}, and is allowed to write only cj. For a
process Pj, each transition group includes 3n−3 transitions because Pj can read only
the state of itself and its left and right neighbors; there is one transition in the group
corresponding to each valuation of unreadable variables.

A computation prefix of a protocol prt is a finite sequence of states of posi-
tive length, where each state is reached from its predecessor by a transition of prt.
Kulkarni et al. [34] specify a prefix as an infinite sequence in which only a finite
number of states are used. By contrast, we specify a computation prefix using the
PVS finite sequence type. We believe that it is more natural and more accurate
to model the concept of prefix by finite sequences. Our experience also shows that
modeling computation prefixes as finite sequences simplifies formal specification and
verification of reachability and convergence while saving us several definitions that
were required in [34] to capture the length of the prefix. We first define a subtype
for finite sequences of states of positive length; i.e., Pos_F_S. Then, we use the pred-
icate Condi_prefix?(A,Z) that holds when all transitions (A(i), A(i+ 1)) of a sequence
A belong to a set of transitions Z. The notation A‘length denotes the length of the

3We present the formal specification of this protocol in Section 5.3.1
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sequence A, A‘seq(i) returns the i-th element of sequence A and below[k] is a PVS type
that represents natural values less than k. The function PREFIX returns the set of
computation prefixes generated by transitions of Z.

Pos_F_S: TYPE = {c:finite_sequence[state] | c‘length > 0}

Condi_Prefix?(A:Pos_F_S,Z:Action):bool= FORALL(i: below[A‘length-1] ):
member((A‘seq(i), A‘seq(i+1)), Z)

PREFIX(Z: Action): set[Pos_F_S]= {A:Pos_F_S | Condi_Prefix?(A,Z) }

Example: A computation of Coloring(3, 5). Consider an instance of Coloring(m,n)
where n = 5 and m = 3. Thus, cj ∈ {0, 1, 2} for 0 ≤ j < 5. Let 〈c0, c1, c2, c3, c4〉
denote a state of the protocol. Starting from a state 〈0, 1, 2, 2, 0〉, the following se-
quence of transitions could be taken: P2 executes (〈0, 1, 2, 2, 0〉, 〈0, 1, 0, 2, 0〉) and P0
executes (〈0, 1, 0, 2, 0〉, 〈2, 1, 0, 2, 0〉).

3.1.3 Closure and Convergence
A state predicate I is closed in a protocol prt iff every transition of prt that starts in
I also terminates in I [22, 41]. The closed predicate checks whether a state predicate
I is actually closed in a set of transitions Z.

closed?(I: StatePred, Z: Action): bool = FORALL (t:Transition | (member(t,Z)) AND
member(proj_1(t), I)) : member(proj_2(t), I)

A protocol prt weakly converges to a non-empty state predicate I iff from every
state s, there exists at least one computation prefix that reaches some state in I
[22, 41]. A strongly converging protocol guarantees that for any initial state s all
possible prefixes from s will reach some state in I. Notice that any strongly converging
protocol is also weakly converging, but the reverse is not true in general. A protocol
prt is weakly (respectively, strongly) self-stabilizing to a state predicate I iff (1) I is
closed in prt, and (2) prt weakly (respectively, strongly) converges to I.

1 Reach_from?(Z:Action,A:PREFIX_T(Z),s:state, I:StatePred):bool
2 = Exists (j:below[A`length]):
3 A`seq(0)= s AND member(A`seq(j),I)

Listing 3.5: Reachability of a prefix from a state s to I.

In Listing 3.5 (Line 1), A:PREFIX_T(Z) indicates that A is a computation prefix
of Z. PREFIX_T(Z) is a dependant type i.e., its definition depends on a parameter,
in this case Z. This is a powerful feature in PVS for declaring variables of dependant
types (e.g., Listing 3.7 Line 3).
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1 PREFIX_T(Z: Action): TYPE = {A:Pos_F_S| Condi_Prefix?(A,Z) }

Listing 3.6: Prefix_T (Z) a dependant Type.

1 weak_converge_s?(Z:Action,I:StatePred,s:state):bool
2 = Exists( A:PREFIX_T(Z)|
3 A(0)=s and member(A,PREFIX(Z))):
4 Reach_from?(Z,A,s,I)

Listing 3.7: Weak Convergence Predicate

For a given protocol prt : nd_Protocol the parameter Z in Listing 3.7 (line 1) should
be instantiated with the third projection of the protocol i.e. proj_3(prt) ( the set of
its transitions)
Example: Closure and convergence of Coloring(3, 5). Notice that the predicate
Icoloring is closed in actions Aj, where 0 ≤ j < 5, since no action is enabled in
Icoloring. Moreover, starting from any state (in the 35 states of the state space of
Coloring(3, 5)), there will be a computation prefix that reaches a state in Icoloring.
The Coloring(3, 5) presented in this section can been seen as an example of a weakly
converging protocol.4

4We provide the full formal proof in Section5.3.
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Chapter 4
Problem

4.1 Adding Weak Convergence Problem

The problem of adding convergence (from [25]) is a transformation problem that takes
as its input a protocol prt and a state predicate I that is closed in prt. The output
of Problem 4.2.1 is a revised version of prt, denoted prtss, that converges to I from
any state. Starting from a state in I, prtss generates the same computations as those
of prt; i.e., prtss behaves similar to prt in I.

Problem 4.1.1. Add Convergence

• Input:

– (1) A protocol prt;

– (2) A state predicate I such that I is closed in prt;

– (3) A property of Ls converging, where Ls ∈ {weakly, strongly}.

• Output: A protocol prtss such that :

– (1) I is unchanged;

– (2) the projection of prtss on I is equal to the projection of prt on I,

– (3) prtss is Ls converging to I. Since I is closed in prtss, it follows that
prtss is Ls self-stabilizing to I.
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4.2 Problem Statement

4.2.1 The Design of Parameterized Self-Stabilizing Protocols
Algorithmic Design of Parameterized Self-Stabilizing Protocols (PSSP) is an open
problem. Existing methods can generate solutions that are correct up to a finite
scope [23, 24, 25, 26, 17]. Even the design self-stabilizing protocols (in small scope)
is a challenging task. For instance, designing strong convergence algorithmically is
NP-complete [14]. Our major objective is to devise a method that enables the design
of Parameterized Self-Stabilizing Protocols (PSSPs) that are correct by construction.
Particularly, this part of the dissertation is studying the following problem:

Problem 4.2.1. The Design of Parameterized Self-Stabilizing Protocols
(PSSPs)

• Input:

– (1) A property of Ls converging, where Ls ∈ {weakly, strongly};
– (2) A protocol prt;
– (3) A state predicate I such that I is closed in prt.

• Output: A generalized parametric protocol prtgeneral of prt(2)and a generalized
state predicate Igeneral of I such that :

– (1) Igeneral is closed in prtgeneral;
– (2) prtgeneral is Ls converging to Igeneral, i.e., prtgeneral is Ls self-stabilizing

to Igeneral.

Where prt is given with specific number of processes and finite sets of variables
and domains, a generalized protocol of prt is a parameterized version of prt with
respect to the number of processes, number of variables, and the size of the domain.
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Chapter 5
Parameterized Weakly Self-Stabilizing
Protocols

In [22, 25] the authors showed that weak convergence can be added in polynomial
time (in the size of the state space), whereas adding strong convergence is known to
be an NP-complete problem [14]. Farahat and Ebnenasir [25, 26] present a sound
and complete algorithm for the addition of weak convergence and a set of heuristics
for efficient addition of strong convergence (in small scopes). The main focus of
Sections 5.1 and 5.2 is the mechanical verification of the soundness of the Add_Weak
algorithm 1. Algorithm 1 provides an informal and self-explanatory representation of
the Add_Weak algorithm presented in [25]. Moreover, Table 5.1 summaries the major
formal types, predicates,variables, and functions used in in the proof of the soundness
of the algorithm.

Algorithm 1 : Add_Weak
Input: prt:nd_Protocol, I: statePred;
Output: set[Transition]; // Set of transitions of a weakly self-stabilizing version of

prt.
1: Let ∆prt={proj_3(prt)}.
2: Let ∆converge be the set of transition groups that adhere to read/write restrictions

of processes of prt, but exclude any transition starting in I;
3: prtws = ∆prt∪∆converge;
4: no_Prefix := {s : state | (s /∈ I)∧(there is no computation prefix using transitions

of prtws that can reach a state in I)}
5: ∆ws = ( Union(prtws))
6: If (no_Prefix 6= ∅) then weak convergence cannot be added to prt; return;
7: return ∆ws;
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Table 5.1: Major types, variables, predicates, and functions for
Add_Weak algorithm

Name in PVS Type Description
prt nd_Protocol VAR
I StatePred VAR
s State VAR
∆prt(prt) set[set[Transition]] Func {prt’3}
PREFIX_T(Z:set[transition]) Type Lisiting 3.6
transition_groups_proc(p,prt) set[set[Transition]] Func Listing 5.1
∆converge(prt,I) set[set[Transition]] Func Lisiting 5.2
prtws(prt,I) set[set[Transition]] Func Listing 5.3
∆ws(prt,I) set[Transition] Func Listing 5.3
Condi_no_Prefix?(prt,I,s) bool predicate Listing5.4

Mechanical verification of the soundness of Add_Weak ensures that any protocol
synthesized by Add_Weak is correct by construction. Moreover, the lemmas and theo-
rems developed in mechanical verification of Add_Weak provide a reusable framework
for mechanical verification of different protocols that we generate using our synthesis
tools [25, 17]. The verification of synthesized protocols increases our confidence in
the correctness of the implementation of Add_Weak and helps us to generalize small
instances of weakly converging protocols to their parameterized versions.

5.1 Specification of Add_Weak
This section presents the highlights of the formal specification of Add_Weak in PVS.
(The complete PVS specifications are available at https://sites.google.com/a/
mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/addweakconv.) We start
by specifying the basic components used in the Add_Weak algorithm, namely the func-
tions ∆prt,∆converge and ∆ws, and the state predicate no_Prefix Table 5.1.
Notation. In the subsequent formal specifications, we use the identifiers Delta_prt,
Delta_Converge and Delta_ws corresponding to the functions ∆prt,∆converge and ∆ws

in Add_Weak. The function transition_groups_proc(p,prt) returns the set of transition
groups of a process p of a protocol prt.

1 transition_groups_proc(p: p_process, prt: nd_Protocol):
2 set[set[Transition]] = {gg: set[Transition]| p ∈ PROJ_1(prt) ∩
3 (∃ (x: Transition): transition_group(p, xx, prt) = g)}

Listing 5.1: transition groups of a process.

https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/addweakconv
https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/addweakconv
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1 Delta_converge(prt:nd_Protocol, I:StatePred): set[set[Transition]]
=

2 {g: set[Transition] |
3 EXISTS (p: p_process | member(p, PROJ_1(prt))):
4 member(g, transition_groups_proc(p, prt)) ∩
5 (FORALL (x: Transition | member(x, g)): PROJ_1(x)/∈ I)}

Listing 5.2: ∆converge

Finally, the functions of Steps 3 and 5 of algorithm Add_Weak 1 are formalized
as follows:

1 Delta_pws(prt: nd_Protocol, I: StatePred): set[set[Transition]] =
2 union({prt'3}, Delta_converge(prt, I))

4 Delta_ws(prt: nd_Protocol, I: StatePred): set[Transition] =
5 Union(Delta_pws)

Listing 5.3: ∆pws and ∆ws

Where union in PVS is the union of two sets, whereas Union(F) is the union of a
family of sets F which can contain more than two sets. To specify the set of states
no_Prefix, we first specify the condition of membership of this set as a predicate
Condi_noPrefix that returns true only if for a protocol prt, a state predicate I and a
state s, no state in I can be reached from s by computation prefixes of prt Listing
5.4.

1 condi_no_Prefix?(prt: nd_Protocol, I: StatePred, s: state): bool =
2 FORALL (g: Action,
3 A: PREFIX_T(g)
4 | member(g, pws(prt, I)) AND
5 member(A, PREFIX(g)) AND A`seq(0) = s0):
6 NOT (Reach_from?(g, A, s0, I))

Listing 5.4: Condition of membership of no_prefix.

We then specify the set no_Prefix using this predicate ( Listing 5.5 Line 4 ) as
follows:

1 no_Prefix(prt:nd_Protocol,I:StatePred):set[state]=
2 {s:state |
3 NOT( member(s,I)) AND
4 Condi_noPrefix?(prt,I,s)}

Listing 5.5: The set no_Prefix.
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We finally specify Add_Weak using Table construction of PVS. Thus we left a blank
Listing 5.6 (Line 11) when the algorithm does not do anything (Step 6 algorithm 1).

1 Add_weak(pprt: nd_Protocol,
2 I:
3 {II: StatePred |
4 closed?(II, PROJ_3(pprt)) AND
5 empty?(no_Prefix(pprt, II))}):
6 set[Transition] =
7 TABLE
8 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−%
9 | empty?(no_Prefix(pprt, I)) |Delta_ws(pprt, I) ||

10 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−%
11 | NOT empty?(no_Prefix(pprt, I)) | ||
12 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−%
13 ENDTABLE

Listing 5.6: Add Weak formalization using Table construction.

5.2 Verification of Add_Weak
In order to prove the soundness of Add_Weak, we check if (1) I is unchanged; (2)
the projection of ∆ws on I is equal to the projection of ∆prt on I, and (3) ∆ws is
weakly converging to I. The first constraint holds trivially since no step of Add_Weak
adds/removes a state to/from I. Next, we present a set of lemmas and theorems that
prove the other two constraints of Problem 4.2.1.

5.2.1 Verifying the Equality of Projections on Invariant
In this section, we prove that Constraint 2 of Problem 4.2.1 holds for the output of
Add_Weak, denoted by a protocol whose set of transitions is ∆ws. Our proof obligation
is to show that the projection of ∆ws on I is equal to the projection of ∆prt on I. We
decompose this into two set inclusion obligations of Proj(Delta_prt,I) ⊆ Proj(Delta_ws,I)
and Proj(Delta_ws,I) ⊆ Proj(Delta_prt,I). Notice that, by assumption, closed?(I,Delta_prt)
is true.

Lemma 5.2.1. Proj(Delta_prt,I) is a subset of Proj(Delta_ws,I).

Proof. The proof is straightforward since by construction we have ∆ws = ∆prt ∪
∆converge.

Lemma 5.2.2. Proj(Delta_ws,I) is a subset of Proj(Delta_prt,I).
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Proof. If a transition t = (s0, s1) is in Proj(Delta_ws,I) then s0 ∈ I. Since ∆ws =
∆prt ∪∆converge, either t ∈ ∆prt or t ∈ ∆converge. By construction, ∆converge excludes
any transition starting in I including t. Thus, t must be in ∆prt. Since s0 ∈ I, it
follows that t ∈ Proj(Delta_prt,I).

Theorem 5.2.1 (Sound_Projection). Proj(Delta_ws,I) = Proj(Delta_prt,I).

Or in in PVS this theorem is explicitly formalized as follows:

1 Sound_projction: Theorem
2 closed?(I, prt'3) AND empty?(no_Prefix(prt, I)) IMPLIES
3 (member(x, proj(Add_weak(prt, I), I)) =
4 member(x, proj(prt'3, I)))

Listing 5.7: Sound projections property in PVS.

5.2.2 Verifying Weak Convergence
In this section, we prove the weak convergence property (i.e., Constraint 3 of Problem
4.2.1) of the output of Add_Weak. Specifically, we show that from any state s0 ∈ ¬I,
there is a prefix A in PREFIX(Delta_ws) such that A reaches some state in I. Observe
that, an underlying assumption in this section is that closed?(I,Delta_prt) holds. For
a protocol prt and a predicate I that is closed in prt and a state s /∈ I, we have:

Lemma 5.2.3. If empty?(no_Prefix(prt,I)) holds then Condi_noPrefix?(prt,I,s) returns
false for any s /∈ I.

Lemma Weak_converg_pws_2 Listing 5.8 implies that when Add_Weak returns,
the revised version of prt guarantees that there exists a computation prefix to I from
any state outside I; hence weak convergence. This is due to the fact that A is a prefix
of ∆ws. In PVS we represent this theorem explicitly in Listing 5.8 as follows:

1 Weak_converg_pws_2: THEOREM
2 closed?(I, PROJ_3(prt)) AND
3 empty?(no_Prefix(prt, I)) AND NOT member(s, I)
4 IMPLIES
5 (EXISTS (A: PREFIX_T(Delta_ws(prt, I))
6 | A`seq(0) = s ∩ A ∈ PREFIX(Delta_ws(prt, I))):
7 Reach_from?(Delta_ws(prt, I), A, s, I))

Listing 5.8: Convergence property in PVS.
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5.2.3 Explicit Representation of the Convergence Property
The formalization in Listing 5.8 is sufficient to show the safety property we want to
prove i.e. convergence property. However, given the very rich specification language
of PVS, one can build alternative equivalent but more explicit formalization for the
same result. For example, using the predicate weak_converge_s?1 (Listing 5.9 (Line
4)) we prove the following theorem in PVS:

1 Weak_Converge_pws_3: THEOREM
2 closed?(I, prt'3) AND
3 empty?(no_Prefix(prt, I)) AND NOT member(s, I)
4 IMPLIES weak_converge_s?(Delta_ws(prt, I), I, s)

Listing 5.9: Convergence property in PVS alternative
representation 1.

Furthermore, observe that for s1 ∈ I, the property Weak_Converge_s? on
Delta_ws(prt, I), I, and s1 can be proved to return true easily because of the closure
property that is assumed on I i.e. closed?(I, prt’3). This also can be seen explicitly in
PVS. In particular, we proved the following theorem Listing 5.10 by using a boolean
predicate called weak_converge (Line 5):

1 Addweak_Sound: THEOREM
2 closed?(I, prt'3) AND empty?(no_Prefix(prt, I))
3 AND member(s, I) AND member(x, Delta_ws(prt, I)) AND s = x'1
4 AND NOT member(s1, I)
5 IMPLIES Weak_Converge?(Delta_ws(prt, I), I, s, s1)

Listing 5.10: Convergence property in PVS alternative
representation 2.

Where the predicate Weak_Converge? returns true iff Weak_Converge_s?(Delta_
ws(prt, I), I, s) returns true, and Weak_Converge_s?(Delta_ws(prt, I), I, s1) returns
true. Which completes the proof. By proving these theorems we finish this section.
We are ready now to see more concrete examples on the usability of Add Weak and
the abstract framework we introduced thus far with concrete actual examples.

1Defined previously in Listing 3.7
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Table 5.2: Major declarations of Coloring(m,n)

Name in PVS Description
COLORS TYPE+ = below[m]
STC TYPE+ {s:finseq(COLORS)| s‘length = n }

a state
ndx_varb TYPE+ [COLORS,below[n]]
K,L VAR ndx_varb
is_nbr?(K,L) predicate mod(abs(K‘2-L‘2),n)<= 1
is_bad_nbr?(K,L) predicate mod(abs(K‘2-L‘2),n) = 1 ∧

K‘1 = L‘1
nbr_v(K) TYPE+ {C:ndx_varb |is_nbr?(K,C)}
bad_nbr_v(K) TYPE {C:ndx_varb|is_bad_nbr?(K,C)}
bad_nbr_s(K):set[ndx_varb] Func {C:ndx_varb|is_bad_nbr?(K,C)}

set of all bad nbr of K
nbr_is_bad?(s,j) predicate nonempty?(bad_nbr_s(K(s,j)))
nbr_is_good?(s,j) predicate NOT nbr_is_bad?(s,j)
is_LEGT?(s) predicate ∀ (j:below[n]): nbr_is_good?(s,j)
S_ill TYPE { s:STC| not is_LEGT?(s)}
K(s:STC,j:below[n]):ndx_varb Func (s‘seq(j),j)
VAL(L,s):COLORS Func K(s,L‘2)‘1 valuation function
nbr_colors(K):set[COLORS] Func {cl:COLORS|

∃(c:nbr_v(K)):c‘1=cl }
fullset_colors:set[COLORS] const {cl:COLORS|TRUE}
ε (epsilon) Func the Choice func in PVS
other(K):COLORS Func ε(fullset_colors - nbr_colors(K))

5.3 Generalized Coloring Protocol Coloring(m,n)
In this section, we show how a synthesized 3-coloring protocol (that is correct by
construction for rings up to 40 processes) is proved to be generalizable for rings of
arbitrary size with more than 2 colors (i.e., m > 2). Subsection 5.3.1 presents the
reusability of the abstract framework for formal specification of 3-coloring in PVS.
Subsection 5.4 verifies the generalization of 3-coloring to rings of arbitrary size with
3 or more colors. In Table 5.2 we list the major types, variables, and functions that
we use to formalize the Coloring(m,n) protocol 8.2 2.

2https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/
coloring_m_n

https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/coloring_m_n
https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/coloring_m_n
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5.3.1 PVS Specification of Coloring

Local status at process j in the ring. For instance,the type COLORS is the type
below[m], the number of processes is n, and we assume n > m and m >= 3. A vari-
able of an arbitrary process j can be evaluated based on two pieces of information,
namely a color and the process j ≤ n, thus we represent its type ndx_varb as a tuple
of two components (COLOR, below[n]).
Defining a state of Coloring(m,n). States of the ring are represented as a finite
sequence of colors of length n. But since this protocol has a bidirectional ring topol-
ogy, thus for an arbitrary state s, we define the neighborhood for arbitrary variable at
process j, by means of −,+ mod(n) operations. Thus the left and the right neighbors
are defined relatively locally to j.
Detecting good/bad neighbors. The predicate is_nbr?(K,L) returns true iff K and
L are variables of two neighboring processes; i.e., mod(abs(K‘2-L‘2),n) ≤ 1, where K‘2
denotes the index of K. Likewise, we define the predicate is_bad_nbr?(K,L) that holds
iff K,L are neighbors indices and they hold the same colors i.e., K‘1=L‘1. Finally
we define the set bad_nbr_s(K) to be the set of all bad neighbors of variable K. The
set nbr_colors(K) returns the set of the colors of all neighbors of K of a process j. By
saying the state s is corrupted at process j we mean K(s,j) has a nonempty set of
bad neighbors and s is called illegitimate state.Particularly, s will be of type S_ill.
A legitimate state has an empty set of bad neighbors set.
Reusability of the abstract framework to specify the general protocol Col-
oring(m,n). We now define formally the protocol’s main parameters. To reuse
the abstract framework we defined previously, we will import the PVS theory of
Add_Weak.pvs with the following concrete values STC, below[m], ndx_varb, VAL instan-
tiated into its abstract parameters. This enables us to reuse its abstract types in
specifying Coloring(m,n). Particularly, we will define the sets of readable, writable
variables, and the transitions of the protocol. We have to do that in such a way that
adhere to the read/write axioms of the model. To keep the consistency of the for-
malization of the protocol these axioms were implemented as predicates in the types
process, nd_protocol. Thus, PVS will generate several TCCs which their proofs guar-
antee the satisfiability of the axioms for the concrete declared protocol.
Specification of the action of Coloring(m,n). In Listing 5.11 we present the
action of the protocol to return the state reached when process j acts to correct its
corrupted state. Formally, we define action using tabular type of PVS. Because of the
very precise types of PVS, this type allows explicit representation when the protocol
is silent by using blank entries corresponding to the appropriate cases. However, the
type checker will not generate the coverage tccs that are required by using COND
internment. Instead, it will require to ensure that the cases for blank entries are not
accessible. We do that in Listing 5.11 (line 2), as s must be illegitimate state and
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has a bad neighbor(i.e. corrupted at process j). We specify the function other Table
5.2 to choose a new color for the variable K(s,j) other than the corrupted one. To
this end, we use the epsilon function (the choice function in PVS)over the full set of
colors minus the set of colors of the neighbors of the corrupted process. Observe that
the very precise type in Listing 5.11 Line 2, ensures the choice set will not be empty.

1 action(j: below[n],
2 s: {state: STC | NOT is_LEGT?(state) AND nbr_is_bad?(state

, j)},
3 K: ndx_varb, C: bad_nbr_v(K)):
4 STC =
5 TABLE
6 +−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+
7 |[ nbr_is_bad?(s, j) |nbr_is_good?(s, j)]|
8 +−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+
9 | NOT is_LEGT?(s) |(#length:=n,

10 seq
11 := (LAMBDA
12 (i: below[n]):
13 IF i = j
14 THEN
15 other(K(s, j))
16 ELSE s(i)
17 ENDIF) #) | ||
18 +−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+
19 | is_LEGT?(s) | | ||
20 +−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+
21 ENDTABLE

Listing 5.11: Table construction for transition systems shows blank
entries when the protocol is silent.

Specification of a process of coloring(m,n). In Table 5.3 we list the sets that are
required to define a process j in this protocol. In particular, for an arbitrary global
state s and a process j, we define the function READ_p which returns all readable
variables of process j. Similarly, we define the function WRITE_p which returns the
variables that process j can write. We finally define the function DELTA_p that
returns the set of transitions belonging to process j if process j is corrupted in the
global state s; i.e., j has a bad neighbor. Thus, the specification of a process of the
protocol Coloring(m,n) is as follows:

- PRS_p(s,j) = (READ_p(s,j), WRITE_p(s,j),DELTA_p(s,j))

The parameterized specification of the Coloring(m,n) protocol. Finally, to
define the Coloring(m,n) protocol as a constant of the type nd_Protocol. It is
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Table 5.3: Defining a process using general framework

Name in PVS Description
READ_p(s, j):set[ndx_varb] Func {L:nbr_v(K(s,j))|True}

readable variables of process j
WRITE_p(s,j):set[ndx_varb] Func {L:ndx_varb|L=K(s,j)}

variables process j can write
Delta_p(s,j):set[Transition] Func {tr:Transition|

∃ (c:bad_nbr_v(K(s,j))):
tr=(s,action(j,s,K(s,j),c))}

Table 5.4: Major functions in the proof of convergence of Color-
ing(m,n)

Name in PVS Description
corrected(s, j): COLORS Func Listing 5.12

correct color at j
LocallyCorrected(s, j): STC Func Listing 5.13

Locally correct state at j
corrected_up_to_j(s, j):STC Func Listing 5.14 Recursive construction

of finite prefix states converging to I

sufficient to determine the sets of processes,variables,transitions of the protocol. For
instance,

• PROC_prt(s:STC): set[p_process]={p:p_process | ∃ (j:below[n]):p = Process_j(s,j)}

• VARB_prt(s:STC): set[ndx_varb]= {v:ndx_varb | ∃ (j:below[n]):v ∈ WRITE p(s,j))}

• Delta_prt(s:STC): set[Transition]= {tr:Transition | ∃ (j:below[n]):tr ∈ DELTA p(s,j)} .
Thus:
Coloring(m,n)(s:STC):nd_Protocol =(PROC_prt(s),VARB_prt(s),DELTA_prt(s )).

5.4 Mechanical Verification of Parameterized Col-
oring

In this section we provide a summary of the major functions, lemmas and theorems,
that we use for the proof of convergence of Coloring(m,n) for m ≥ 3 and n > m.
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1 corrected(s: STC, j: below[n]): COLORS =
2 TABLE
3 %+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+
4 |[ nbr_is_good?(s, j)| nbr_is_bad?(s, j)]|
5 %−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+
6 |NOT is_LEGT?(s)| s`seq(j) | other(K(s, j)) ||
7 %−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+
8 |is_LEGT?(s) | s`seq(j) | ||
9 %−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+

10 ENDTABLE

Listing 5.12: colors status at process j after applying the correction
of the action function.

The proof is based on a recursive prefix construction that demonstrates the ex-
istence of a computation prefix σ of Coloring(m,n) from any arbitrary illegitimate
state s such that σ includes a state in I. We illustrate the construction procedure by
means of three functions listed in Table 5.4 and explained in subsection 5.4.1. Later
in subsection 5.4.2 we prove the convergence by induction.

5.4.1 Recursive Construction

1 locallyCorrected(s: STC, j: below[n]): STC =
2 TABLE
3 %−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
4 | NOT is_LEGT?(s) | (# length := n,
5 seq
6 := (LAMBDA
7 (i: below[n]):
8 IF i = j
9 THEN corrected(s, j)

10 ELSE s`seq(i)
11 ENDIF) #) ||
12 %−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
13 | is_LEGT?(s) | s ||
14 %−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
15 ENDTABLE

Listing 5.13: Locally correct state at process j.

corrected(s,j): correct color at j. By studying the behavior of the action function
of this protocol Listing 5.11 (line 6–18), we can capture the status of the colors on the
ring after passing a state s to the action function by one out of four cases, illustrated
in Listing 5.12 (lines 6–8). First, if s is corrupted at j then there will be a new correct
color other than the original bad_one. Second, if the state s is corrupted but not



Chapter 5. Parameterized Weakly Self-Stabilizing Protocols 31

at j then the color will not change thus the color at j will be s‘seq(j). Third, if the
state is not corrupted at all then all colors will remain unchanged at any processj,
thus s‘seq(j). Observe that it is impossible to have a legitimate state that has any
corrupted color. Thus the fourth case in the listing is left blank. In the all possible
three cases we will have a color that does not have bad neighbors.
LocallyCorrected(s,j): A state that has a correct color at j is called locally correct
at j. Thus the earlier three cases define a state under three conditions expressed in
Listing 5.13 ( Line 4–11, 13). We call this state LocallyCorrected(s,j) as it is always
uncorrupted at process j.
corrected_up_to_j(s,j) The function coorected_up_to_j 5.14 captures a recur-
sive correction procedure illustrated in (Line 3–9) that ensures the convergence to I in
a finite number of steps from any illegitimate state. In section 5.4.2 we demonstrate
the convergence proof by means of induction.

1 corrected_up_to_j(s: STC, j: below[n]): RECURSIVE STC =
2 TABLE
3 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
4 |[ j = 0 | j > 0 ]|
5 +−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
6 |not is_LEGT?(s)| locallyCorrected(s, 0)| locallyCorrected
7 (corrected_up_to_j
8 (s, j − 1), j) ||
9 +−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+

10 |is_LEGT?(s) | s | s ||
11 +−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+
12 ENDTABLE
13 MEASURE j

Listing 5.14: corrected_up_to_j returns a state that has j locally
correct neighbors.

5.4.2 Convergence Proof

Based on the axiom of choice (in the PVS prelude library), we proved that the
other function -Table 5.2 last row and Listing 5.11(Line 15)- will be able to choose
a new correct color (Listing 5.15). Thus, applying the action of process j of a state
s will guarantee the local correctness of its color i.e. the color will not have bad
neighbors. Particularly, the color of the state LocallyCorrected(s,j) will always have
a good neighborhood at process j. More precisely, we verified the following three
lemmas in PVS:
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nonempty_choice_set: lemma
nonempty?(bad_nbr_s(K(sl, j)))⇒
nonempty?(difference(fullset_colors, nbr_colors(K(sl, j))))

other_can_choose : lemma
nonempty?(bad_nbr_s(K(sl, j))) IMPLIES

empty?({C: ndx_varb| is_bad_nbr?((other(K(sl, j)), j), C)})

corrected_color_at_proc_i_has_no_bad_nbr1: Theorem
nbr_is_good?(locallyCorrected(s, j), j)

%|− corrected_color_at_proc_i_has_no_bad_nbr1: PROOF
%|−(lemma "other_can_choose")(skosimp*)(grind) Q.E.D

Observe that the mechanical proofs of the first two lemmas are a bit lengthy (about
70 proof steps combined). Nevertheless, they are based on two simple facts. Namely,
there are m colors, and for a corrupted process j the neighborhood (i.e., j	1,j ,j⊕1 )
can not hold more than 2 distinct colors. Thus, by the non-emptiness of the choice set
(the first lemma), the second lemma is a consequence of the axiom of choice (Listing
5.15 Lines 29–30).

Coloring_n_m.other_can_choose: proved − complete [shostak](0.43 s)
1 ("" (lemma "nonempty_choice_set")
2 (skosimp*)
3 (case "member(other(K(sl!1,j!1)),difference(fullset_colors,

nbr_colors(K(sl!1, j!1))))")
4 ("1"
: :
24 ("2"
25 (inst −1 " j!1" "sl!1")
26 (musimp)
27 (expand "member" 1)
28 (expand "other" 1)
29 (lemma "epsilon_ax[COLORS]")
30 (lemma "choose_is_epsilon[COLORS]")
31 (inst −1
32 "difference(fullset_colors, nbr_colors(K(sl!1, j!1)))")
33 (inst −2
34 "difference(fullset_colors, nbr_colors(K(sl!1, j!1)))")
35 (expand "nonempty?" −4)
36 (expand "empty?" 2)
37 (skosimp*)
38 (musimp)
39 (inst 1 "x!1")
40 (assert))))

Listing 5.15: Other can choose proof
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Furthermore, it is possible that the new state i.e. LocallyCorrected(s,j) to be a legiti-
mate state or an illegitimate one. If it was legitimate the proof is complete as we can
easily define a transition from outside I to I namely (s,LocallyCorrected(s,j)). But if
it was illegitimate at a neighbor of j, say the right neighbor j+ 1, then j+ 1 must be
corrupted from its right (i.e. the color at j+2 ) as its left neighbor’s color is correct
by the previous move. The action will choose a new color that is different than both
of its neighbors which guarantees the local correctness at j + 1 and it preserves the
correctness of the color at j, call the new state s2. If the new state s2 is legitimate
then the prefix (s,LocallyCorrected(s,j),s2) reaches I, and the proof is complete. If
it was not, then by induction and the fact that s has originally a finite length n,
applying this correction procedure n-times recursively will ensure the convergence to
I from any illegitimate state s. We prove this fact formally in two steps: First, we
show that the state corrected_up_to_j(s1, j) has always good neighbors at process
j for all j < n.

induct: THEOREM FORALL (j: below[n]):
nbr_is_good?(corrected_up_to_j(s1, j), j)

The formal proof of this theorem is explained in Listing 5.163.
Second, based on the fact that a state that has good colors at all process j is legitimate,
and by using the above induct theorem, we show that the state that is constructed
after applying the recursion n times is legitimate Listing 5.17. We formalize this as
follows:

s_has_all_good_nbr_is_LEGT: lemma
(FORALL (j: below[n]): nbr_is_good?(s, j)) IMPLIES is_LEGT?(s)

Proof: (grind) Q.E.D

constructed_LEGT: STC =
(# length := n,

seq := (LAMBDA (j: below[n]): corrected_up_to_j(s1, j)`seq
(j)) #)

correcting_recursively_up_to_n_minus_1_constructs_LEGT: THEOREM
is_LEGT?(constructed_LEGT)

This ensures the convergence to I as required.4

3 The full formal proof is available here https://sites.google.com/a/mtu.edu/
amertahatpvs/fault-tolerance-ss-protocols/coloring_ring_m_n

4Appendix D has a proof of a generalized binary agreement protocol, it has similar proof con-
struction of the coloring protocol.

https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/coloring_ring_m_n
https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/coloring_ring_m_n
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1 (induct "j")
2 (("1"
3 (flatten)
4 (expand "corrected_up_to_j")
5 (case "is_LEGT?(s1) ")
6 (("1" (assert) (grind))
7 ("2"
8 (case "NOT is_LEGT?(s1) ")
9 (("1"

10 (musimp)
11 (lemma "corrected_color_at_proc_i_has_no_bad_nbr1")
12 (inst?))
13 ("2" (propax))))))
14 ("2"
15 (skosimp*)
16 (expand 'corrected_up_to_j '1)
17 (assert)
18 (case "NOT is_LEGT?(s1)")
19 (("1"
20 (assert)
21 (expand 'corrected_up_to_j '2)
22 (musimp)
23 (("1"
24 (assert)
25 (expand "nbr_is_good?")
26 (expand "corrected_up_to_j")
27 (expand "nbr_is_bad?")
28 (lemma "corrected_color_at_proc_i_has_no_bad_nbr1")
29 (inst?)
30 (expand "nonempty?")
31 (expand "nbr_is_good?")
32 (expand "nbr_is_bad?")
33 (expand "nonempty?")
34 (lemma "corrected_color_at_proc_i_has_no_bad_nbr1")
35 (inst −1 "1+jb!1 " "locallyCorrected(s1, 0)")
36 (expand "nbr_is_good?")
37 (expand "nbr_is_bad?")
38 (assert)
39 (grind))
40 ("2"
41 (lemma "corrected_color_at_proc_i_has_no_bad_nbr1")
42 (inst −1 "1+jb!1 "
43 "locallyCorrected(corrected_up_to_j(s1, jb!1 − 1), jb!1)")
44 (typepred "jb!1" 1)
45 (grind))))
46 ("2" (grind))))))

Listing 5.16: Proof of induct theorem for the coloring protocol.
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1 constructed_is_LEGT: THEOREM is_LEGT?(constructed_LEGT)
2 (lemma "induct_corrected_up_to_n_minus_1_is_LEGT")
3 (lemma "s_has_all_good_nbr_is_LEGT ")
4 (expand "is_LEGT?")
5 (skosimp*)
6 (expand 'nbr_is_good? '1)
7 (expand 'nbr_is_bad? '−3)
8 (expand 'nonempty? '−3)
9 (expand 'K '1)

10 (case−replace
11 "constructed_LEGT`seq(j!1)= corrected_up_to_j(s1, j!1)`seq(j!1)")
12 (("1"
13 (inst −3 "j!1")
14 (expand "nbr_is_good?")
15 (expand "nbr_is_bad?")
16 (grind))
17 ("2" (grind)) ("3" (grind))))

Listing 5.17: Proof of the coloring convergence protocol.
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Chapter 6
Parameterized Strongly Self-Stabilizing
Protocols

This chapter presents two case studies on the synthesis in small scale and general-
ization of strongly self-stabilizing sorting algorithms presented in [17] using the idea
of convergence stairs. For instance, Section 6.1 and 6.2 include the formal implemen-
tation and verification of on Unidirectional Chains and Ring topologies respectively.
Moreover,we explain the reusability of the verification of Add_Weak presented in the
last chapter on the verification of these two cases. 1.

6.1 PSS Sorting on Unidirectional Chains

Section 6.1.1 introduces the sorting algorithm of [17], and Subsection 6.1.2 presents
its formal specification in PVS. Subsection 6.1.3 represents the notion of convergence
stairs, which we shall use to prove the strong convergence of sorting on unidirectional
chains. Finally, Subsection 6.1.4 provides a mechanical proof for the correctness of
the sorting algorithm for arbitrary number of processes n and variable domain m,
where m ≤ n2.

6.1.1 Synthesized Sorting Algorithm
Klinkhamer and Ebnenasir use the Protocon tool [17] to automatically generate a self-
stabilizing sorting algorithm on a unidirectional chain topology. Protocon implements
a sound and complete backtracking algorithm (presented in [40]) for the synthesis of

1In preparation for submission to the Journal of Formal Methods in System Design
2For full PVS specifications and proofs visit https://sites.google.com/a/mtu.edu/

amertahatpvs/fault-tolerance-ss-protocols/chain-sort-m-n

https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/chain-sort-m-n
https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/chain-sort-m-n
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self-stabilizing protocols. Consider a version of the chain sort with 5 processes; i.e.,
n = 5. Each process pj has a variable cj, where 0 ≤ j ≤ 4, with the domain
of {0, 1, 2, 3}; i.e., m = 4. We use the notation ChainSort(m,n) to represent the
instances of the chain sort for specific values of m and n. As such, the set of variables
of ChainSort(4, 5) equals to {c0, c1, ..., c4}. Each process pj, where 0 ≤ j ≤ 3, can
read and write {cj, cj+1}. The action of the process pj (0 ≤ j ≤ 3) is as follows:
(Notice that, the last process does not have any actions.)

Aj : (cj > cj+1) −→ cj := cj+1; cj+1 := cj; (6.1)

If the variable cj has a greater value than its right neighbor, then the process pj
swaps the values of cj and cj+1. The set of legitimate states of the unidirectional
chain sort is the state predicate IChainSort, where IChainSort = {s | ∀i : 0 ≤ i < n− 1 :
ci(s) ≤ ci+1(s)}. Since this sorting protocol has been automatically generated by
Protocon, it is strongly self-stabilizing up to a fixed number of processes. To prove
that this protocol is correct for larger values of n, we use the theorem prover PVS to
formally verify that the chain sort is correct for arbitrary (but finite) values of m and
n, where m ≤ n.

6.1.2 Specification of Chain Sort in PVS
This section demonstrates how we reuse the abstract concepts (e.g., state, state pred-
icate) defined in the PVS specification of Add_Weak to specify the chain sort protocol.
Let s be a global state of the chain sort. We model s as a finite sequence of length
n with elements from the domain below[m], where below[m] in PVS denotes values in
modulo m. Thus, a legitimate state s is a sorted sequence; i.e., s(i) ≤ s(i + 1) for
all 0 ≤ i < n− 1. We specify the following function of Table construction in PVS to
capture the above action:

1 action(s:{state:Glob_State
2 | not is_LEGT?(state)},
3 j:subrange(0,n−2)): Glob_State =
4 TABLE
5 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
6 | active_LocallyCorrupted?(s,j) | swap(s,j) ||
7 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
8 |is_LEGT?(s) | ||
9 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

10 |not active_LocallyCorrupted?(s,j) | ||
11 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
12 ENDTABLE

Listing 6.1: action of generalized Chain Sort protocol using PVS
Table construction.
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where active_LocallyCorrupted is a predicate that returns true if the j-th value in
the sequence corresponding to s is greater than the (j + 1)-th value.

active_LocallyCorrupted?(s:Glob_State, j:subrange(0,n-2)):bool = s‘seq(j) > s‘seq(j+1)

To ease the presentation of mechanical verification, we define the following nota-
tions. Let Range(s) be a function that maps a global state s to a subset of the set
{0, ...,m − 1} such that Range(s) contains all numbers that appear in the sequence
corresponding to s.

Definition 6.1.1. Range: Glob_State→ set[below[m]], where Range(s) = {x : below[m]
| x = s‘seq(i) for some i: below[n]}.

Let mins(0) denote the minimum value that appears in the global state s. That
is, mins(0)= min[Range(s)]. We also define Ranges(0)= Range(s). Moreover, let
remove(α,B) denote a function that removes an element α from a set B and returns
the resulting set; i.e., remove(α,B) = B-{α}. We define Ranges(1)= remove(mins(0),
Range(s)). Inductively, we define the following concepts:

Definition 6.1.2. Ranges(i) = remove(min[Ranges(i− 1)], Ranges(i− 1))

When the cardinality of Ranges(i− 1) is 1, the remove function returns the empty
set and PVS generates a TCC. To resolve this TCC, we define the function Ranges(i)
to return Max(Ranges(i).

Definition 6.1.3. mins(i)= min[Ranges(i)], the minimum value in the set Ranges(i).

Since repeated values in s are allowed, we define the multiplicity of a natural value
t in a state s by the number of times that t occurs in s denoted by multi(t)= lk, where
k is a positive integer. Notice that, in this notation, we have multi(mins(0))= l0. We
demonstrate these concepts with the following simple example.

Example 6.1.1. Let s = (0, 0, 1, 1, 1, 3) then Range(s)={0,1,3}, Ranges(1)= {1,3},
and Ranges(2)={3}. Moreover, we have mins(0)= 0, multi(mins(0))= l0 = 2 since we
have two zeros in s, whereas multi(1)=l1=3, and multi(3)=l2 = 1. Further, we have
mins(1)= min({0, 1, 3} − {0})= 1, while mins(2)= min({0, 1, 2} − {0, 1})= 3.

In order to define multi(t) more precisely, we first define the function index_multi
that returns the set of indices of all occurrences of t in s.

Definition 6.1.4. indexed_multi(t:below[m]) = If t ∈ Range(s) ⇒ { i: below[n]|
s‘seq(i) = t}, else φ.



40 Section 6.1. PSS Sorting on Unidirectional Chains

Now, we simply define the multiplicity multi(t) as the cardinality of the set
indexed_multi(t), denoted by multi(t)= Card(indexed_multi(t)).

Example 6.1.2. Assume t is not in the range of s, which means there is no index
i below s’length such that s‘seq(i) = t. As such, indexed_multi(t) is the empty set φ;
hence multi(t) = 0. Moreover, in Example 6.1.1, we have indexed_multi(0)= {0,1}
since the first two positions of s have zeros. Thus, Card(indexed_multi(0)) = 2. Sim-
ilarly, indexed_multi(1) = {2,3,4} and thus Card(indexed_multi(1)) = 3. Further, we
have indexed_multi(3) = {5} and thus multi(3) = 1.

Finally, we define the function pos_multi(i), where i ∈ below[Card(Range(s))], that
returns the summation of all multiplicities from mins(0) up to mins(i).

Definition 6.1.5. For i < Card(Range(s)):

pos_multi(i) =
{
multi(mins(0)) i = 0
multi(mins(i)) + pos_multi(i− 1) else

6.1.3 Convergence Stairs for Proving Strong Convergence
Gouda and Multari [42] show that a protocol p is strongly self-stabilizing to a state
predicate I iff there is a sequence of state predicates S1, · · ·SN such that the following
properties hold for some N > 0:

1. Boundary: S1 =true and SN = I;

2. Closure: Each Si is closed, where 1 ≤ i ≤ N , and

3. Convergence: Each Si converges to Si+1, for 1 ≤ i < N .

We adopt a proof strategy based on the idea of convergence stairs. Specifically,
to prove closure and strong convergence of the chain sort, we define the suitable
stairs and then prove the closure of each stair and the convergence of stair Si to
Si+1, for all 1 ≤ i < N . For a global state s to be in the j-th stair (i.e., Sj), the
predicate sortedj?(s, pos_multi(j)-1) must evaluate to true, which means s is sorted
up to the position pos_multi(j)-1, where 1 ≤ j < N . Nonetheless, this is insufficient
alone to define convergence stairs since the closure property may not be satisfied!
This phenomenon could occur if the sub-sequence 1 to pos_multi(j)-1 is sorted, but
does not contain the first pos_multi(j)-1 smallest values. Thus, we add the condition
∀i : 0 ≤ i ≤ j: s(pos_multi(i)-1) = mins(i) to the definition of the j-th stair. Formally,
we define the following predicate:

Definition 6.1.6. n_Stair?(s, j:below[Card(Range(s))]): bool = sortedj?(s,pos_multi(j)
- 1) ∩ ∀ 0 ≤ i ≤ j: s(pos_multi(i)-1) = mins(i)
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Example 6.1.3. Let s be an illegitimate state say s = (1, 1, 0, 2, 4, 5, 3, 3, 0, 1). To
compute n_Stair?(s, 3), we first find the summation of the multiplicities l0+l1+l2 =
pos_multi(3). In this case, it is equal to 2+3+1=6. Then s must be sorted up to
the position 6-1; i.e., the first 6 elements in s must be sorted. That is, sortedj?(s,
6-1) holds. Moreover, ∀i : 0 ≤ i < 3: s(pos_multi(i)-1) = mins(i). This means, for
instance, if s is in n_Stair?(s, 3) then at positions l0, l1, l2 it must have the values
mins(0), mins(1), mins(2) respectively. For example, n_Stair?(s, 3) is given as fol-
lows:

n_Stair?(s, 3)={(0,0=x2−1,1,1,1=x5−1,2=x6−1, · · · , x9) | xi= 3,4 or 5 for i > 6-1}

6.1.4 Mechanical Proof of Closure and Convergence
The mechanical verification of these properties in PVS consumed 1706 proof command
including all the TCC and all required lemmas, this follows the very lengthy inductive
proofs that were required. Thus we will only explain the main ideas of the proofs in
this sections, 3.

In order to mechanically prove the strong convergence of the chain sort, we use
Definition 6.1.6 and show that the sequence of predicates introduced in this defini-
tion creates the necessary convergence stairs for proving the strong convergence of
Chain_Sort(m,n) in a parametric sense. We first provide helpful lemmas and the-
orems that state important properties of some of the basic concepts and functions
introduced in Section 8.2.
Remark 1. To simplify the mechanical proofs, we separate the trivial cases of
Card(Range(s)) = 1, 2. Thus, the global state s that is passed as the first parameter to
the predicates n_Stair? and sorted? meets the requirement that Card(Range(s))> 2.

Lemma 6.1.1. ∀ j:below[Card(Range(s))]: ( n_Stair?(s, j)⇒ sortedj?(s, pos_multi(j)-
1) )

Lemma 6.1.1 shows that if a state s belongs to the j-th stair, then the sequence
of numbers representing s must be sorted up to the position pos_multi(j)-1.

Lemma 6.1.2. ∀ (j:below[Card(Range(s))]): (n_Stair?(s, j) ⇒ ∀ (i:subrange[0,j]):
s‘seq(pos_ multi(i)-1) = mins(i))

Lemma 6.1.2 requires that if the global s is in the j-th stair, then each value in
position j of the sequence representing s must be the (j + 1)-th smallest value of the
sequence. The proofs of Lemmas 6.1.1 and 6.1.2 follow by definition; hence omitted.
The following theorem states that mins(i-1)< mins(i).

3 The full formal proof is available here https://sites.google.com/a/mtu.edu/
amertahatpvs/fault-tolerance-ss-protocols/chain-sort-m-n

https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/chain-sort-m-n
https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/chain-sort-m-n
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Theorem 6.1.1. For any 0 < i < Card(Range(s)), we have Card(Ranges(i-1))>1 ⇒
min(Ranges(i-1)) < min(Ranges(i))

Proof. For i = 1 the proof is trivial since Ranges(0)= Range(s) and Ranges(1) =
remove(min(Range(s)), Range(s)), which is a proper subset of Ranges(0) that excludes
min(Ran- ge(s)). Thus, min(Ranges(0)) < mins(1). For i > 1, the proof splits into two
cases: for any i > 1, either Card(Ranges(i− 1)) > 1 holds or not. If Card(Ranges(i−
1)) > 1 does not hold for some i > 1, then Card(Ranges(i− 1)) = 1 and by definition,
Ranges(i) is max(Range(s)); hence certainly everything is less than max(Range(s)).
Otherwise, Ranges(i) = remove(min(Ranges(i− 1)), Ranges(i− 1)), which is a proper
subset of Ranges(i − 1). Therefore, we have min(Ranges(i − 1)) < min(Ranges(i)),
which completes the proof.

We also show that the sum of multiplicities of the values in the state s preserves
the order of the values with respect to the ordering relation <. For instance, since
mins(j − 1) < mins(j), we have pos_multi(j-1) < pos_multi(j).

Lemma 6.1.3. (j2 = j1 +1∧j2 < Card(Range(s)))⇒ pos_multi(j1) < pos_multi(j2).

Proof. The proof is by induction on j1. For j1 = 0, the proof is straightforward.
Since by definition we have pos_multi(1)= multi(1) + pos_multi(0) and pos_multi(0)=
multi(0), the proof of the case j1 = 0 follows. The proof becomes complete by induc-
tion hypothesis, a careful rewriting, expansions, if-lifting, and instantiations as in the
base case.

Theorem 6.1.2. (j2 = j1 + 1 ∧ j2 < Card(Range(s)) ∧ sortedj?(s, pos_multi(j2)))⇒
sortedj?(s, pos_multi(j1))

Proof. Again, the proof of this theorem is by induction on j1 starting from j1 = 0.
The base case is trivial; hence omitted. For j1 > 0, Lemma 6.1.3 implies that if
j2 = j1 + 1 and j2 < Card(Range(s)), then we have pos_multi(j1) < pos_multi(j2).
Let pos_multi(j1) = k1 and pos_multi(j2) = k2. We then prove that, for k1, k2 > 1,
if k2 > k1, then we have sortedj?(s, k2)⇒ sortedj?(s, k1), which is achieved by simple
skolemization, expansion and instantiation.

It is worth mentioning that Theorem 6.1.2 has a simple proof, which would not
have been possible without reusing Lemma 6.1.3. We also show that the stairs are
nested. In particular, if j1 < j2 and s is in the j2-th stair, then s must be in the j1-th
stair as well.

Theorem 6.1.3. (j2 = j1+1∧j2 < Card(Range(s)) ∧ n_Stair?(s, j2))⇒ n_Stair?(s, j1)

Proof. To prove this theorem, we expand the definition of n_Stair?, and use Lemma
6.1.2, Theorem 6.1.2, and Lemma 6.1.3 along with instantiations, which completes
the proof.
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This theorem is very important since it shows that if the two conditions of Defi-
nition 6.1.6 are satisfied for j2, then they must hold for all j < j2. In fact, to simplify
the proof of this theorem, we found it useful to prove the first sorting property of
Definition 6.1.6 independently, and then we reused it in the proof of Theorem 6.1.3.
Now, we show that if s is in the j-th stair, then for all i < pos_multi(j)−1 the actions
of the process i will not change the values on s for all i < pos_multi(j)− 1.

Lemma 6.1.4. ¬is_LEGT?(s0) ∧ j1 < pos_multi(j2) − 1 ∧ n_Stair?(s0, j2) ⇒
action(s0, j1) = s1 ∧ s1‘seq(j1) = s0‘seq(j1)

Finally, the following theorem shows that the difference between pos_multi(j2)
and pos_multi (j1) is multi( mins(j2)).

Theorem 6.1.4. (j2 = j1+1 ∧ j2 < Card(Range(s)))⇒ pos_multi(j2) - pos_multi(j1)
= multi(mins(j2))

Proof. By expansion and rewriting the definition of pos_multi, we get multi(mins(j2))
+ pos_multi(j2 − 1)-pos_multi (j1). Now, substitution will give us multi(mins(j2)) +
pos_multi (j1) - pos_multi(j1), which is equal to multi(mins(j2)). In PVS, automatic
expansion, rewriting, instantiations, with if-lifting will complete the proof.

Theorem 6.1.5. Each stair defined for Chain_Sort(m,n) (in Definition 6.1.6) is
closed in the synthesized action presented in Section 6.1.1.

Proof. For any 1 ≤ j1, j2 < N , where j1 < j2, and for a global state s in the j2-th
stair, the number of values between the positions pos_multi(j2) and pos_multi(j1) is
equal to multi(mins(j2)) (based on Theorem 6.1.4). Moreover, Theorem 6.1.3 im-
plies that we have the value of mins(j2) at position pos_multi(j2) − 1 and the value
(mins(j1)) at position pos_multi(j1)−1. As such, any occurrence of mins(j2) must be
located between the two portions as explained in Fig(6.1) because it is sorted up to
pos_multi(j2)− 1. Thus, by Theorems 6.1.4, 6.1.2,6.1.3 and 6.1.1, and Lemmas 6.1.1
and 6.1.2, we conclude that all occurrences of mins(j2) are in positions pos_multi(j1)
up to pos_multi(j2) − 1. For this reason, all values in positions k > pos_multi(j2)
cannot be less than mins(j2). Thus, the state s could be locally corrupted only for
k > pos_multi(j2). Therefore, applying the action of process k on s does not change
the order of the values up to pos_multi(j2) − 1; hence, the closure of the i-th stair,
where ∀ 0 ≤ i ≤ Card(Range(s))-1.

It remains to show the convergence of the stairs defined in Definition 6.1.6. First,
we prove that for a global state s, if s is in the (Card(Range(s))-1)-th stair, then s is
a legitimate state. Formally, we have:

Theorem 6.1.6. n_Stair?(s, Card(Range(s))-1) ⇒ is_LEGT?(s)
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Figure 6.1: Chain_Sort(m,n) proof of convergence using conver-
gence stairs.

Proof. Let n be the length of the sequence of values representing s. By Lemma 6.1.1
and the fact that the summation of all multiplicities of the values in Range(s) is n,
we state that if n_Stair?(s, Card(Range(s))-1) holds, then sortedj?(s, n-1) holds as
well. Thus, the state s must be sorted up to pos_multi(Card(Range(s))) = n − 1. If
sortedj?(s, n-1) holds, then s is a legitimate state.

Lemma 6.1.5. ¬is_LEGT?(s0) ∧ active_LocallyCorrupted?(s0, j) ⇒ action(s0, j) =
s1 ∧ s1‘seq(j) = s0‘seq(j+1) ∧ s1‘seq(j+1) = s0‘seq(j)

Proof. The proof is completed by expanding the definition of action, swap, is_LEGT?,
active_LocallyCorrupted?.

Notice that, the function action(s, j) returns a global state generated by the exe-
cution of the synthesized action in position j of the sequence of values representing
s. As such, action(s, j)‘seq(j) is the j-th value in the sequence of values representing
the global state action(s, j). Lemmas 6.1.5 simply states that if process j in the chain
is enabled and executes its action, then in the resulting global state the values j and
j + 1 are swapped.

Lemma 6.1.6. ¬is_LEGT?(s0) ∧ active_LocallyCorrupted?(s0, j) ⇒ action(s0, j) =
s1 ∧ s1‘seq( j ) < s1‘seq(j + 1)
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Proof. The proof follows directly from expanding the definitions of action, swap,
is_LEGT?, active_LocallyCorrupted? and Lemma 6.1.5.

Lemmas 6.1.6 stipulates that if process j in the chain is enabled and executes its
action, then in the resulting global state the value at position j will be strictly smaller
than the value at position j + 1.
Theorem 6.1.7. Based on Definition 6.1.6, each stair j converges to stair j+ 1, for
1 ≤ j < Card(Range(s))− 1.
Proof. We show that ∀ 0 ≤ j ≤ Card(Range(s))− 1 : the j-th stair converges to the
(j + 1)-th stair. First, we make the following observations:

1. If s is an illegitimate state and locally corrupted at position i (i.e., the local
state of process i is corrupted), then s‘seq(i) > s‘seq(i+1). Thus, the action of
process i will swap the values s‘seq(i) and s‘seq(i+1). As a result, the position of
the smaller value will decrease strictly by 1 in the new state (based on Lemmas
6.1.5 and 6.1.6).

2. Let s be an illegitimate state that is sorted in a non-increasing order (i.e., worst
case input for a sorting algorithm that sorts increasingly). Let K be the number
of moves/actions that are enabled at s. We observe that the number of enabled
actions in any other illegitimate state cannot be greater than K.

Let Chain_Sort(m,n) be an instance of the chain sort protocol with n processes
in the chain and m values in the domain of variables, where m ≤ n. Moreover, let s
be a global state that is ordered in the opposite direction (i.e., the minimum value
is on the right most position in the sequence representing s). Since m ≤ n, we may
assume that there are at most n distinct values in s, starting from 0 ending at n− 1.
Thus, the multiplicity of each value in Range(s) is 1 in s. Now, since the sequence of
s is sorted decreasingly, mins(0) is located at position n − 1. By Lemmas 6.1.5 and
6.1.6, when process n − 1 executes, the position of mins(0) will decrease strictly by
1. Thus, for mins(0) to move to position 0, there must be n − 2 moves. After this
occurs, process 0 will not be locally corrupted anymore (based on Theorems 6.1.1 and
6.1.5). That is, convergence from the first stair to the second is achieved in at most
n− 2 steps. Based on a similar argument, it takes n− 3 moves for mins(1) to move
to position 1. In other words, convergence from the second stair to the third one is
attained in n− 3 steps in the worst case. In general, the number of moves for placing
mins(i) in its right position (i.e., convergence from (i+ 1)-th stair to (i+ 2)-th stair)
is (n− 2− i), where 0 ≤ i ≤ Card(Range(s))− 1. Based on Theorem 6.1.1, we know
that mins(i) < mins(i+ 1) holds. Therefore, based on the above argument (which
follows from Theorem 6.1.5 and Lemmas 6.1.5 and 6.1.6), each stair converges to its
consequent stair, and convergence to legitimate states can be achieved in at most
(n2 − n)/2 steps (see Figure 6.1).
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To illustrate the proof, we provide an example.

Example 6.1.4. Consider the Chain_Sort(6, 6), and let s = (5, 4, 3, 2, 1, 0). Then
s‘seq(5) = 0, Range(s)={ 0, 1, · · · , 5} and multi(i) = 1 for each i in Range(s). All
processes except n− 1 = 5 are locally corrupted. Thus, the swapping action will make
s‘seq(4) equal to 0. Hence, the position of 0 must decrease strictly by one; i.e., from 5
to 4. Since 0 is the minimum in Range(s), any process that has 0 as its right neighbor
will be locally corrupted. Thus, its swapping action will make the new position of 0
less than the previous position by 1. Swapping of 0 will continue until s‘seq(0) = 0;
i.e., 0 does not have a left neighbor. The same argument applies to 1 in Range(s)-{0}
(since 1 is the minimum value of Range(s)-{0}). Moreover, once 0 reaches position
0, s will be in the second stair, where it will not change its place due to the closure
of the stairs. This means that the corrupted processes must be to the right of 0; i.e.,
process(j) is corrupted implies j > 0. Since the multiplicities are equal to 1, the values
that are located at positions j > 0 are greater than 0. Now, any process j > 1 that
has 1 as its right neighbor is locally corrupted and starts the wave of swapping. The
swapping continues until 1 has a left neighbor less than it, which is 0. At this point,
s is sorted increasingly up to the second position; i.e., s is in the stair 2. In general,
the same phenomenon occurs with all values on s because (1) mins(i − 1) < mins(i),
(2) the stairs are closed, (3) the actions reduce the positions strictly by 1, and (4)
multiplicities are equal to 1. Thus, s will be sorted in finite number of moves; i.e.,
convergence is achieved.

6.2 PSS Sorting on Unidirectional Rings
In this section, we consider a special case of the Ring sort where there exist a unique
zero. The topology of the network is a unidirectional ring instead of a unidirectional
chain. That is, we have a protocol Ring_Sort(m,n), where n denotes the number
of processes and m represents the domain of each variable and m = n. Consider a
version of the Ring sort with 5 processes; i.e., n = 5. Each process pj has a variable
cj, where 0 ≤ j < 5, with the domain of {0, 1, 2, 3, 4}; i.e., m = 5. Moreover, each
process pj, where 0 ≤ j ≤ 4, can read and write {cj, cj+1}, where addition is in
modulo 5. We assume that the multiplicity of the value 0 is 1; i.e., there is exactly
one 0 in the ring. We call the process that holds the 0, the 0-process. Klinkhamer
and Ebnenasir [17] automatically generate the following action (0 ≤ j ≤ 4) for the
Ring_Sort(m,n), where m = 5 and n = 5.

A′j : (cj+1 6= 0) ∧ (cj > cj+1) −→ cj := cj+1; cj+1 := cj; (6.2)

If the variable cj has a greater value than its right neighbor and the value of the
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right neighbor is non-zero, then the process pj swaps the values of cj and cj+1. No-
tice that, contrary to the chain sort, the all processes can see their right neighbors.
Nevertheless, the 0-process will be always silent since 0 is the smallest number. More-
over, the set of legitimate states of the unidirectional ring sort is the state predicate
IRingSort, where IRingSort = {s | ∀i : 0 ≤ i ≤ n− 1 : (ci(s) ≤ ci+1(s)) ∨ (ci+1(s) = 0)}.
Thus, PVS specifications of the action, the states, and the legitimate states are similar
to the chain sort, as in List 6.2; hence we omitted them.

The generalization of the ring sort protocol is as follows: There are n processes
located in a unidirectional ring, each having a local variable cj with a domain of
m values, where m ≤ n. Each process j can read and write the values {cj, cj+1}
and includes the action A′j, for 0 ≤ j ≤ n − 1. The Ring_Sort(m,n) protocol has
three constraints. First, there is exactly one 0 in any global state s. We call the
process that holds 0, proc(0). Second, the action of the predecessor of the process
that initially holds 0 is disabled. In particular, 0 represents a mark that labels the
beginning and the end of the sorting procedure. Third, the (n− 1)-th process (to the
right of proc(0)) does have an action (contrary to the chain sort where process n− 1
excludes any actions). Since c0 = 0, this action becomes disabled and the entire ring
sort turns into an instance of chain sort. In the case where m = n, we can represent
each legitimate state s as a sequence of values from {0, 1, · · · , n-1} where s‘seq(0)=0
and the rest of the values to right of 0 are sorted increasingly. This in turn makes
the proof very similar to the proof of convergence from a state in the first stair of the
chain sort! Thus, we can reuse the mechanical verification of the chain sort.

6.2.1 PVS Specification and Verifications of Ring Sort
In this section, we present the proof of generality of Ring_Sort(m,n), where m = n.
The PVS specification of Ring_Sort(n, n) greatly benefits from the PVS specification
of Chain_Sort(m,n). Importing Chain_Sort(m,n) significantly simplifies the spec-
ification and verification of Ring_Sort(n, n) as shown in Listing 6.2. For instance,
to prove the following two lemmas, we import the corresponding lemmas from chain
sort.

Lemma 6.2.1. (j2 = j1 +1∧j2 < Card(Range(s)))⇒ pos_multi(j2) - pos_multi(j1) =
1

Lemma 6.2.2. ∀(j:below[Card(Range(s))]):n_Stair?(j)⇒ ∀ (i∈[0,j]):s‘seq(pos_multi(i)
- 1) = i

The proof of Lemma 6.2.1 reuses Theorem 6.1.4 while the proof of Lemma 6.2.2
directly depends on Lemma 6.1.2. The mechanical proof follows after some simple
instantiations and applying the constraints of Ring_Sort(n, n) on s.
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Theorem 6.2.1. Ring_Sort(n, n) is convergeing for any n ≥ 5.

Or as shown in Listing 6.2 in PVS language.4

1 Ring_n_converge0[m1: upfrom[4], n1: upfrom[5]]: THEORY
2 BEGIN

4 ASSUMING
5 Ring_n_converge: ASSUMPTION m1 = n1
6 IMPORTING Chain_Sort_m_n[m1, n1]
7 j1, j2, i3: VAR below[Card(Range(fs))]
8 Ring_n_converge1: ASSUMPTION
9 Card(Range(fs)) = n1 ∩ (member(i3, Range(fs)) ⇒ multi(i3) = 1) ∩

10 Range(fs) = fullset[below[n1]] ∩ min_s(i3) = i3 ∩ fs`seq(0) = 0
11 ENDASSUMING

13 :
14 Stair_converges11: THEOREM
15 n_Stair?(Card(Range(fs)) − 1) IMPLIES is_LEGT?(fs)

17 END Ring_n_converge0

Listing 6.2: Specification of Ring Sort Assumptions when m = n.

4 The full formal proof is available here https://sites.google.com/a/mtu.edu/
amertahatpvs/fault-tolerance-ss-protocols/chain-sort-m-n

https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/chain-sort-m-n
https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/chain-sort-m-n
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Chapter 7
Extensions, Conclusions and Future Work

7.1 Discussion and Related Work

This section discusses the impact of the proposed approach and the related work.
Significance. Self-stabilization is an important property for networked systems, be it
a network-on-chip system or the Internet. There are both hardware [27] and software
systems [28] that benefit from the resilience provided by self-stabilization. Thus, it
is important to have an abstract specification of self-stabilization that is independent
from hardware or software. While several researchers [29, 30] have utilized theorem
proving to formally specify and verify the self-stabilization of specific protocols, this
paper presents a problem-independent specification of self-stabilization that enables
potential reuse of efforts in the verification of convergence of different protocols. (As
demonstrated by our case studies.)

One of the fundamental impediments before automated synthesis of self-stabilizing
protocols from their non-stabilizing versions is the scalability problem. While there
are techniques for parameterized synthesis [39, 43] of concurrent systems, such meth-
ods are not directly useful for the synthesis of self-stabilization due to several factors.
First, such methods are mostly geared towards synthesizing concurrent systems from
formal specifications in some variant of temporal logic. Second, in the existing param-
eterized synthesis methods the formal specifications are often parameterized in terms
of local liveness properties of individual components (e.g., progress for each process),
whereas convergence is a global liveness property. Third, existing methods often con-
sider the synthesis from a set of initial states that is a proper subset of the state
space rather than the entire state space itself (which is the case for self-stabilization).
With this motivation, our contributions in this paper enable a hybrid method based
on synthesis and theorem proving that enables the generalization of small instances
of self-stabilizing protocols generated by our synthesis tools [17].
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Related work. Kulkarni and Bonakdarpour’s work [34, 35] is the closest to the
proposed approach in this paper. As such, we would like to highlight some differences
between their contributions and ours. First, in [34], the authors focus on mechanical
verification of algorithms for the addition of fault tolerance to concurrent systems in
a high atomicity model where each process can read and write all system variables in
one atomic step. One of the fault tolerance requirements they consider is nonmasking
fault-tolerance, where a nonmasking system guarantees recovery to a set of legitimate
states from states reachable by faults and not necessarily from the entire state space.
Moreover, in [35], Kulkarni and Bonakdarpour investigate the mechanical verification
of algorithms for the addition of multiple levels of fault tolerance in the high atomicity
model. In this paper, our focus is on self-stabilization in distributed systems where
recovery should be provided from any state and high atomicity actions are not feasible.

Methods for the verification of parameterized systems can be classified into the
following major approaches, which do not directly address SS systems. Abstraction
techniques [44, 45, 46] generate a finite-state model of a parameterized system and
then reduce the verification of the parameterized system to the verification of its
finite model. Network invariant approaches [47, 48, 49] find a process that satisfies
the property of interest and is invariant to parallel composition. Logic program
transformations and inductive verification methods [50, 51] encode the verification of
a parameterized system as a constraint logic program and reduce the verification of
the parameterized system to the equivalence of goals in the logic program. In regular
model checking [52, 53], system states are represented by grammars over strings of
arbitrary length, and a protocol is represented by a transducer. Abdulla et al. [54]
also investigate reachability of unsafe states in symmetric timed networks and prove
that it is undecidable to detect livelocks in such networks. Bertrand and Fournier
[55] also focus on the verification of safety properties for parameterized systems with
probabilistic timed processes.

7.2 Conclusions and Future Work
We presented a novel method for the design of self-stabilizing parameterized network
protocols. The proposed method is based on the philosophy of synthesize in small
scale and generalize, which includes two components (see Figure 2.1), namely synthe-
sis of small scale protocols and the proof of their generality. The synthesis component
has been the focus of our previous work [26, 25, 14, 40]. This paper focused on exploit-
ing theorem proving for the generalization of synthesized self-stabilizing protocols that
are correct in a finite scope (i.e., up to a small number of processes). We specifically
presented a mechanical proof for the correctness of the Add_Weak algorithm from [25]
that synthesizes weak convergence. This mechanical proof provides a reusable theory
in PVS for the proof of weakly stabilizing systems in general (irrespective of how they
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have been designed). The success of mechanical proof for a small synthesized protocol
shows the generality of the synthesized solution for arbitrary number of processes. We
have demonstrated the proposed approach in the context of a graph coloring protocol
(Section 5.3) and a binary agreement protocol (Section D.1). Moreover, we presented
a method for mechanical verification of strong convergence and we demonstrated it
for the design of a self-stabilizing sorting algorithm on rings and chains. These case
studies illustrate how the PVS theory developed for weak stabilization can be reused
for the verification of strong stabilization.

We will extend this work by reusing the existing PVS theories for mechanical proof
of a complete backtracking algorithm (introduced in [40]) that synthesizes strongly
stabilizing protocols in a small scope. We expect that the mechanical verification
of this algorithm will greatly facilitate the design of parameterized self-stabilizing
systems. We will also develop algorithms that will automatically generate Verification
Conditions (VCs) from small synthesized solutions towards facilitating the process
of generalization using theorem proving. Such algorithms will enable us to classify
verification conditions into two categories: general and problem-specific. The general
verification conditions specify constraints whose proofs can directly be reused from
one problem to another. Examples of such VCs include the property of closure, where
we must prove that a set of states is closed in a set of transitions. The problem-specific
VCs (e.g., convergence stairs) depend on the problem at hand and should be generated
from the small scale self-stabilizing solutions that the synthesizer generates. The
problem-specific VCs will be used in mechanical proof of convergence (using theorem
provers). In addition to the aforementioned extensions, we will continuously expand
the repository of our case studies to more complicated protocols (e.g., leader election,
maximal matching, consensus) with topologies other than ring or chain.
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Part II

Rigorous Numerical Riemann
Integral In PVS
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Chapter 8
Introduction

Integral calculations of real-valued functions are hard to handle in mechanical proofs.
In this part, we provide formal verification of an abstract algorithm that is used
to approximate definite Riemann Integral. We have verified the soundness of the
algorithm using Prototype Verification System (PVS). The verification yields practical
automated proof strategies to estimate definite Riemann Integral for a large class of
real-valued integrable functions. We illustrate the application of the algorithm and
the proof strategies in the context of continuous functions on R.1

8.1 Preface
There is a vital need of rigorous approximation for Riemann integral in wide range of
applications of life-critical cyber-physical systems. For example, in air traffic manage-
ment systems (Fig 8.1) given the complexity of the trajectories there are increasing
demands for formal verification of real valued integral calculus, which is known to
be a challenging task [6, 56, 57]. For instance, all trigonometric functions in PVS
were constructed using Riemann Integral based on the formalization of arc-tangent
function [6]:

atan(x) =
∫ x

0

1
t2 + 1dt (8.1)

These functions have a central role in air traffic management algorithms [6, 58].
Furthermore, aircraft trajectories are commonly modeled with differential equations
for which Riemann Integral is part of their analytical solutions [6, 59, 58].

1The contribution of this part of the dissertation has become part of NASA PVS standard library,
under the GNU GPL license, copyright(C)Michigan Technological University and Amer Tahat, in-
novation disclosure Tech ID# 1617.00. for Amer Tahat.https://github.com/nasa/pvslib

https://github.com/nasa/pvslib
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Figure 8.1: The complexity of air traffic management systems.2

In the last two decades, there has been a significant development in the me-
chanical formalization and verification of real-valued calculus in various verification
systems [57]. For instance, fundamental analysis libraries for integral calculus were
implemented in several theorem provers such as PVS [6, 60], HOL [61], Coq [62],
Isabelle/HOL [63], and Isabelle/Isar [64]. In his landmark work [6], Butler provided
a comprehensive discussion on the intricacy of the mechanical proofs that involve
integral calculus. Supporting them with many examples of formulas of lengthy me-
chanical proofs of several hundred to a few thousand proof-commands. He spotted
the light on two major reasons that lead to these hurdles in the mechanical proofs,
unlike the manual proofs. First, working on partitions will force lengthy inductive
proofs. Second, using type theory seeking consistency in place of set theory will com-
plicate the formalizations of various functions and generate many proof obligations
in terms of TCCs (type correctness conditions). Due to the same reasons, we found
out that these challenges are inherited in the mechanical proofs of numerical propo-
sitions on Riemann Integral. Thus, it is very commanding to automate these proofs
within a formal verification system. In general, proving a numerical proposition on a
real-valued function mechanically is known to be a challenging task [4, 58, 6]. Thus,
practical approaches that combine computational evaluations within theorem provers
have become very appealing. Recently, Muñoz and Narkawicz (from NASA Langley)
have implemented and verified a rigorous approximation technique for specific type
of functions. For instance, they provided a generic branch-and-bound algorithm to
estimate the maximum and the minimum values of real valued expressions for a large

2The animation is available in the public domain http://www.aviationsystemsdivision.
arc.nasa.gov/research/modeling/facet.shtml. Please see Appendix E for copyright docu-
mentation.

http://www.aviationsystemsdivision.arc.nasa.gov/research/modeling/facet.shtml
http://www.aviationsystemsdivision.arc.nasa.gov/research/modeling/facet.shtml
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scope of functions like trigonometric, exponential, polynomials and their combina-
tions. The verification yields highly sophisticated proof strategies to prove linear and
non-linear inequalities of the form:

x ∈ X⇒ f ∈ F(X) (8.2)

where X ∈ Rn and F is an enclosure method such as interval or affine evaluations
for the function f over the Box X,where a Box is a list of intervals [58]. For a
function f that satisfies the formula 8.2, the formula 8.2 instantiated by f is called the
fundamental inclusion lemma for f . The major proof step in these proof strategies,e.g
numerical, affine-numerical [58, 65], is based on ground evaluation of PVS [65], which
means the numeric evaluations of symbolic expressions in PVS after being instantiated
with concrete values. These proof strategies preserve the soundness of PVS.

Other proof strategies for real valued inequalities which include transcendental
functions do exist in PVS NASA library3, which in fact represents the standard PVS
library. For example, the proof strategy metit [66], unlike interval[4] and numeri-
cal, uses theorem prover MetiTarsky [67] as a trusted oracle and requires an external
arithmetic decision procedure such as Z34 [66]. Another example, is the proof strategy
Bernstein which is based on Bernstein polynomials to approximate the values of mul-
tivariate polynomials in PVS [68]. These proof strategies enable a practical approach
called model animation to validate numerical software implementations against their
formal models [5]. Recently, NASA’s formal methods group has used model animation
in validating software implementations of Detect and Avoid Alerting Logic for Un-
manned Systems (DAIDALUS) algorithms with respect to their formal specifications
[2, 5].
Organization. Section 8.2 provides some basic concepts and results from existing
work. Section 9.1 presents an abstract algorithm for the approximation of Riemann
Integral. Section 9.3 proves the soundness statement of the proposed algorithm.
Section 10.1 discusses the usability of RiemannSum R2I and its soundness statement
in formal proofs of numerical propositions automatically. Section 10.4 presents some
case studies. Finally, Section 11.1 makes concluding remarks and presents some
extensions of this work.

8.2 Preliminaries
In this section, we provide a brief review of the basic concepts and theorems which
we use throughout this part of the dissertation.

3http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library
4The full distribution of the NASA PVS 6.0 Library includes pre-installed binaries of MetiTarski

2.2 and Z3 4.3.1 for Mac OSX 10.7.3 and 64-bits Linux

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library
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Figure 8.2: Riemann integral of the function f(x) from a to b.

8.2.1 Riemann Integral
Riemann Integral was formalized in PVS by Butler [6] based on the definition from
Maxwell Rosenlicht [69]. In the rest of Part II of the dissertation we consider a, b ∈ R
and a < b where a and b are the two endpoints of the integral. We also assume that f
is a univariate real-valued function, which is well defined on the interval X = [|a, b|],
and P is a partition of X of length N + 1 such that P (0) = a, P (N) = b.

Definition 8.2.1. If x′ ∈ [|P (i − 1), P (i)|] then for all i ∈ {1, ..., N} the quantity
f(x′)×(P (i) −P (i− 1)) is called Riemann-section of the i-th subdivision of the par-
tition P . We denote it by Riemann-sec(a,b,f,i).

Definition 8.2.2. The sum of all Riemann-sections of the partition P is called
Riemann-sum of f on [|a, b|]. For instance, Riemann_sum(a,b,f,N)=∑N

1 Riemann-
sec(a,b,f,i).

Observe that in definition 8.2.1 of Riemann-section the quantity (P (i)−P (i− 1))
is called the width of the i-th Riemann section of the partition P of the interval [|a, b|],
and it is denoted by ∆Pi. If ∆Pi is equal to the same constant δ for all i then the
partition is called equal partition of width δ.

Definition 8.2.3. If the limit of Riemann-sum when ∆P (i) approaches 0 -or equiva-
lently when N approaches∞- exists, then this limit is called Definite Riemann Integral
of the function f from a to b, denoted by

∫ b
a f(x)dx.
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Notice that if the limit in definition 8.2.3 exists then the function f is called
integrable over [|a, b|]. Butler [6] proved many fundamental properties of Riemann
Integral in PVS. We represent the following three theorems from [6] since they are
central in our verifications.
Theorem 8.2.1 (Integral Bounds). Let a, b ∈ R such that a < b and f is integrable
on [|a, b|]. If ∀ (x ∈ [|a, b|]): m0 ≤ f(x), and f(x) ≤ M0) then m0 × (b − a) ≤∫ b
a f(x)dx ≤ M0 × (b− a).
Theorem 8.2.2 (Integral Split). Let a, b, c ∈ R such that a < b < c; and let f be
a real-valued function on [|a, c|]. Then f is integrable on [|a, c|] if and only if it is
integrable on both [|a, b|] and [|b, c|], in which case

∫ c
a f(x)dx =

∫ b
a f(x)dx +

∫ c
b f(x)dx.

Theorem 8.2.3. If f is a continuous real-valued function on the interval [|a, b|] then∫ b
a f(x)dx exists.

In the PVS analysis library Theorem 8.2.1 is called integral_bound. It establishes
a lower and an upper bound for the integral given a lower and an upper bound for the
integrand f on a given strict interval [|a, b|]. Furthermore, Theorem (8.2.2) is called
integral_split. It represents one of the fundamental properties of Riemann Integral.
In the rest of this Part II, to keep our terminology consistent with PVS analysis, we
will use the same names and notations which were used in [6]- whenever need be,
unless specified otherwise.

8.2.2 Basics of Interval arithmetic
Interval operations are defined in such a way that guarantees the inclusion of the result
of the correspondence regular arithmetic operation in their output. In particular, the
addition of two intervals X,Y is defined as Add(X,Y) = [|lb(X) + lb(Y ), ub(X) +
ub(Y )|]. Thus, if x∈ X and y ∈ Y , then the inclusion x + y ∈ Add(X,Y ) is
valid. This property is called the fundamental inclusion theorem of interval ad-
dition. The rest of the operations for two intervals X,Y are defined as follows:

X-Y = [|lb(X) - ub(Y), ub(X) - lb(Y)|],
X*Y = [| min{lb(X)lb(Y), lb(X)ub(Y), ub(X)lb(Y), ub(X)ub(Y)},

max{ lb(X)lb(Y), lb(X)ub(Y), ub(X)lb(Y), ub(X)ub(Y)}|],
X/Y = X*[| 1

ub(Y ) ,
1

lb(Y ) |], if lb(y)ub(y) > 0.

In [4] the formalization in PVS of all interval operations and the verifications of all
inclusion theorems for each operation is provided in details. We present the following
inclusion theorem for the four basic interval operations from [4] since it lies at the
heart of our proofs. Observe that, it is assumed that 0 /∈ Y for interval division.
Theorem 8.2.4. If x ∈ X and y ∈ Y then x⊗

y ∈ X ⊗
Y , where ⊗ ∈ {+,-,*,÷}.
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8.3 Problem Statement
In this section we formally state the problem which we inspect its solution in this
part of the dissertation by means of interactive theorem prover PVS(Fig 8.2). Let f
be a real valued integrable function on the strict real valued interval [|a,b|]. Our goal
is to verify univariate real-valued numerical integral proposition of the form

x ∈ [|a, b|]⇒
∫ b

a
fdx ∈ [|α, β|] (8.3)

where α, β are distinct real numbers. Thus the problem takes as its input a real-
valued function f and a closed strict interval X = [|a, b|]. The output of Problem
8.3.1 is either true or false according to the correctness of the input expression.

Problem 8.3.1. Approximate Riemann Integral within a Formal Proof in
PVS

• Input: (1) A real valued function f ; (2) A strict closed interval [|a, b|]; and (3)
An expression IntegExpr of form 8.3.

• Output: True, or False based on the correctness of the input IntegExpr.

8.4 Exemplification
We developed the example 8.4.1 in order to explain the need for a proof strategy
that can handle the proof of an expression of the form 8.3. More intuitively, in this
example we illustrate the complexity of formal mechanical proofs for a proposition
of the form 8.3 versus informal manual proofs. Moreover, we explain the need for
parametric lemmas, theorems, proof strategies, and the ground evaluations of PVS
within the mechanical proof of these expressions. In the example8 8.4.2 we show how
an actual proof strategy can simplify the proof of a similar lemma, however, of the
form 8.2.

8.4.1 Informal Manual Proof
Our7 method to solve problem 8.3.1 is similar in spirit to the work of Muñoz and
Narkawicz [70] which is based on evaluating numerical enclosure functions of the
form 8.2. For instance, we first make a partition, say P , of the interval X = [|a, b|].

8This example was taken from NASA PVS interval_arith lib 6.09. The library includes more
examples of this form.

7We would like to thank Dr. César Muñoz and Dr. Anthony Narkawicz from NASA Langley
formal method group for their valued inputs through out this part.
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Then we use the enclosure function F to calculate an interval approximation of the
function f over each subdivision of P . Then we rely on the enclosure property of
f(x) in F (X) and the linear property of Riemann integral to inductively verify the
inequality. We refer to this strategy by numerical-Riemann.

8.4.2 Mechanical but not Automatic Formal Proof
Example 8.4.1. To show that

∫ 1

0
cos(x)dx ∈ [|0.841, 0.852|] (8.4)

In PVS we prove the following lemma:

Lemma 8.4.1. integral(0, 1, cos) ∈ [|0.841, 0.852|]

The mechanical proof of this lemma in PVS9 can be given as illustrated in List-
ing 8.1. Observe that, in example 8.4.1, to prove lemma 8.4.1 we need to prove
the lemma "integral_bounds_cos" (Line 2) and the lemma "Incl_Member" (Line 12).
Moreover, we need to call an auxiliary function to evaluate the symbolic expression in
PVS with concrete numeric values - namely RiemannSum_r2i. Then we instantiate
them with the valid parameters. Then we use ground evaluations of PVS, ground and
eval-formula [71], to simplify the symbolic formulas and evaluate them over their con-
crete numeric values. Thus, the proof obligation can be discharged by PVS decision
procedure. We emphasize that the function RiemannSum_r2i in this example was
specified for cos function only. The function F_1 is the interval function Cos; which
we use to produce the interval evaluation of the function cos over each subinterval of
a partition of length 2m; where m, here, is 12. The number 2 is used as the depth
of the approximation for the function cos in PVS. Unlike the manual informal proof
8.4.1, the formal proof of the lemma, using the primitive proof rules of PVS only,
is too lengthy. For instance, as it can be seen in appendices A and B, the proof of
lemma 8.4.1 required several hundred line of code and proof command! This was
necessary to complete the proof. Observe that this proof is valid only for the cos
function and x∈[|0,1|]. On the top of this, all concrete instantiations in the proof
are done manually9. Thus, if we modified the lemma 8.4.1 with other parameters,
say [|1, 2|], sin, [| − 1, 1|], then we will need to reprove everything from scratch for
the new parameters. This will inevitably happen despite the fact that the two proofs
are almost identical except that the names of the parameters do differ. The proof
of these lemmas using a copy-paste technique then doing the changes manually will

9Appendix A contains the complete code in PVS
9 Appendix B contains the complete PVS proof scripts
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try the patience of any proof engineer. For these reasons, PVS does provide a power-
ful strategy language [72] that enables the definitions of parametric proof strategies.
Thus, they can be used as proof rules which can show a lemma like 8.4.1 in one line
command as an atomic step rather than rewriting all the proof steps every time we
need it during the verification of the system.

1 Proof:
2 %|− (then (lemma "integral_bounds_cos")
3 %|− (spread (inst −1 "[|0,1|]" "12" "2")
4 %|− ((spread
5 %|− (case "RiemannSum_r2i(lb([|0, 1|]),
6 %|− ub([|0, 1|]),
7 %|− 12,
8 %|− 2 ^ 12,
9 %|− F_1,

10 %|− 2) << [| 0.841,0.852|]")
11 %|− ((spread (case "StrictInterval?([|0,1|])")
12 %|− ((then (assert) (lemma "Incl_Member")
13 %|− (inst −1 " RiemannSum_r2i(0, 1, 12, 2 ^ 12, F_1, 2)"
14 %|− "[|841/1000, 213/250|]")
15 %|− (assert) (inst −1 "integral(0, 1, cos)") (ground))
16 %|− (then (expand 'StrictInterval? '1) (ground))))
17 %|− (then (hide−all−but 1) (eval−formula))))
18 %|− (then (expand 'StrictInterval? '1) (ground)))))
19 %|− QED

Listing 8.1: Mechanical proof of lemma 8.4.1

8.4.3 Automatic Proof Strategy
Example 8.4.2. To show that:

x ∈ [| 0, 8.17 ∗ 10−8 |]) ⇒ -0.0006427443996 ∗ exp(-2.559889987 ∗ (108∗x)) -
0.07600397043 + 0.1443470449 ∗ exp(-4.211001275∗(106∗x)) ∈ [| 0, 0.08 |]

One can use the sophisticated proof strategy interval as follows:

Proof. PROOF (interval) QED.

Interval can handle a large family of problems quite easily. As can be seen in
example 8.4.2, the proof strategy completed the proof without any extra effort from
the user- as one atomic step. In fact, in PVS there are several ways to automate
a proof [72]. For instance, PVS has the capabilities to redefine a list of proof steps
into a proof strategy such that it can be instantiated with the required parameters
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at the top level by the user once and for all. Or it can do the instantiations more
automatically [72, 73]. However, either way, to apply these techniques for "numerical-
Riemann" we will need the development of more generalized mathematical theorems.
In which the variables are of general types. The membership predicates of these types
should guarantee the correctness properties of expressions of the form 8.3.
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Chapter 9
Generic Algorithm to Estimate Riemann
Integral in PVS

9.1 Preview
Using enclosure methods -such as interval arithmetic- to approximate Riemann Inte-
gral in PVS is motivated by the need to provide guaranteed bounds of the integral
within a formal proof assistant. This work extends the results of [3, 74] toward inte-
gral calculus in PVS. However, we designed the algorithm RiemannSum_R2I Listing
9.1 to be generic with respect to the bounding function to estimate Riemann Inte-
gral. In Section 9.2, we illustrate the inputs of RiemannSum_R2I and their types;
furthermore, we provide a full description of this algorithm. In Section 9.3, we show
the soundness statement of the algorithm. Finally, in Section 10.1 we elaborate on
the usability of RiemannSum_R2I and its soundness statement in formal proofs of
numerical propositions of the form (8.3).

9.2 Inputs of the Algorithm and its Formalization
We list the inputs to the algorithm and their types in Table 9.1. Moreover, we provide
the formalization of this algorithm in Listing 9.1. For instance, the variables a and b
represent the two endpoints of the definite integral over the strict interval X = [|a, b|].
The algorithm depends on dividing the given interval X into an equal partition P of
2m subdivisions where m is a positive natural number. The input F is a bounding
function of type EVAL; it gives an interval-estimate of the integrand over a given
interval. If a numerical series expansion is required to define the integrand in PVS
then the parameter n represents the depth of the series expansion (e.g. Taylor series).
However, in the case of exact functions the parameter n can be instantiated by any
natural number. Finally, R of type Riem_sec_r2i, is a function that computes a
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Table 9.1: Inputs and Their Types to RiemannSum_R2I

Input Type
a real
b {x : real|x > a}
m posnat
n nat
F EVAL:[n→ [Interval→ Interval]]
i subrange[1, 2m]
R Riem_sec_r2i:

[real, {x:real|x > a}, posnat, subrange[1,2m], nat, EVAL → Interval]

coarse estimate - but correct- of Riemann-sections over the ith subdivision of the
partition P . The function R is evaluated based on the parameters a, b, m, n, i, and
the bounding function F as follows:

R(a, b,m, i, n, F ) = F (n)([|P (i− 1), P (i)|]) ∗ [|(b− a)/2m|] (9.1)

The algorithm adds the outputs of R from 1 to 2m recursively. The sum is an interval
which will bound the required integral. The formalization of the algorithm in higher
order logic of PVS is given by the function RiemannSum_R2I of type Interval Listing
9.1. From now on, in this Part II, we refer to the algorithm by name of this function.

1 RiemannSum_R2I(a: real, b: {x: real | a < x}, m: posnat,
2 i: subrange[1, 2 ^ m], n: nat,
3 F: [nat −> [Interval −> Interval]],
4 R: Riem_sec_r2i): RECURSIVE
5 Interval =
6 IF i = 1 THEN R(a, b, m, 1, n, F)
7 ELSE Add(R(a, b, m, i, n, F),
8 RiemannSum_R2I(a, b, m, i − 1, n, F, R))
9 ENDIF

10 MEASURE i

Listing 9.1: Generic algorithm to Estimate Riemann Integral

9.3 Soundness of the Algorithm
In order to use RiemannSum_R2I in the proof of any formula such as (8.3), the
algorithm must satisfy a safety property. That is required to ensure the inclusion of
the given definite Riemann Integral in the output of RiemannSum_R2I. Moreover,
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Table 9.2: Major declarations and formulas in the proof of the
soundness theorem of RiemannSum_R2I

Names in PVS description
Eval VAR EVAL
F_Bound?(X,f,n,Eval) predicate ∀ (x ∈ X): f(x) ∈ Eval(n)(X)
integ_inclus_fun?(a,b,n,f,Eval) predicate integrable? ∧

∃ Eval: F_Bound?
integ_inclusion_fun Type+ {f|∀(a,b,n): integ_inclus_fun?}
g VAR integ_inclusion_fun
sum_n_split function sum of integral(P(i - 1),P(i),g)
general_integ_split1 Theorem(9.3.2)
Fundamental_Riemann_inclusion1 Theorem(9.3.3)
Simple_Riemann_Soundness Soundness Theorem(9.3.1)

the integrand function f needs to pass two specific conditions. First, integrability,
i.e., it must be integrable on X = [|a, b|]. Second, inclusion isotonicity, which means,
it must have a bounding function Eval of type EVAl such that if x ∈ [|a, b|] then
f(x) ∈ Eval(n)([|a, b|]) for some natural number n. In Table 9.2 we list a summary
of the variables, functions, predicates, types, key lemmas and major theorems that
were used for the proof of the soundness property of the algorithm. For instance, in
PVS the integrability condition is formalized by the predict integrable?(a, b, f) [6].
We formalized the inclusion property by an existential quantifier on the predicate
F_Bound?(X, f, n, Eval). We called the type of the functions that satisfy these two
conditions integ_inclusion_fun. To keep the consistency of the proof, we showed that
this type is non-empty, particularly, it contains the function cos. Thus, we formalized
the soundness property of the algorithm for a strict interval X = [|a, b|] and a function
g of type integ_inclusion_fun as follows:

Theorem 9.3.1 (Soundness Theorem).
integral(a,b,g) ∈ RiemannSum_R2I(a,b,m,2m,n,Eval,R)

Although the formalization of the RiemannSum_R2I in PVS higher order logic
was not hard (Listing 9.1), it was significantly difficult to mechanically prove the cor-
rectness statement of this algorithm. Precisely, the proof of Theorem (9.3.1) required
16 lemmas. The size of the proof script was about 941 steps, including the proof
commands of the generated TCCs and the proof commands of all these lemmas. Due
to space constraints, we present a proof sketch that includes the key lemmas and
theorems that were pivotal to complete the formal proof of Theorem(9.3.1).1

1Appendix C displays the full proof scripts of the soundness theorem and its TCCs.
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9.3.1 Proof Sketch
The proof is based on the fact that for any subdivision [|P (i − 1), P (i)|] of the equal
partition P , if x ∈[|P (i− 1), P (i)|] then f(x)∈ Eval(n)([|P (i− 1), P (i)|]). This property
is guaranteed by the type of the integrand f . Thus by integ_bound Theorem(8.2.1) we
can get an interval that is guaranteed to bound the integral ∫ P (i)

P (i−1) f(x)dx . This can be
done by substituting the lower and the upper bounds of the interval Eval(n)([|P (i −
1), P (i)|]) for m0 and M0 respectively. Observe that P includes 2m subdivisions of
equal widths hence ∆P (i)= (b−a)

2m . The interval bound from the Theorem (8.2.1) will
be equal to R(a, b,m, i, n, Eval). For instance, we have proved the following key
lemma in PVS.

Lemma 9.3.1.
∫ P (i)
P (i−1) f(x)dx ∈ R(a, b,m, i, n, Eval).

Then the proof proceeds by using induction twice. First, it is necessary to use
induction to show that the sum of the sub-integrals ∫ P (i)

P (i−1) f(x)dx for i from 1 to
2m is equal to ∫ b

a f(x)dx, which is a generalization to theorem integ_split Theorem
(8.2.2), where we formalize the required sum as follows:

1 sum_n_split(a:real, b: {x: real | a < x},m: nat,i: subrange[1, 2
^ m],

2 g: Integ_Inclusion_fun): RECURSIVE
3 real =
4 LET P = eq_partition(a, b, 2 ^ m + 1) IN
5 IF i = 1
6 THEN integral(P(0),P(1),g)
7 ELSE integral(P(i − 1),P(i),g)+ sum_n_split(a, b, m, i − 1, g

)
8 ENDIF
9 MEASURE i

Listing 9.2: PVS formalization of the sum of the sub-integrals over
a partition P of length 2m.

Thus, we formally have verified this theorem in PVS. Listing 9.3 includes the
formal specification of the key inductive lemma to show Theorem 9.3.2 in PVS.

1 general_integ_split:THEOREM
2 a < b IMPLIES
3 LET P = eq_partition(a, b, 2 ^ m + 1) IN
4 FORALL (i: subrange(1, 2 ^ m)):
5 integral(P(0),P(i),g)= sum_n_split(a, b, m, i, g)

Listing 9.3: PVS formalization of Theorem 9.3.2.
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Theorem 9.3.2. integral(a, b,g) = sum_n_split(a, b,m, 2m,g)

Second, we apply induction to show that the sum of the sub-integrals over the
partition P is included in the output of the algorithm RiemannSum_R2I.

Theorem 9.3.3 (Inclusion Theorem).
sum_n_split(a, b,m, i,g)∈ RiemannSum_R2I(a, b,m, i, n, Eval, R)

Then the proof of this theorem follows by applying interval arithmetic fundamental
theorems of inclusion for addition and multiplication i.e., Theorem 8.2.4. Listing 9.4
shows its representation in PVS.

1 Fundamental_Riemann_inclusion: THEOREM
2 LET P = eq_partition(lb(X), ub(X), 2 ^ m + 1) IN
3 (FORALL (i: subrange(1, 2 ^ m)):
4 (FORALL (Eval:
5 {F: [nat −> [Interval −> Interval]] |
6 FORALL (i: subrange(1, 2 ^ m)):
7 F_Bound?([|P(i − 1), P(i)|],
8 g,
9 n,

10 F)}):
11 sum_n_split(lb(X), ub(X), m, i, g) ##
12 RiemannSum_R2I(lb(X), ub(X), m, i, n, Eval, R)))

Listing 9.4: PVS formalization of Theorem 9.3.3.

Finally, by substituting 2m into i in the inclusion Theorem 9.3.3 and by using Theorem
9.3.2 we complete the proof of the main soundness Theorem 9.3.1. We specify this
theorem in PVS as given in Listing 9.5 and 9.6 respectively:

1 Simple_Riemann_Soundness: THEOREM
2 LET P = eq_partition(lb(X), ub(X), 2 ^ m + 1) IN
3 (FORALL (Eval:
4 {F: [nat −> [Interval −> Interval]] |
5 FORALL (i: subrange(1, 2 ^ m)):
6 F_Bound?([|P(i − 1),P(i)|],
7 g,
8 n,
9 F)}):

10 integral(lb(X), ub(X), g) ##
11 RiemannSum_R2I(lb(X), ub(X), m, 2 ^ m, n, Eval, R))

Listing 9.5: PVS formalization of the soundness theorem .



Chapter 9. Generic Algorithm to Estimate Riemann Integral in PVS 69

928 Riemann_integ_interval_approx.Simple_Riemann_Soundness: proved−
complete

930 (""
931 (skosimp*)
932 (assert)
933 (skosimp*)
934 (lemma "Fundamental_Riemann_inclusion1")
935 (inst?)
936 (inst −1 "X!1" "g!1" "n!1")
937 (assert)
938 (inst −1 "2^m!1")
939 (inst −1 "Eval!1")
940 (case "integral(lb(X!1), ub(X!1), g!1) = sum_n_split(lb(X!1),

ub(X1), m!1, 2 ^ m!1,g!1)")
941 (("1" (rewrite −1)) ("2" (lemma "general_integ_split1") (inst?)

)))

Listing 9.6: Sample of the mechanical proof of the soundness
theorem Appendix C.

9.3.2 Why the Mechanical Proofs are too Lengthy.
In [6] Butler provided an in depth discussion to the complexity of the mechanical
proofs for integral calculus in PVS. In particular, he gave theorem (8.2.2) integ_split
as an example in which the mechanical proof required 4000 proof commands. He
explained that it was the most difficult theorem to prove in the formalizations of
integral calculus library. He emphasized two major reasons for that. For instance,
using partitions will force lengthy inductive proofs. Moreover, using type theory
will lead to several complications in the formalizations of many functions leading to
many proof obligations in terms of TCCs. Then he provided a very helpful lemma
to simplify proofs that include partitions; namely parts_order Listing 9.7(Line 667).
Similarly, any proof to any property that is correct for a partition will need induction.
We illustrate this in our formalization by an example of an inductive proof of theorem
general_split Listing 9.7 as follows:

Example 9.3.1. The informal representation of an equal-partition P1 of an interval
[|a, b|] in a manual proof will be simple as follows:

Let P1:a=x0<x1<...<xn−1=b be an equal-partition of [|a, b|]

However, in a formal proof of PVS the type of the function eq_partition P1 is a
finite sequence, which does not inform PVS about the order of its elements. Thus, by
expanding the definition of eq_partition (Line 673) there will be an obligation, labeled
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by "4" (Line 674), to show that xi−1<xi for all i < P ‘length. We prove it by means
of lemma parts_order and induction (Lines 675–677).

Indeed, the generalized version of integ_split i.e Theorem 9.3.2 is the longest part
of the proof of the soundness theorem in our formalization with roughly 760 proof
command. The same reasons apply to Theorem 9.3.3 as well.

664 "1")
665 (("1" (expand "integ_inclus_fun?") (assert))
666 ("2"
667 (lemma "parts_order")
668 (expand 'strictinterval? '1)
669 (inst −1 "a!1" "b!1" "eq_partition(a!1,b!1,1+2^m!1)" "k!1"
670 "1+k!1")
671 (("1" (assert) (ground) (expand "P_1") (propax))
672 ("2" (expand 'eq_partition '1) (field 1))
673 ("3" (expand 'eq_partition '1) (field 1))))))
674 ("4"
675 (lemma "parts_order")
676 (inst −1 "a!1" "b!1" "eq_partition(a!1,b!1,1+2^m!1)" "k!1"
677 "1+k!1")

Listing 9.7: Sample from the proof of generl_split_integ Theorem
9.3.2.
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Chapter 10
Automation

10.1 Preview
It is worth mentioning that before we implemented the soundness Theorem 9.3.1 we
had proved mechanically but not automatically a few numerical propositions of the
form (8.3) such as ∫ 1

0 cos(x)dx ∈ [|0.8414, 0.8417|]. The proofs were very similar in their
structure but they differ only in the names of the integrands and the ends points of
the integrals. Using copy/paste technique is impractical and it will try the patience of
any proof engineer. In this section, we illustrate how to use RiemannSum_R2I algo-
rithm and the soundness theorem in order to develop automated proof strategies that
significantly help proving propositions of form (8.3). In particular, in Section 10.2,
we present a general automation method. In Section 10.3, we explain an implemen-
tation for this method in the context of real valued continuous functions. We call the
implemented proof strategy conts-numerical-Riemann. In Sections 10.4.1 and 10.4.2
we provide two case studies to illustrate the usability of the strategy conts-numerical-
Riemann.

10.2 General Method
We provide a general automation method based on Algorithm RiemannSum_R2I
and the soundness Theorem 9.3.1 to prove numerical properties of form (8.3). The
method has seven steps as follows.

1. Claim soundness Theorem 9.3.1 is correct for the given instantiations.

2. PVS will require proving the claim and one TCC with 2 subgoals:

• integrable?(a,b,f).
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• ∃ Eval:F_Bound?(a,b,f,n,Eval).

3. Claim that RiemannSum_R2I << [|α, β|].

4. Use eval-formula to prove the claim in Step 3.

5. If Step 4 succeeded then prove the two TCC’s subgoals.

6. If Step 5 succeeded, the proof is complete.

7. If Step 5 or 4 failed then exit.

In other words, this means if the claim in Step 3 is provable, then proving the
formula depends only on proving the correctness of the TCC’s subgoals. If a user
was able to discharge the TCC but the method failed, then it is inevitable that the
inclusion in Step 3 is not valid, hence the user may consider increasing the parameters
m (or/and) n to enhance the accuracy of the approximation. Steps 1,3 and 4 in the
general method would be a routine. In particular, in Listing 10.1 we present a proof
strategy called Eval-step that considerably automates these steps.

1 (defstep eval−step ()
2 (spread (invoke (case "%1 << %2") (! −1 2) (! 1 2))
3 (
4 (then
5 (lemma "Incl_Member")
6 (invoke (inst −1 "%1" "%2") (! −2 1) (! −2 2))
7 (assert)
8 (invoke (inst −1 "%1") (! −3 1))
9 (ground))

10 (then (hide−all−but 1) (eval−formula)) ) ) "" "" )

Listing 10.1: Eval-step automates Steps 1–4 in the general proof
strategy.

For example, Line 2 will invoke Step 3 in the general method. For instance, it will
generate the command:

1 (case "RiemannSum_R2I << [|α,β|]" )

Listing 10.2: The result of applying Line 2 of Eval-step Listing
10.1.

Whereas, Line 10 the strategy (eval-formula) will capture Step 4 of the general
method. The %1,%2 (Lines 2,6,8) are descriptor variables in PVS common manipula-
tions strategy package [75], they will capture strings of the appropriate instantiation.
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Table 10.1: Parameters of conts-numerical-Riemann

Parameter An Instantiation Usability
Eval Cos a bounding function to the integrand
inclusion_lemma Cos_inclusion a lemma to prove F_bound? TCC
cont_lemma cos_cont_fun a lemma to prove the continuity TCC
[|a, b|] [|0, 1|] the end points of the integral
f cos the integrand
m 12 2m is the number of subdivisions
n 2 expansion depth

We design the instantiation in this example to be recognized by PVS automatically
based on the PVS location determinations strategies. In particular, in Listing 10.1
Line 2, the command (inst -1 "%1" "%2") (! -2 1) (! -2 2) will instantiate %1 with
the first term of formula -2 with respect to << (shown in Listing 10.2). Thus %1
will capture RiemannSum_R2I. Similarly, (! -2 2) will command %2 to capture the
string [|α, β|] in formula -2.
However, it is more challenging to mechanize Step 5, because there are several heuris-
tics to prove the required subgoals in this step. Nevertheless, in Section 10.3, we show
that Step 5 can be automated for a large class of functions.

10.3 Novel Strategy: conts-numerical-Riemann
In this section, we present an implementation of the general method in the context
of continuous functions over R. For instance, conts-numerical-Riemann is a proof
strategy that implements the general method and automatically uses Theorem 8.2.3 in
order to prove the integrability of the integrand f . In Table 10.1 we list the parameters
of conts-numerical-Riemann and we give an example of a possible instantiation for
each one.
To use conts-numerical-Riemann for the resolution of a numerical query, one has to
prove cont-lemma and inclusion-lemma, then the proof will follow automatically. For
example, to resolve the proposition ∫ 1

0 cos(x)dx ∈ [|0.8414, 0.8417|] we can now verify
it in one proof command as follows.

cos_test1:LEMMA integral(0,1,cos) ## [|0.8414 , 0.8417|]
PROOF cos_test:

(conts−numerical−Riemann ("Cos") Cos_inclusion cos_cont_fun
"[|0,1|]" "cos" "12" "2")

QED
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10.3.1 Generic Design

1 expcos:[real−>real]= exp*cos

3 ExpCos(n)(Y):Interval = Mult(Exp(n)(Y),Cos(n)(Y))

5 expcos_cont_fun :lemma continuous?(expcos)

7 PROOF:
8 (expand "expcos") (cont−prod exp_continuous cos_cont_fun)
9 QED

11 ExpCos_inclusion:lemma x ## Y IMPLIES expcos(x) ## ExpCos(n)(Y)

13 expcos_test1:LEMMA integral(0,1,expcos) ## [|1.377, 1.379|]

15 PROOF: (conts−numerical−Riemann ("ExpCos") ExpCos_inclusion
expcos_cont_fun "[|0,1|]" "expcos" "12" "2") QED

Listing 10.3: conts-numerical-Riemann when the integrand is a
combinations of continuous functions

Observe that the proof of Theorem 9.3.1 has the advantage that it is sound for any
valid instantiation of the parameter Eval. Thus, we can use any bounding function for
the variable F in RiemannSum_R2I (Line 3 listing 9.1 for the integrand based on any
inclusion method. For example, in conts-numerical-Riemann since the integrand f is
a continuous function on R then it is continuous and bounded on any closed interval
[|a, b|]. Thus, the bounding functions can be defined based on a case analysis of the
analytical behavior for these functions i.e where they are decreasing or increasing.
In Section 10.4.1 and 10.4.2, we illustrate this feature using two case studies. The
first case depends on Taylor expansion to define the bounding function. Whereas the
second case depends only on direct analysis to the integrand.

10.4 Case Studies

10.4.1 Elementary functions and reusable strategies
The PVS NASA library includes the continuity lemmas on R and the inclusion lem-
mas verified already for some elementary functions such as sin,cos, and exp. Since
the basic operations (+,-,×, safe ÷) on continuous functions generate a continuous
function, then -with minimal human efforts- we can apply the strategy when the in-
tegrand is a continuous combination of these functions on R. For example, if the
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integrand is the multiplications of exp and cos Listing 10.3(Line 1), we can simply
prove the continuity and the inclusion theorems of the multiplication (Lines 3,5 and
11). Thus, we can apply conts-numerical-Rieamnn on the function exp×cos -as illus-
trated in Listing 10.3 (Lines 13 and 15). In general, the strategy applies regardless
of whether the integrand’s anti-derivative has a known representation by means of
elementary functions or not.

10.4.1.1 cont-prod.

To help the user to discharge the continuity lemma in Listing 10.3, we developed a
simple strategy to prove that the product of two continuous functions is continuous;
we called it cont-prod Listing 10.4. This strategy has two main steps (cont-mult)
and (lemma-conts-step) Listing 10.4 (Lines 2,5–6), also it requires the continuity
lemmas of the two functions to be provided as parameters (Line 1). Subsequently,
the first step (mult-cont)Listing 10.5(Lines 1–7) shows if two given functions are
continuous then their multiplication is continuous, based on theorem "prod_cont_fun"
from PVS library Listing 10.5 (Line 3). However, it does not complete the proof when
it captures the two functions directly! Particularly, PVS will generate two TCCs
for these functions to check the correctness of their continuity, but (mult-cont) will
postpone this obligation Listing 10.5 (Line 7).

1 (defstep cont−prod (lemma1 lemma2 )
2 (then (cont−mult)
3 (assert)
4 (spread (split)
5 ((lemma−conts−step lemma1)
6 (lemma−conts−step lemma2)))) " " "" )

Listing 10.4: Automatic strategy to show the product of two
continuous function is continuous.

The second, step (lemma-conts-step) Listing 10.5 (Lines 10–12) tells PVS how to
discharge this goal for each function using the parameters lemmas provided in ( Line
1). The user can use a proved lemma of PVS, or they can develop new ones- in case
PVS does not have them already as explained in Listing 10.3 (Line 5). cont-prod can
also be used recursively to show that the product of a finite number of continuous
functions is continuous. We mention it here since it can be used as a template to
define similar proof strategies for other operations over continuous functions. In [73]
the author developed a strategy to check the continuity of a specific class of transcen-
dental functions in PVS, but, unfortunately, their strategy is not supported in the
current PVS library. Moreover, their approach depends on formalizing appropriate
judgements to get the appropriate instantiations in their strategy. By contrast, we
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designed the strategy cont-prod based on the powerful manipulation package of PVS
[75, 72], which allows the instantiations depending on pattern matching and location
determinations strategies of PVS. For instance, in Listing 10.5 (Lines 4) the command
(inst -1 "%1" "%2") (? 1 "continuous?(%1*%2) ")) will instantiate the lemma in Line
3 with two functions that are captured by the descriptors %1,%2. We designed the
descriptors to capture the strings that match the pattern continuous?(%1*%2) which
appears in the first formula of the current goal "i.e., formula number 1". For example,
if the goal was to prove that continuous?(exp*cos) as in Listing 10.3 (Line 5), then
%1 will capture exp while %2 will capture cos.

1 (defstep cont−mult ()
2 (spread
3 (then (lemma "prod_cont_fun")
4 (invoke (inst −1 "%1" "%2") (? 1 "continuous?(%1*%2) "))
5 (invoke (case "continuous?(%1) and continuous?(%2)")
6 (? 1 "continuous?(%1*%2)")))
7 ((assert) (postpone))) """")

10 (defstep lemma−conts−step (lemma1)
11 ( let ( ( fun1−cont (list `lemma lemma1)))
12 (then fun1−cont )) "" "" )

Listing 10.5: Auxiliary steps of cont-prod Listing 10.4.

10.4.1.2 conts-integ-[real]

1 (defstep conts−integ−[real] (lemma1)
2 (then
3 (then (lemma "fundamental_indef[real]")
4 (invoke (inst −1 "%1" "%2" "%3")
5 (? 1 "integrable?[real](%1,%2,%3 )")))
6 (let ((lemma−step (list `lemma lemma1)))
7 (then lemma−step (propax) (assert) (expand `connected? `1)
8 (propax)))
9 (invoke (inst −1 "%1" "%2" "%3") (? 1 "integrable?[real](%1,%2,%3

)"))
10 (expand "Integrable?" −1) (propax)) "" "")

Listing 10.6: Automatic strategy to show that every continuous
function on R is integrable.

Now we illustrate how conts-numerical-Riemann uses Theorem 8.2.3 of Butler to dis-
charge the integrability property. We continue using expcos as the running example.
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In particular, we define the strategy conts-integ-[real] Listing 10.6 with a lemma pa-
rameter (Line 1). This lemma is the continuity lemma of the given function. In
our running example, this was proved by means of the strategy cont-prod for the
function expcos. In Line 3 the strategy uses a fundamental theory from analysis li-
brary of PVS, particularly (lemma "fundamental_indef[real]") (i.e., Theorem 8.2.3).
Then the command (invoke (inst -1 "%1" "%2" "%3") will instantiate the lemma from
the current goal using pattern matching of PVS. For instance, in the formula inte-
gral(0,1,expcos) ## [|1.377, 1.379|] Listing 10.3 (Line 13) PVS will generate the goal
integrable?[real](0,1,expcos). Thus, the command (? 1 "integrable?[real](%1,%2,%3
)"))) will force %1 to capture 0, %2 to capture 1, and %3 to capture expcos. Hence,
cont-integ-[real] will apply the lemma and thus discharge the current goal, where ##
is a macro for ∈ in PVS NASA Interval_arith library.

10.4.2 atan
There are many real-valued functions of significant applications that are defined in
terms of Riemann Integral. For example, the atan(x) =

∫ x
0

1
t2+1dt, Fresnel function

S(x)=
∫ x

0 sin −πt22 dt, and Error function erf(x)= 2
sqrt(π)

∫ x
0 exp (−t2)dt. In this section,

we provide a case study on atan function to illustrate how conts-numerical-Riemann
can facilitate approximating the values of these functions at a certain point within
a formal proof of an expression of the form (8.3). The atan function is defined in
the PVS library as illustrated in equation(8.1). Its values over a given interval are
approximated using Taylor series expansions and interval arithmetic in PVS[4]. The
strategy conts-numerical-Riemann allows the approximation of atan at a certain point
without the need of Taylor expansions, Listing 10.7 explains the formalization in PVS.

1 atan_deriv_fun(x:real):real = 1/(1+x*x)

3 atan_deriv_fun_bounds:lemma 0 < atan_deriv_fun(x) and
atan_deriv_fun(x) <= 1

5 atan_deriv_strict_decreasing: lemma forall (x1,x2:{x0:real | 0 < x0
}): x1 < x2 implies atan_deriv_fun(x2) < atan_deriv_fun(x1)

7 atan_deriv_strict_increasing: lemma forall (x1,x2:{x0:real | 0 > x0
}): x1 < x2 implies atan_deriv_fun(x2) > atan_deriv_fun(x1)

9 atan_deriv_cont:lemma continuous?[real](atan_deriv_fun)

Listing 10.7: atan_deriv_fun: definition, analytical behavior, and
continuity
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For instance, we define the integrand atan_deriv_fun Listing 10.7 (Line 1). Then we
prove the lemma atan_deriv_cont Listing 10.7 (Line 9), which states the continuity
of atan_deriv_fun on R. Moreover, based on case analysis of the behavior of the
atan_deriv_fun provided in Listing 10.7 (Lines 3, 5 and 7) we defined a bounding
function of atan_deriv_fun, and we called it Atan_Deriv (Lines 1–6 Listing 10.8 ).

1 Atan_Deriv(n)(Y):Interval = COND

3 0 < lb(Y) and 0 < ub(Y) and lb(Y)<ub(Y) −> [|1/(1+ub(Y)*ub(Y))
,1/(1+lb(Y)*lb(Y))|],

4 ub(Y) < 0 and lb(Y) < 0 and lb(Y)<ub(Y) −> [|1/(1+lb(Y)*lb(Y))
,1/(1+ub(Y)*ub(Y))|],

5 lb(Y)=ub(Y) −> [|0,1|],
6 else −> [|min(atan_deriv_fun(lb(Y)),atan_deriv_fun(ub(Y))),1|]

ENDCOND

8 Atan_Deriv_inclusion: lemma x ## Y IMPLIES atan_deriv_fun(x) ##
Atan_Deriv(n)(Y)

Listing 10.8: Atan_Deriv a bounding function of atan_deriv_fun

Then we proved the lemma Atan_Deriv_inclusion which shows that atan_deriv_fun
is bounded by Atan_Deriv over its domain as explained in Listing 10.8(Line 8).
Observe that this bounding method does not depend on Taylor expansion thus the
value of n in the strategy conts-numerical-Riemann can be instantiated by any natural
number. The continuity and the inclusion lemmas enable us to verify guaranteed
bounds for atan automatically at different given points as illustrated in Listing 10.9
and table 10.2.

1 atan_approx_at_1_on_230: lemma integral(0,1/230, atan_deriv_fun)
## [|0.00434779868, 0.004347798699 |]

3 PROOF atan_approx_at_1_on_230:
4 conts−numerical−Riemann ("Atan_Deriv") Atan_Deriv_inclusion

atan_deriv_cont "[|0,1/230|]" "atan_deriv_fun" "12" "2") QED

6 atan_approx_at_1_on_30: lemma integral(0,1/30, atan_deriv_fun) ##
[|0.03320997, 0.03333 |]

8 PROOF atan_approx_at_1_on_30:
9 (conts−numerical−Riemann ("Atan_Deriv") Atan_Deriv_inclusion

atan_deriv_cont "[|0,1/30|]" "atan_deriv_fun" "13" "2") QED

Listing 10.9: Using conts-numerical-Riemann to estimate atan(x)
at x=1/230, and x=1/30
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Table 10.2: atan(x)=
∫ x

0
1

t2+1dt, with different values of x.

x 2m Lower bound upper bound v ∆ run-time
1

239 213 0.0041840759971 0.004184076007 1× 10−12 2.78s
1

230 213 0.00434779868 0.004347798696 1.6× 10−11 3.15s
1
30 213 0.0332099587 0.0332099819 2.5× 10−10 3.19s
1
5 213 0.19739509 0.1973960299 9.3× 10−7 2.24s
1 213 0.7853 0.7855 2× 10−4 2.93s

Table 10.3: Estimating atan(89) =
∫ 89

0
1

t2+1dt in PVSio using Rie-
mannSum_R2I with different numbers of subdivisions 2m.

2m Lower bound upper bound width of estimation run-time
212 1.548698 1.5704237 3× 10−2 0.6778s
213 1.5541294 1.5649923 1× 10−2 3.112s
214 1.5571195 1.5620022 5× 10−3 7.240s
215 1.5583402 1.5607815 2× 10−3 15.399s
216 1.5589505 1.5601711 1× 10−3 50.262s

To reduce the effect of the well known phenomenon of dependency effects of interval
arithmetic [76, 77] on the estimation,we designed conts-numerical-Riemann to be
configurable - but at the expense of the time- to these effects by permitting the
user to modify the parameter m as much as the resources allow. For instance, as
illustrated in Table 10.2 the longer the interval is the less accurate the estimation is.
Where 2m is the number of subdivisions, ∆ is the width of the given interval, and
CPU runtime is the time to prove the inclusion of atan in the given intervals using
conts-numerical-Riemann. Enhancing the accuracy by increasing m will increase the
time.

Table 10.3 provides the time, the number of subdivisions and the accuracy for
the case of atan function where t ∈ [|0, 89|]. Enhancing the accuracy by increasing
m will increase the time. Table 10.3 provides the time, the number of subdivisions
and the accuracy for the case of atan function where t ∈ [|0, 89|]. The experimental
results were conducted by using a regular Linux machine of core i7 Intel processor and
7.6 GiB RAM. It is important to distinguish between the computations we do here
within PVS and the computations that are done by regular computation tools such as
mathematica and matlap. Specifically, the computations that are done within a PVS
lemma (e.g., see Section 10.4.3) do run a proof script; which improves their reliability.
Moreover, PVSio uses the concept of semantic attachment [5] which guarantees the



Chapter 10. Automation 81

correctness of the computations for a given function up to certain precision each time
the function is called. This technique performs way more reliably than regular floating
point arithmetic. In addition to these two major differences, RiemannSum_R2I has
the approximation method for the integrand (if it was not an exact function) as a
parameter. Thus, RiemannSum_R2I is appropriate to compare the efficiency and the
performance of different approximation methods regardless to whether the algorithm
has a known anti-derivative or not. Finally, the number of subdivisions is a parameter
as well, thus the accumulated accuracy can be improved following to the user needs.

10.4.3 More Examples
In this section we provide more practical examples on the use of conts-numerical for
different functions and parameters.

cos_test5:LEMMA integral(0,1/230,cos) ## [|0.00434781236,0
.00434781241|]

%|− cos_test5 : PROOF
%|− (conts−numerical−Riemann ("Cos") Cos_inclusion cos_cont_fun
%|− "[|0,1/230|]" "cos" "13" "7") QED

sin_test1:LEMMA integral(0,1.4142135,sin) ## [|0.843 , 0.8449|]%
use rational approx− for irrational values: example sqrt(2)~1
.4142135.

%|− sin_test1 : PROOF
%|− (conts−numerical−Riemann ("Sin") Sin_inclusion sin_cont_fun
%|− "[|0, 1.4142135|]" "sin" "12" "3") QED

sin_test:LEMMA integral(0,1/30,sin) ## [|0.000555 , 0.000556|]
%|− sin_test : PROOF
%|− (conts−numerical−Riemann ("Sin") Sin_inclusion sin_cont_fun
%|− "[|0,1/30|]" "sin" "13" "4") QED

sin_test4:LEMMA integral(−1.5,1,sin) ## [|−0.474 , −0.468|]
%|− sin_test4 : PROOF
%|− (conts−numerical−Riemann ("Sin") Sin_inclusion sin_cont_fun
%|− "[|−1.5, 1|]" "sin" "12" "2") QED

exp_test3:LEMMA integral(0,3,exp) ## [|19.0 , 19.1|]
%|− exp_test3 : PROOF
%|− (conts−numerical−Riemann ("Exp") Exp_inclusion exp_continuous

"[|0,3|]"
%|− "exp" "12" "3") QED
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Chapter 11
Conclusions

11.1 Contributions of Part II

Riemann Integral is one of the most preeminent tools in modern calculus given its
wide range of applications. Using interval arithmetic to approximate Riemann In-
tegral has been in use for long time in many computational systems [78]. PVS is a
verification system that has one of the largest and most complete formally verified
interval_arithmetic libraries [3]. This part of the dissertation extends the proposed
verification method in [3] into integral calculus. However, it is based on a formally
verified implementation of a generic algorithm that can be instantiated with different
bounding functions. We explained how to implement practical and reusable auto-
mated proof strategies to verify expressions of the form (8.3) depending on the proofs
of simple properties of the integrand1. Furthermore, the general automation method
presented in this part can help to approximate the values of many special functions in
PVS that are defined using Riemann Integral. We summaries our major contributions
in Table 11.1 and Table 11.2.

11.2 Discussions and Future Research

The need for Riemann integral calculations often arise in mission-critical cyber-
physical systems such as the integration of Unmanned Systems (UAS) in NAS (Na-
tional Aero-space System) in aeronautics [2], calculating trajectories of a ballistic
missile or a spacecraft [1]. Particularly, it is very useful in solving the related differ-
ential equations. We are exploring several expansions to our results:

1Please visit https://github.com/nasa/pvslib for full specifications in PVS strategy language

https://github.com/nasa/pvslib
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Table 11.1: Cost of the Proof of major results of Part II.

Lemmas/Theorems Mechanical Automatic
general_split 760
Fundamental Riemann 809
Inclusion
Soundness Theorem 940
cos_test lemma 1300
10 test_lemmas 10 proof
(atan, cos, sin, exp, exp∗cos) commands

Table 11.2: Major automatic proof strategies that are required to
define conts-numerical-Riemann and their functionalities.

Main Strategies Functionality
Eval_step Numerical evaluation step to Rie-

mannSound_R2I.
cont-prod Product of two continuous functions is con-

tinuous -a template for other operations.
conts-Integ continuous? is integrable?

Func-inclusion Inclusion isotonicity
soundness Applies soundness theorem continuity, inclu-

sion, without the Eval-step.
conts-numerical-Riemann The unified strategy that applies all of the

above for numerical propositions.

1. The development of automated proof strategies for other types of integrable
functions, such as discontinuous but integrable functions.

2. The evolution of PVS packages to formalize rigorous approximations for many
special functions.

3. The expansion of this work toward multi-variable integrals.

4. To overcome time limitation for long intervals and expressions we are studying
distributed framework for high-precision calculations of numerical queries of
form 8.3 within a formal proof.
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Finally we shade a light on two important motivations that prompt the future exten-
sions, namely:

• The calculations which are computed by PVS’s ground evaluator provide more
accurate results than regular floating point arithmetic. Thus more reliability
for the design and the verification of critical systems that involve Riemann
Integrations.

• The automatic proof strategy we developed conts-numerical-Riemann cuts the
verifications time and human efforts significantly for unaccountably large family
of functions. Particularly, from roughly a thousand proof step to almost one
line proof command. An experience that is very appealing to be applied on
other types of functions. For instance, multi-variable integrable functions.

Since Riemann Integral is one of the most preeminent computational tools in modern
calculus, we choose to finish the dissertation with our major results of Part II. As
they have enabled automatic numerical computations for Riemann Integral within
a formal rigorous proof in the widely used state-of-the-art ultra-reliable interactive
verification system PVS.
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Appendix A
PVS Code ∫1

0 cos(x) ∈ [|0.841, 0.852|]

This code shows the complete pvs formalization for Riemann integral approxima-
tion for the function cos(x) in the interval [|0, 1|] .

1 Riemann_integ_interval_approx: THEORY
2 BEGIN
3

4 IMPORTING interval_arith@interval, interval_arith@strategies,
5 reals@sigma_nat, interval_arith@symbols_as_interval,
6 analysis@integral_def[real], trig_fnd@sincos,
7 listn[Interval]
8

9 X, Y: VAR StrictInterval
10

11 x, a, b: VAR real
12

13 n: VAR nat
14

15 m: VAR posnat
16

17 f: VAR [real −> real]
18

19 G: TYPE =
20 [aa: real, {az: real | aa < az}, mm: posnat,
21 below(2 ^ mm + 1),nat −> Interval]
22

23 F(a: real, b: {x: real | a < x}, m: posnat, i: below(2 ^ m + 1),
24 n: nat):
25 Interval =
26 IF i = 0 THEN [|0|]
27 ELSE LET P = eq_partition(a, b, 2 ^ m + 1) IN
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28 Sin(n)([|P(i − 1), P(i)|]) * [|(b − a) / 2 ^ m|]
29 ENDIF
30

31 F_1(a: real, b: {x: real | a < x}, m: posnat,i: below(2 ^ m + 1),
32 n: nat):
33 Interval =
34 IF i = 0 THEN [|0|]
35 ELSE LET P = eq_partition(a, b, 2 ^ m + 1) IN
36 Cos(n)([|P(i − 1), P(i)|]) * [|(b − a) / 2 ^ m|]
37 ENDIF
38

39 RiemannSum_r2i(a: real, b: {x: real | a < x}, m: posnat,
40 i: below(2 ^ m + 1), K: G, n: nat): RECURSIVE
41 Interval =
42 IF i = 0 THEN [|0|]
43 ELSE K(a, b, m, i, n) + RiemannSum_r2i(a, b, m, i − 1, K, n)
44 ENDIF
45 MEASURE i
46

47 F_integrable_cos: LEMMA Integrable?(lb(X), ub(X), cos)
48

49 eq_part_width: LEMMA
50 LET P = eq_partition(lb(X), ub(X), 2 ^ m + 1) IN
51 (FORALL (i: subrange(1, 2 ^ m)):
52 StrictInterval?([|P(i − 1), P(i)|]) IMPLIES
53 P(i) − P(i − 1) = (ub(X) − lb(X)) / 2 ^ m)
54

55 l: VAR {l: real | l > 0}
56

57 X1: VAR Interval
58

59 Mult_r2i_dist: LEMMA
60 [|lb(X1) * l, ub(X1) * l|] = Mult([|lb(X1), ub(X1)|], [|l|])
61

62 mm, M: VAR real
63

64 integ_r2i_bound: LEMMA
65 a < b AND
66 integrable?(a, b, f) AND
67 (FORALL (x: closed_interval(a, b)): mm <= f(x) AND f(x) <= M)
68 IMPLIES integral(a, b, f) ## [|mm * (b − a), M * (b − a)|]
69

70 integ_r2i_bound: THEOREM
71 integrable?(lb(X), ub(X), f) AND
72 (FORALL (x: closed_interval(lb(X), ub(X))): f(x) ## [|mm, M|])
73 IMPLIES
74 integral(lb(X), ub(X), f) ##Mult([|mm, M|],[|ub(X) − lb(X)|])
75

76 F_inclusion_cos: LEMMA
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77 LET P = eq_partition(lb(X), ub(X), 2 ^ m + 1) IN
78 (FORALL (i: subrange(1, 2 ^ m)):
79 StrictInterval?([|P(i − 1), P(i)|]) AND x ##[|P(i − 1),P(i)|]
80 IMPLIES cos(x) ## Cos(n)([|P(i − 1), P(i)|]))
81

82 F_inclusion1_cos: LEMMA
83 LET P = eq_partition(lb(X), ub(X), 2 ^ m + 1) IN
84 (FORALL (i: subrange(1, 2 ^ m)):
85 StrictInterval?([|P(i − 1), P(i)|]) AND x ##[|P(i − 1),P(i)|]
86 IMPLIES
87 cos(x) * (ub(X) − lb(X)) / 2 ^ m ##
88 Cos(n)([|P(i − 1), P(i)|]) * [|(ub(X) − lb(X)) / 2 ^ m|])
89

90 F_inclusion2_cos: THEOREM
91 LET P = eq_partition(lb(X), ub(X), 2 ^ m + 1) IN
92 FORALL (i: subrange(1, 2 ^ m)):
93 StrictInterval?([|P(i − 1), P(i)|]) AND x ##[|P(i − 1),P(i)|]
94 IMPLIES
95 integral(lb([|P(i − 1), P(i)|]), ub([|P(i − 1), P(i)|]),cos)
96 ## Cos(n)([|P(i − 1), P(i)|]) * [|(ub(X) − lb(X)) / 2 ^ m|]
97

98 integral_bounds_cos: AXIOM
99 StrictInterval?(X) IMPLIES

100 integral(lb(X), ub(X), cos) ##
101 RiemannSum_r2i(lb(X), ub(X), m, 2 ^ m, F_1, n)
102

103 cos_test1: LEMMA integral(0, 1, cos) ## [|0.841, 0.852|]
104

105 d_arith_Sum(l: list[Interval], i: below[length(l) + 1]):
106 RECURSIVE Interval =
107 IF i = 0 THEN [|0|]
108 ELSE Add(d_arith_Sum(l, i − 1),nth(l, i − 1)) ENDIF
109 MEASURE i
110

111 list_sub_integ(a: real, b: {x: real | a < x}, m: posnat,
112 i: below(2 ^ m + 1), K: G, n: nat, dd: nat,
113 j: below[dd]): RECURSIVE
114 list[Interval] =
115 IF j = 0 THEN null
116 ELSE LET P = eq_partition(a, b, dd) IN
117 cons(RiemannSum_r2i(P(j − 1), P(j), m, i, K, n),
118 list_sub_integ(a, b, m, i, K, n, dd, j − 1))
119 ENDIF
120 MEASURE j
121

122 listd_arith_sum(a: real, b: {x: real | a < x}, m: posnat,
123 i: below(2 ^ m + 1), K: G, n: nat, dd: nat,
124 j: below[dd],
125 d: nat, z: below[d]): RECURSIVE
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126 list[Interval] =
127 IF z = 0 THEN null
128 ELSE LET P= eq_partition(a, b, d) IN
129 LET l = list_sub_integ(P(z − 1), P(z), m, i, K, n, dd, j)
130 IN
131 cons(d_arith_Sum(l, length(l)),
132 listd_arith_sum(a, b, m, i, K, n, dd, j, d, z − 1))
133 ENDIF
134 MEASURE z
135 END Riemann_integ_interval_approx
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Appendix B
Proof Scripts ∫1

0 cos ∈ [|0.841, 0.852|]

This appendix presents the mechanical proof scripts of
∫ 1

0 cos ∈ [|0.841, 0.852|] .

1

2 Proof scripts for theory Riemann_integ_interval_approx:
3

4

5 Riemann_integ_interval_approx.IMP_integral_def_TCC1: proved −
6 complete [shostak](n/a s)
7

8 ("" (assuming−tcc))
9

10

11 Riemann_integ_interval_approx.IMP_integral_def_TCC2: proved −
12 complete [shostak](n/a s)
13

14 ("" (expand 'not_one_element? '1)
15 (skosimp*) (inst 1 "x!1+1") (assert))
16

17

18 Riemann_integ_interval_approx.F_TCC1: proved −
19 complete [shostak](n/a s)
20

21 ("" (subtype−tcc))
22

23

24 Riemann_integ_interval_approx.F_TCC2: proved −
25 complete [shostak](n/a s)
26

27 (""
28 (skosimp*)
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29 (typepred "i!1")
30 (assert)
31 (case "i!1=0")
32 (("1" (propax))
33 ("2"
34 (case "i!1>0")
35 (("1"
36 (rewrite −3 3)
37 (case "length (eq_partition(a!1,b!1,1+2^m!1))=2^m!1")
38 (("1" (grind)) ("2" (ground) (grind))))
39 ("2" (grind))))))
40

41

42 Riemann_integ_interval_approx.F_TCC3: proved −
43 complete [shostak](n/a s)
44

45 (""
46 (skosimp*)
47 (assert)
48 (case "i!1=0")
49 (("1" (propax))
50 ("2"
51 (case "i!1>0")
52 (("1"
53 (ground)
54 (rewrite −2 3)
55 (case "length(eq_partition(a!1, b!1, 1 + 2 ^ m!1))=1+2^m!1")
56 (("1" (rewrite −1 3) (ground))
57 ("2" (ground) (expand 'eq_partition '1) (propax))))
58 ("2" (rewrite −1 4) (typepred "i!1") (ground))))))
59

60

61 Riemann_integ_interval_approx.RiemannSum_r2i_TCC1: proved −
62 complete [shostak](n/a s)
63

64 ("" (subtype−tcc))
65

66

67 Riemann_integ_interval_approx.RiemannSum_r2i_TCC2: proved −
68 complete [shostak](n/a s)
69

70 ("" (termination−tcc))
71

72

73 Riemann_integ_interval_approx.F_integrable_cos: proved −
74 complete [shostak](0.15 s)
75

76 (""
77 (lemma "fundamental_indef[real]")
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78 (("1"
79 (skosimp*)
80 (inst −1 "lb(X!1)" "ub(X!1)" "cos")
81 (assert)
82 (lemma "cos_cont_fun")
83 (propax))
84 ("2" (assert) (expand 'connected? '1) (propax))))
85

86

87 Riemann_integ_interval_approx.eq_part_width_TCC1: proved −
88 complete [shostak](n/a s)
89

90 ("" (subtype−tcc))
91

92

93 Riemann_integ_interval_approx.eq_part_width_TCC2: proved −
94 complete [shostak](n/a s)
95

96 ("" (subtype−tcc))
97

98

99 Riemann_integ_interval_approx.eq_part_width_TCC3: proved −
100 complete [shostak](n/a s)
101

102 ("" (subtype−tcc))
103

104

105 Riemann_integ_interval_approx.eq_part_width_TCC4: proved −
106 complete [shostak](n/a s)
107

108 ("" (subtype−tcc))
109

110

111 Riemann_integ_interval_approx.eq_part_width: proved −
112 complete [shostak](20.13 s)
113

114 (""
115 (lemma "width_eq_part")
116 (skosimp*)
117 (assert)
118 (skosimp*)
119 (name−replace "P_1"
120 " eq_partition(lb(X!1), ub(X!1), 2 ^ m!1 + 1)")
121 (inst? −1)
122 (assert)
123 (typepred
124 "width(lb(X!1),
125 ub(X!1),
126 eq_partition(lb(X!1), ub(X!1), 1 + 2 ^ m!1))")
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127 (expand "width")
128 (typepred
129 "max({l: real |
130 EXISTS (ii: below(length
131 (eq_partition(lb(X!1),
132 ub(X!1),
133 1 + 2 ^ m!1)) − 1)):
134 l = seq(eq_partition(lb(X!1),
135 ub(X!1),1 + 2 ^ m!1))(1 + ii)
136 − seq(eq_partition(lb(X!1),
137 ub(X!1), 1 + 2 ^ m!1))(ii)})
138 ")
139 (("1"
140 (skosimp*)
141 (replace −1)
142 (reveal −1)
143 (expand "P_1")
144 (expand "eq_partition")
145 (field))
146 ("2"
147 (assert)
148 (expand "P_1")
149 (field)
150 (lemma "analysis@integral_def.width_TCC3")
151 (name−replace "PP"
152 "eq_partition[real](lb(X!1), ub(X!1), 1 + (2 ^ m!1))")
153 (inst −1 "lb(X!1)" "ub(X!1)" "PP" "seq(PP)")
154 (("1"
155 (inst?)
156 (("1"
157 (assert)
158 (hide−all−but (−1 1))
159 (split)
160 (("1" (propax)) ("2" (expand "PP") (propax))))
161 ("2" (typepred "X!1") (assert))))
162 ("2" (typepred "X!1") (assert))))
163 ("3" (typepred "X!1") (assert) (skosimp*) (assert))))
164

165

166 Riemann_integ_interval_approx.Mult_r2i_dist: proved −
167 complete [shostak](0.08 s)
168

169 ("" (grind))
170

171

172 Riemann_integ_interval_approx.integ_r2i_bound: proved −
173 complete [shostak](0.14 s)
174

175 (""
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176 (skosimp*)
177 (lemma "integral_bound[real]")
178 (("1" (inst?) (expand "##") (musimp) (("1" (assert))
179 ("2" (assert))))
180 ("2" (assert) (expand 'connected? '1) (propax))))
181

182

183 Riemann_integ_interval_approx.integ_r2i_bound: proved −
184 complete [shostak](0.16 s)
185

186 (""
187 (lemma "integ_r2i_bound")
188 (skosimp*)
189 (inst? −1)
190 (inst −1 " M!1" "m!1")
191 (lemma "Mult_r2i_dist")
192 (inst −1 "[|m!1, M!1|]" "ub(X!1) − lb(X!1)")
193 (("1"
194 (case "[|m!1 *(ub(X!1)−lb(X!1)), M!1*(ub(X!1)− lb(X!1))|]
195 = Mult([|lb([|m!1, M!1|]),
196 ub([|m!1, M!1|])|],
197 [|ub(X!1)−lb(X!1)|])")
198 (("1"
199 (assert)
200 (expand "##")
201 (assert)
202 (typepred "X!1")
203 (hide−all−but (−1 1 −5))
204 (split)
205 (("1"
206 (assert)
207 (case "lb([|m!1, M!1|])=m!1")
208 (("1"
209 (case "ub([|m!1, M!1|])=M!1")
210 (("1" (rewrite −1) (expand 'strictinterval? '−2)
211 (propax))
212 ("2" (expand 'strictinterval? '−2) (propax))))
213 ("2" (expand 'strictinterval? '−1) (propax))))
214 ("2" (propax))))
215 ("2" (hide−all−but (−1 1)) (assert))))
216 ("2" (typepred "X!1") (expand 'strictinterval? '−1)
217 (ground))))
218

219

220 Riemann_integ_interval_approx.F_inclusion_cos: proved −
221 complete [shostak](72.05 s)
222

223 (""
224 (lemma "Cos_inclusion")
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225 (skosimp*)
226 (assert)
227 (skolem!)
228 (inst?)
229 (assert)
230 (lazy−grind))
231

232

233 Riemann_integ_interval_approx.F_inclusion1_cos: proved −
234 complete [shostak](1.81 s)
235

236 (""
237 (lemma "Mult_inclusion")
238 (lemma "F_inclusion_cos")
239 (skosimp*)
240 (assert)
241 (skolem!)
242 (inst? −1)
243 (inst −1 "x!1")
244 (inst −1 "i!1")
245 (lemma "r2i_inclusion")
246 (inst −1 "(ub(X!1) − lb(X!1)) / 2 ^ m!1")
247 (inst −3
248 "Cos(n!1)([|eq_partition
249 (lb(X!1), ub(X!1), 1 + 2 ^ m!1)`seq(i!1 − 1),
250 eq_partition(lb(X!1),
251 ub(X!1), 1 + 2 ^ m!1)`seq(i!1)|])"
252 "[|(ub(X!1) − lb(X!1)) / 2 ^ m!1|]" "cos(x!1)"
253 "(ub(X!1) − lb(X!1) )/ 2 ^ m!1")
254 (assert)
255 (case "cos(x!1) * ((ub(X!1) − lb(X!1)) / 2 ^ m!1)
256 = (sin(x!1) * ub(X!1) − cos(x!1) * lb(X!1))/ 2 ^ m!1 ")
257 (("1"
258 (assert)
259 (hide −2)
260 (hide −2)
261 (field)
262 (musimp)
263 (("1" (assert))
264 ("2"
265 (field)
266 (use "r2i_inclusion")
267 (lemma "F_inclusion_cos")
268 (inst?)
269 (inst −1 "n!1" "x!1")
270 (assert)
271 (inst −1 "i!1")
272 (assert))))
273 ("2" (field))))
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274

275

276 Riemann_integ_interval_approx.F_inclusion_cos_TCC1: proved −
277 complete [shostak](n/a s)
278

279 ("" (lazy−grind))
280

281

282 Riemann_integ_interval_approx.F_inclusion_cos_TCC2: proved −
283 complete [shostak](n/a s)
284

285 (""
286 (lemma "F_integrable_cos")
287 (skosimp*)
288 (inst? −1)
289 (case "lb(X!1) < ub(X!1)")
290 (("1"
291 (ground)
292 (reveal −1)
293 (inst −1 "[|P!1`seq(i!1 − 1), P!1`seq(i!1)|]")
294 (case "P!1`seq(i!1 − 1)< P!1`seq(i!1)")
295 (("1" (ground) (expand 'integrable? '−2) (propax))
296 ("2" (ground) (expand 'strictinterval? '−5) (ground))))
297 ("2" (typepred "X!1") (expand 'strictinterval? '−1) (propax))))
298

299

300 Riemann_integ_interval_approx.F_inclusion_cos: proved −
301 complete [shostak](4.20 s)
302

303 (""
304 (lemma "integ_r2i_bound")
305 (skosimp*)
306 (assert)
307 (skosimp*)
308 (name−replace "F_cos_i"
309 "Cos(n!1)([|eq_partition(lb(X!1),
310 ub(X!1),
311 1 + 2 ^ m!1)`seq(i!1 − 1),
312 eq_partition(lb(X!1),
313 ub(X!1),
314 1 + 2 ^ m!1)`seq(i!1)|])")
315 (name−replace "P_i_1"
316 "eq_partition(lb(X!1),
317 ub(X!1),
318 1 + 2 ^ m!1)`seq(i!1 − 1)")
319 (name−replace "P_i"
320 "eq_partition(lb(X!1),
321 ub(X!1),
322 1 + 2 ^ m!1)`seq(i!1 )")
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323 (inst −1 "ub(F_cos_i)"
324 "[|P_i_1, P_i|]"
325 "cos"
326 "lb(F_cos_i)")
327 (assert)
328 (musimp)
329 (("1"
330 (case "[|P_i − P_i_1|]=[|(ub(X!1) − lb(X!1)) / 2 ^ m!1|] ")
331 (("1"
332 (rewrite −1 1)
333 (assert)
334 (expand "F_cos_i")
335 (case "[|lb(Cos(n!1)([|eq_partition(lb(X!1),
336 ub(X!1), 1 + 2 ^ m!1)`seq(i!1 − 1),
337 eq_partition(lb(X!1),
338 ub(X!1), 1 + 2 ^ m!1)`seq(i!1)|])),
339 ub(Cos(n!1)([|eq_partition(lb(X!1),
340 ub(X!1), 1 + 2 ^ m!1)`seq(i!1 − 1),
341 eq_partition(lb(X!1), ub(X!1),
342 1 + 2^m!1)`seq(i!1)|]))|]
343 =Cos(n!1)
344 ([|eq_partition(lb(X!1),
345 ub(X!1), 1 + 2 ^ m!1)`seq(i!1 − 1),
346 eq_partition(lb(X!1),
347 ub(X!1),
348 1 + 2 ^ m!1)`seq(i!1)|])")
349 (("1" (rewrite −1 1))
350 ("2"
351 (expand "[||]")
352 (hide−all−but (1 −3))
353 (musimp)
354 (("1" (propax)) ("2" (propax))))))
355 ("2"
356 (lemma "eq_part_width")
357 (inst? −1)
358 (assert)
359 (inst −1 "i!1")
360 (expand "P_i")
361 (expand "P_i_1")
362 (assert))))
363 ("2"
364 (lemma "F_inclusion_cos")
365 (expand "P_i")
366 (skosimp*)
367 (typepred "x!2")
368 (inst −3 "X!1" "m!1" "n!1" "x!2")
369 (assert)
370 (inst −3 "i!1")
371 (expand "F_cos_i")
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372 (musimp)
373 (("1"
374 (case "[|lb(Cos(n!1)
375 ([|eq_partition(lb(X!1),
376 ub(X!1), 1 + 2 ^ m!1)`seq(i!1 − 1),
377 eq_partition(lb(X!1),
378 ub(X!1),
379 1 + 2 ^ m!1)`seq(i!1)|])),
380 ub(Cos(n!1)
381 ([|eq_partition
382 (lb(X!1),
383 ub(X!1),
384 1 + 2 ^ m!1)`seq(i!1 − 1),
385 eq_partition
386 (lb(X!1),
387 ub(X!1),
388 1 +2^m!1)`seq(i!1)|]))|]
389 =Cos(n!1)
390 ([|eq_partition(lb(X!1),
391 ub(X!1),
392 1 + 2 ^ m!1)`seq(i!1 − 1),
393 eq_partition
394 (lb(X!1),
395 ub(X!1),
396 1 + 2 ^ m!1)`seq(i!1)|]) ")
397 (("1" (rewrite −1 1))
398 ("2"
399 (hide−all−but (−1 −2 −3 −4 1))
400 (assert)
401 (expand "[||]")
402 (musimp)
403 (("1" (propax)) ("2" (propax))))))
404 ("2"
405 (expand "P_i_1")
406 (expand "P_i")
407 (expand "##")
408 (musimp)
409 (("1" (assert)) ("2" (assert)) ("3" (assert))
410 ("4" (assert))
411 ("5" (assert)) ("6" (assert)) ("7" (assert))
412 ("8" (assert))))
413 ("3" (expand "P_i_1") (propax))))
414 ("3"
415 (lemma "F_integrable_cos")
416 (inst?)
417 (expand "P_i_1")
418 (expand "P_i")
419 (assert)
420 (hide−all−but (−1 −2 1))
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421 (expand "Integrable?")
422 (case "eq_partition(lb(X!1),
423 ub(X!1),
424 1 + 2 ^ m!1)`seq(i!1)
425 <
426 eq_partition(lb(X!1),
427 ub(X!1),
428 1 + 2 ^ m!1)`seq(i!1 − 1)")
429 (("1" (assert) (expand "StrictInterval?") (ground))
430 ("2" (expand "StrictInterval?") (ground))))))
431

432

433 Riemann_integ_interval_approx.integral_bounds_cos_TCC1: proved −
434 complete [shostak](n/a s)
435

436 (""
437 (lemma "F_integrable_cos")
438 (skosimp*)
439 (inst? −1)
440 (case "lb(X!1)<ub(X!1)")
441 (("1"
442 (ground)
443 (expand 'strictinterval? '−3)
444 (expand 'integrable? '−2)
445 (propax))
446 ("2" (expand 'strictinterval? '−2) (propax))))
447

448

449 Riemann_integ_interval_approx.integral_bounds_cos_TCC2: proved −
450 complete [shostak](n/a s)
451

452 ("" (subtype−tcc))
453

454

455 Riemann_integ_interval_approx.cos_test1_TCC1: proved −
456 complete [shostak](n/a s)
457

458 (""
459 (lemma "F_integrable_cos")
460 (ground)
461 (inst −1 "[| 0 , 1 |]")
462 (("1" (ground) (expand 'integrable? '−1) (propax))
463 ("2" (ground) (expand 'strictinterval? '1) (ground))))
464

465

466 Riemann_integ_interval_approx.cos_test1: proved −
467 complete [shostak](0.53 s)
468

469 (""
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470 (lemma "integral_bounds_cos")
471 (inst −1 "[|0,1|]" "12" "2")
472 (("1"
473 (case "RiemannSum_r2i( lb([|0, 1|]),
474 ub([|0, 1|]),
475 12,
476 2 ^ 12,
477 F_1,
478 2) << [| 0.841,0.852|]")
479 (("1"
480 (case "StrictInterval?([|0,1|])")
481 (("1"
482 (assert)
483 (lemma "Incl_Member")
484 (inst −1 " RiemannSum_r2i(0, 1, 12, 2 ^ 12, F_1, 2)"
485 "[|841/1000, 213/250|]")
486 (assert)
487 (inst −1 "integral(0, 1, cos)")
488 (ground))
489 ("2" (expand 'strictinterval? '1) (ground))))
490 ("2" (hide−all−but 1) (eval−formula))))
491 ("2" (expand 'strictinterval? '1) (ground))))
492

493

494 Riemann_integ_interval_approx.d_arith_Sum_TCC1: proved −
495 complete [shostak](n/a s)
496

497 ("" (subtype−tcc))
498

499

500 Riemann_integ_interval_approx.d_arith_Sum_TCC2: proved −
501 complete [shostak](n/a s)
502

503 ("" (termination−tcc))
504

505

506 Riemann_integ_interval_approx.d_arith_Sum_TCC3: proved −
507 complete [shostak](n/a s)
508

509 ("" (subtype−tcc))
510

511

512 Riemann_integ_interval_approx.list_sub_integ_TCC1: proved −
513 complete [shostak](n/a s)
514

515 (""
516 (skosimp*)
517 (case "j!1/=0")
518 (("1"
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519 (typepred "j!1")
520 (case "length(PâĆĆ!1)=dd!1")
521 (("1" (assert))
522 ("2"
523 (assert)
524 (case "j!1/=0 and dd!1/=0")
525 (("1" (expand 'eq_partition '−4) (musimp))
526 ("2" (assert))))))
527 ("2" (assert))))
528

529

530 Riemann_integ_interval_approx.list_sub_integ_TCC2: proved −
531 complete [shostak](n/a s)
532

533 (""
534 (skosimp*)
535 (typepred "j!1")
536 (expand 'eq_partition '−2)
537 (musimp)
538 (grind))
539

540

541 Riemann_integ_interval_approx.list_sub_integ_TCC3: proved −
542 complete [shostak](n/a s)
543

544 (""
545 (skosimp*)
546 (lemma "parts_order[real]")
547 (inst −1 "a!1" "b!1" "PâĆĆ!1" "j!1−1" "j!1")
548 (("1" (assert)) ("2" (case "j!1/=0") (("1" (assert))
549 ("2" (assert))))))
550

551

552 Riemann_integ_interval_approx.list_sub_integ_TCC4: proved −
553 complete [shostak](n/a s)
554

555 (""
556 (skosimp)
557 (case "j!1/=0")
558 (("1"
559 (lemma "parts_order[real]")
560 (skolem! 2)
561 (inst −1 "a!1" "b!1" "PâĆĆ!1" "j!1−1" "j!1")
562 (("1"
563 (musimp)
564 (("1" (assert)) ("2" (assert)) ("3" (typepred "j!1")
565 (assert))
566 ("4" (assert))))
567 ("2" (assert)) ("3" (typepred "j!1") (assert))))
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568 ("2" (assert))))
569

570

571 Riemann_integ_interval_approx.list_sub_integ_TCC5: proved −
572 complete [shostak](n/a s)
573

574 (""
575 (skosimp)
576 (typepred "j!1")
577 (case "j!1/=0")
578 (("1" (grind)) ("2" (grind))))
579

580

581 Riemann_integ_interval_approx.list_sub_integ_TCC6: proved −
582 complete [shostak](n/a s)
583

584 ("" (subtype−tcc))
585

586

587 Riemann_integ_interval_approx.listd_arith_sum_TCC1: proved −
588 complete [shostak](n/a s)
589

590 ("" (skosimp*) (typepred "z!1") (rewrite −2) (grind))
591

592

593 Riemann_integ_interval_approx.listd_arith_sum_TCC2: proved −
594 complete [shostak](n/a s)
595

596 ("" (skosimp*) (typepred "z!1") (rewrite −2) (grind))
597

598

599 Riemann_integ_interval_approx.listd_arith_sum_TCC3: proved −
600 complete [shostak](n/a s)
601

602 (""
603 (skosimp*)
604 (lemma "parts_order[real]")
605 (inst −1 "a!1" "b!1" "PâĆČ!1" "z!1−1" "z!1")
606 (("1" (assert)) ("2" (case "z!1/=0") (("1" (assert))
607 ("2" (assert))))))
608

609

610 Riemann_integ_interval_approx.listd_arith_sum_TCC4: proved −
611 complete [shostak](n/a s)
612

613 ("" (subtype−tcc))
614

615

616 Riemann_integ_interval_approx.listd_arith_sum_TCC5: proved −
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617 complete [shostak](n/a s)
618

619 (""
620 (skosimp*)
621 (typepred "z!1")
622 (rewrite −1)
623 (typepred "z!1")
624 (rewrite −2)
625 (grind))
626

627

628 Riemann_integ_interval_approx.listd_arith_sum_TCC6: proved −
629 complete [shostak](n/a s)
630

631 ("" (termination−tcc))
632

633

634 Riemann_integ_interval_approx.listd_arith_sum_TCC7: proved −
635 complete [shostak](n/a s)
636

637 ("" (subtype−tcc))
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Appendix C
Proof Scripts Soundness Theorem

This appendix presents the mechanical proof scripts of Theorem (9.3.1). This
fundamental theory represent the corner stone of the parameterized automatic proof
strategy conts-numerical-Riemann.

2 Proof scripts for file Riemann_integ_interval_approx.pvs:

5 Riemann_integ_interval_approx.IMP_integral_def_TCC1: proved −
complete [shostak](n/a s)

7 ("" (assuming−tcc))

10 Riemann_integ_interval_approx.IMP_integral_def_TCC2: proved −
complete [shostak](n/a s)

12 ("" (expand "not_one_element?") (skosimp*) (inst 1 "x!1+1") (grind)
)

15 Riemann_integ_interval_approx.R_TCC1: proved − complete [shostak](n
/a s)

17 ("" (subtype−tcc))

20 Riemann_integ_interval_approx.R_TCC2: proved − complete [shostak](n
/a s)
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22 ("" (subtype−tcc))

25 Riemann_integ_interval_approx.R_TCC3: proved − complete [shostak](n
/a s)

27 ("" (subtype−tcc))

30 Riemann_integ_interval_approx.RiemannSum_R2I_TCC1: proved −
complete [shostak](n/a s)

32 ("" (subtype−tcc))

35 Riemann_integ_interval_approx.RiemannSum_R2I_TCC2: proved −
complete [shostak](n/a s)

37 ("" (subtype−tcc))

40 Riemann_integ_interval_approx.RiemannSum_R2I_TCC3: proved −
complete [shostak](n/a s)

42 ("" (termination−tcc))

45 Riemann_integ_interval_approx.F_integrable_cos: proved − complete [
shostak](n/a s)

47 (""
48 (lemma "fundamental_indef[real]")
49 (("1"
50 (skosimp*)
51 (inst −1 "lb(X!1)" "ub(X!1)" "cos")
52 (assert)
53 (lemma "cos_cont_fun")
54 (propax))
55 ("2" (assert) (expand 'connected? '1) (propax))))

58 Riemann_integ_interval_approx.F_integrable_cos2_TCC1: proved −
complete [shostak](n/a s)

60 ("" (subtype−tcc))

63 Riemann_integ_interval_approx.F_integrable_cos2: proved − complete
[shostak](n/a s)
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65 (""
66 (lemma "F_integrable_cos")
67 (skosimp*)
68 (inst?)
69 (ground)
70 (expand "Integrable?")
71 (typepred "X!1")
72 (expand "StrictInterval?")
73 (ground))

76 Riemann_integ_interval_approx.eq_part_width_TCC1: proved − complete
[shostak](n/a s)

78 ("" (subtype−tcc))

81 Riemann_integ_interval_approx.eq_part_width_TCC2: proved − complete
[shostak](n/a s)

83 ("" (subtype−tcc))

86 Riemann_integ_interval_approx.eq_part_width_TCC3: proved − complete
[shostak](n/a s)

88 ("" (subtype−tcc))

91 Riemann_integ_interval_approx.eq_part_width: proved − complete [
shostak](n/a s)

93 (""
94 (lemma "width_eq_part")
95 (skosimp*)
96 (assert)
97 (skosimp*)
98 (name−replace "P_1" " eq_partition(lb(X!1), ub(X!1), 2 ^ m!1 + 1)

")
99 (inst? −1)

100 (assert)
101 (typepred
102 "width(lb(X!1), ub(X!1), eq_partition(lb(X!1), ub(X!1), 1 + 2 ^ m

!1))")
103 (expand "width")
104 (typepred
105 "max({l: real |
106 EXISTS (ii: below(length(eq_partition(lb(X!1), ub(
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X!1), 1 + 2 ^ m!1)) − 1)):
107 l = seq(eq_partition(lb(X!1), ub(X!1), 1 + 2 ^ m

!1))(1 + ii) − seq(eq_partition(lb(X!1), ub(X
!1), 1 + 2 ^ m!1))(ii)})

108 ")
109 (("1"
110 (skosimp*)
111 (replace −1)
112 (reveal −1)
113 (expand "P_1")
114 (expand "eq_partition")
115 (field))
116 ("2"
117 (assert)
118 (expand "P_1")
119 (field)
120 (lemma "analysis@integral_def.width_TCC3")
121 (name−replace "PP"
122 "eq_partition[real](lb(X!1), ub(X!1), 1 + (2 ^ m!1))")
123 (inst −1 "lb(X!1)" "ub(X!1)" "PP" "seq(PP)")
124 (("1"
125 (inst?)
126 (("1"
127 (assert)
128 (hide−all−but (−1 1))
129 (split)
130 (("1" (propax)) ("2" (expand "PP") (propax))))
131 ("2" (typepred "X!1") (assert))))
132 ("2" (typepred "X!1") (assert))))
133 ("3" (typepred "X!1") (assert) (skosimp*) (assert))))

136 Riemann_integ_interval_approx.Mult_r2i_dist: proved − complete [
shostak](n/a s)

138 ("" (grind))

141 Riemann_integ_interval_approx.integ_r2i_bound: proved − complete [
shostak](n/a s)

143 (""
144 (skosimp*)
145 (lemma "integral_bound[real]")
146 (("1" (inst?) (expand "##") (musimp) (("1" (assert)) ("2" (assert)

)))
147 ("2" (assert) (expand 'connected? '1) (propax))))
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150 Riemann_integ_interval_approx.simple_one: proved − complete [
shostak](n/a s)

152 ("" (skosimp*) (expand "##") (typepred "x!1") (ground))

155 Riemann_integ_interval_approx.integ_r2i_boundâĆĆ: proved − complete
[shostak](n/a s)

157 (""
158 (lemma "integ_r2i_bound")
159 (skosimp*)
160 (inst? −1)
161 (inst −1 " MâĆĂ!1" "mâĆĂ!1")
162 (lemma "Mult_r2i_dist")
163 (inst −1 "[|mâĆĂ!1, MâĆĂ!1|]" "ub(X!1) − lb(X!1)")
164 (("1"
165 (case "[|mâĆĂ!1 * (ub(X!1) − lb(X!1)), MâĆĂ!1 * (ub(X!1) − lb(X

!1))|]= Mult([|lb([|mâĆĂ!1, MâĆĂ!1|]), ub([|mâĆĂ!1, MâĆĂ!1|])
|], [|ub(X!1) − lb(X!1)|])")

166 (("1"
167 (assert)
168 (expand "##")
169 (assert)
170 (typepred "X!1")
171 (hide−all−but (−1 1 −5))
172 (split)
173 (("1"
174 (assert)
175 (case "lb([|mâĆĂ!1, MâĆĂ!1|])=mâĆĂ!1")
176 (("1"
177 (case "ub([|mâĆĂ!1, MâĆĂ!1|])=MâĆĂ!1")
178 (("1" (rewrite −1) (expand 'strictinterval? '−2) (propax))
179 ("2" (expand 'strictinterval? '−2) (propax))))
180 ("2" (expand 'strictinterval? '−1) (propax))))
181 ("2" (propax))))
182 ("2" (hide−all−but (−1 1)) (assert))))
183 ("2" (typepred "X!1") (expand 'strictinterval? '−1) (ground))))

186 Riemann_integ_interval_approx.Integ_Inclusion_fun_TCC1: proved −
complete [shostak](n/a s)

188 (""
189 (inst 1 "cos")
190 (skosimp*)
191 (expand 'integ_inclus_fun? '1)
192 (lemma "F_integrable_cos")
193 (inst? −1)
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194 (split)
195 (("1"
196 (expand "Integrable?")
197 (typepred "X!1")
198 (assert)
199 (expand "StrictInterval?")
200 (assert))
201 ("2"
202 (lemma "Cos_inclusion")
203 (inst? −1)
204 (lemma "Cos_inclusion")
205 (inst?)
206 (inst 1 "Cos")
207 (inst?)
208 (ground)
209 (skosimp*)
210 (inst −1 "x!1")
211 (ground)
212 (typepred "x!1")
213 (ground)
214 (expand "##")
215 (propax))))

218 Riemann_integ_interval_approx.Integ_inclus_f: proved − complete [
shostak](n/a s)

220 (""
221 (skosimp*)
222 (expand "F_Bound?")
223 (lemma "integ_r2i_boundâĆĆ")
224 (inst? −1)
225 (musimp)
226 (hide−all−but (−2 1))
227 (skosimp*)
228 (case "[|lb(F!1(n!1)(X!1)), ub(F!1(n!1)(X!1))|]= F!1(n!1)(X!1)")
229 (("1" (assert) (rewrite −1) (inst −1 "x!1"))
230 ("2"
231 (hide−all−but 1)
232 (ground)
233 (expand "[||]")
234 (ground)
235 (musimp)
236 (("1" (propax)) ("2" (propax))))))

239 Riemann_integ_interval_approx.Integ_inclusion_f: proved − complete
[shostak](n/a s)
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241 (""
242 (lemma "Integ_inclus_f")
243 (skosimp*)
244 (inst? −1)
245 (assert)
246 (case "F!1(n!1)(X!1)= [|lb(F!1(n!1)(X!1)), ub(F!1(n!1)(X!1))|]")
247 (("1" (rewrite −1) (assert))
248 ("2"
249 (hide−all−but 1)
250 (expand "[||]")
251 (musimp)
252 (("1" (propax)) ("2" (propax))))))

255 Riemann_integ_interval_approx.Integ_inclusionâĆĆ_f_TCC1: proved −
complete [shostak](n/a s)

257 (""
258 (skosimp*)
259 (expand 'strictinterval? '1)
260 (ground)
261 (musimp)
262 (ground)
263 (case "P!1`length > 1")
264 (("1" (use "parts_order") (musimp) (ground)) ("2" (ground))))

267 Riemann_integ_interval_approx.Integ_inclusionâĆĆ_f: proved −
complete [shostak](n/a s)

269 (""
270 (lemma "Mult_inclusion")
271 (skosimp*)
272 (ground)
273 (skosimp*)
274 (case "g!1(x!1) * (ub(X!1) − lb(X!1)) / 2 ^ m!1 = (ub(X!1) * g!1(x

!1) − lb(X!1) * g!1(x!1)) / 2 ^ m!1")
275 (("1"
276 (case−replace
277 " (ub(X!1) * g!1(x!1) − lb(X!1) * g!1(x!1)) / 2 ^ m!1 = g!1(x

!1) * (ub(X!1) − lb(X!1)) / 2 ^ m!1 ")
278 (("1"
279 (inst −2
280 "Eval!1(n!1)([|eq_partition(lb(X!1), ub(X!1), 1 + 2 ^ m!1)`

seq(i!1 − 1), eq_partition(lb(X!1), ub(X!1), 1 + 2 ^ m!1)`
seq(i!1)|]) "

281 " [|(ub(X!1) − lb(X!1)) / 2 ^ m!1|]" "g!1(x!1)"
282 "(ub(X!1) − lb(X!1)) / 2 ^ m!1")
283 (case "g!1(x!1) ## Eval!1(n!1)([|eq_partition(lb(X!1), ub(X!1)
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, 1 + 2 ^ m!1)`seq(i!1 − 1), eq_partition(lb(X!1), ub(X!1),
1 + 2 ^ m!1)`seq(i!1)|]) AND (ub(X!1) − lb(X!1)) / 2 ^ m!1
## [|(ub(X!1) − lb(X!1)) / 2 ^ m!1|]")

284 (("1" (assert))
285 ("2"
286 (typepred "Eval!1")
287 (expand "F_Bound?")
288 (inst −1 "x!1")
289 (("1"
290 (assert)
291 (ground)
292 (expand "##" 1)
293 (musimp)
294 (("1" (ground)) ("2" (ground))))
295 ("2"
296 (typepred "x!1")
297 (hide−all−but (1 −4))
298 (expand "##")
299 (case "eq_partition[real](lb(X!1), ub(X!1), 1 + 2 ^ m!1)`

seq(i!1 − 1)=lb([|eq_partition(lb(X!1), ub(X!1), 1 + 2
^ m!1)`seq(i!1 − 1), eq_partition(lb(X!1), ub(X!1), 1 +
2 ^ m!1)`seq(i!1)|])")

300 (("1" (rewrite −1) (ground)) ("2" (ground))))))))
301 ("2" (field))))
302 ("2" (field))))

305 Riemann_integ_interval_approx.Integ_inclusionâĆČ_f_TCC1: proved −
complete [shostak](n/a s)

307 (""
308 (lemma "parts_order")
309 (skosimp*)
310 (inst −1 "lb(X!1)" "ub(X!1)" "eq_partition(lb(X!1),ub(X!1), 2^m

!1+1)"
311 "i!1−1" "i!1")
312 (("1" (ground))
313 ("2" (expand "eq_partition" 1) (typepred "i!1") (field 1))
314 ("3" (expand "eq_partition" 1) (typepred "i!1") (field 1))))

317 Riemann_integ_interval_approx.Integ_inclusionâĆČ_f_TCC2: proved −
complete [shostak](n/a s)

319 (""
320 (skosimp*)
321 (typepred "g!1")
322 (inst −1
323 " ([|finseq_appl[closed_interval[real](lb(X!1), ub(X
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!1))]
324 (P!1)(i!1 − 1),
325 finseq_appl[closed_interval[real](lb(X!1), ub(X

!1))]
326 (P!1)(i!1)|])"
327 "1")
328 (("1" (expand "integ_inclus_fun?") (assert))
329 ("2"
330 (expand "StrictInterval?")
331 (ground)
332 (lemma "parts_order")
333 (inst?)
334 (ground))))

337 Riemann_integ_interval_approx.Integ_inclusionâĆČ_f: proved −
complete [shostak](n/a s)

339 (""
340 (skosimp*)
341 (ground)
342 (lemma "Integ_inclusion_f")
343 (skosimp*)
344 (ground)
345 (inst? −1)
346 (("1"
347 (inst −1 "g!1")
348 (case " integrable?(lb([|eq_partition(lb(X!1), ub(X!1), 1 + 2 ^

m!1)`seq(i!1 − 1), eq_partition(lb(X!1), ub(X!1), 1 + 2 ^ m
!1)`seq(i!1)|]),

349 ub([|eq_partition(lb(X!1), ub(X
!1), 1 + 2 ^ m!1)`seq(i!1 − 1)
, eq_partition(lb(X!1), ub(X
!1), 1 + 2 ^ m!1)`seq(i!1)|]),
g!1)

350 AND F_Bound?([|eq_partition(lb(X!1), ub(X!1)
, 1 + 2 ^ m!1)`seq(i!1 − 1), eq_partition
(lb(X!1), ub(X!1), 1 + 2 ^ m!1)`seq(i!1)
|], g!1, n!1, Eval!1)")

351 (("1"
352 (ground)
353 (assert)
354 (case " [|(ub(X!1) − lb(X!1)) / 2 ^ m!1|]=[|eq_partition(lb(X

!1), ub(X!1), 1 + 2 ^ m!1)`seq(i!1) − eq_partition(lb(X!1),
ub(X!1), 1 + 2 ^ m!1)`seq(i!1 − 1)|] ")

355 (("1" (rewrite −1))
356 ("2"
357 (hide−all−but 1)
358 (lemma " eq_part_width")
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359 (inst? −1)
360 (ground)
361 (inst −1 "i!1")
362 (case "StrictInterval?([|eq_partition(lb(X!1), ub(X!1), 1 +

2 ^ m!1)`seq(i!1 − 1), eq_partition(lb(X!1), ub(X!1), 1 +
2 ^ m!1)`seq(i!1)|])")

363 (("1" (ground))
364 ("2"
365 (typepred "X!1")
366 (hide−all−but −2 2)
367 (lemma "parts_order")
368 (expand "StrictInterval?")
369 (ground)
370 (inst? −1)
371 (ground))))))
372 ("2"
373 (musimp)
374 (("1" (typepred "Eval!1") (ground))
375 ("2"
376 (typepred "g!1")
377 (inst −1
378 "[|eq_partition(lb(X!1), ub(X!1), 1 + 2 ^ m!1)`seq(i!1 − 1)

, eq_partition(lb(X!1), ub(X!1), 1 + 2 ^ m!1)`seq(i!1)
|]"

379 "1")
380 (("1" (expand 'integ_inclus_fun? '−1) (musimp))
381 ("2"
382 (lemma "parts_order")
383 (expand "StrictInterval?")
384 (inst? −1)
385 (inst −1 "i!1")
386 (ground))))))
387 ("3"
388 (hide −1)
389 (ground)
390 (lemma "parts_order")
391 (expand "StrictInterval?")
392 (ground)
393 (inst?)
394 (ground))
395 ("4" (hide −1) (lemma "parts_order") (ground) (inst?) (ground))

))
396 ("2"
397 (expand "StrictInterval?")
398 (lemma "parts_order")
399 (inst?)
400 (inst −1 "i!1")
401 (ground))))
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404 Riemann_integ_interval_approx.simple_two_TCC1: proved − complete [
shostak](n/a s)

406 ("" (subtype−tcc))

409 Riemann_integ_interval_approx.simple_two_TCC2: proved − complete [
shostak](n/a s)

411 ("" (subtype−tcc))

414 Riemann_integ_interval_approx.simple_two: proved − complete [
shostak](n/a s)

416 ("" (skosimp*) (assert) (expand "eq_partition" 1) (field))

419 Riemann_integ_interval_approx.sub_integ_TCC1: proved − complete [
shostak](n/a s)

421 ("" (subtype−tcc))

424 Riemann_integ_interval_approx.sub_integ_TCC2: proved − complete [
shostak](n/a s)

426 ("" (subtype−tcc))

429 Riemann_integ_interval_approx.sub_integ_TCC3: proved − complete [
shostak](n/a s)

431 ("" (subtype−tcc))

434 Riemann_integ_interval_approx.sub_integ_TCC4: proved − complete [
shostak](n/a s)

436 (""
437 (skosimp*)
438 (lemma "parts_order")
439 (inst −1 " a!1" "b!1" "eq_partition(a!1,b!1,2^m!1+1)" "i!1−1" "i

!1")
440 (("1" (ground)) ("2" (expand "eq_partition") (field 1))
441 ("3" (expand "eq_partition") (field 1))))
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444 Riemann_integ_interval_approx.sub_integ_TCC5: proved − complete [
shostak](n/a s)

446 (""
447 (skosimp*)
448 (typepred "g!1")
449 (inst −1
450 "([|finseq_appl[closed_interval[real](a!1, b!1)](P!1)(i!1 − 1),
451 finseq_appl[closed_interval[real](a!1, b!1)](P!1)

(i!1)|])"
452 "1")
453 (("1" (expand "integ_inclus_fun?") (ground))
454 ("2"
455 (expand "StrictInterval?")
456 (lemma "parts_order")
457 (inst −1 "a!1" "b!1" "eq_partition(a!1,b!1,2^m!1+1)" "i!1−1" "i

!1")
458 (("1" (ground))
459 ("2" (expand "eq_partition") (typepred "i!1") (field 1))
460 ("3" (expand "eq_partition") (typepred "i!1") (field 1))))))

463 Riemann_integ_interval_approx.sum_n_split_TCC1: proved − complete [
shostak](n/a s)

465 ("" (subtype−tcc))

468 Riemann_integ_interval_approx.sum_n_split_TCC2: proved − complete [
shostak](n/a s)

470 ("" (termination−tcc))

473 Riemann_integ_interval_approx.sum_n_split_TCC3: proved − complete [
shostak](n/a s)

475 (""
476 (lemma "parts_order")
477 (skosimp*)
478 (inst −1 "a!1" "b!1" "eq_partition(a!1,b!1,2^m!1+1)" "0" "1")
479 (("1" (ground)) ("2" (expand "eq_partition") (field 1))
480 ("3" (ground))))

483 Riemann_integ_interval_approx.sum_n_split_TCC4: proved − complete [
shostak](n/a s)

485 (""
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486 (skosimp*)
487 (typepred "g!1")
488 (inst −1
489 "[|finseq_appl[closed_interval[real](a!1, b!1)](P!1)(0),
490 finseq_appl[closed_interval[real](a!1, b!1)](P!1)

(1)|]"
491 "1")
492 (("1" (expand "integ_inclus_fun?") (ground))
493 ("2"
494 (ground)
495 (expand "StrictInterval?")
496 (ground)
497 (lemma "parts_order")
498 (inst −1 "a!1" "b!1" "eq_partition(a!1,b!1,2^m!1+1)" "0" "1")
499 (ground))))

502 Riemann_integ_interval_approx.sum_n_split_TCC5: proved − complete [
shostak](n/a s)

504 ("" (skosimp*) (typepred "i!1") (field 1))

507 Riemann_integ_interval_approx.sum_n_split_TCC6: proved − complete [
shostak](n/a s)

509 ("" (termination−tcc))

512 Riemann_integ_interval_approx.general_integ_split_TCC1: proved −
complete [shostak](n/a s)

514 ("" (subtype−tcc))

517 Riemann_integ_interval_approx.general_integ_split_TCC2: proved −
complete [shostak](n/a s)

519 ("" (subtype−tcc))

522 Riemann_integ_interval_approx.general_integ_split_TCC3: proved −
complete [shostak](n/a s)

524 (""
525 (skosimp*)
526 (lemma "parts_order")
527 (inst −1 "a!1" "b!1" "eq_partition(a!1,b!1,2^m!1+1)" "0" "i!1")
528 (("1" (ground))
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529 ("2" (typepred "i!1") (expand "eq_partition") (field 1))
530 ("3" (field 1))))

533 Riemann_integ_interval_approx.general_integ_split_TCC4: proved −
complete [shostak](n/a s)

535 (""
536 (skosimp*)
537 (typepred "g!1")
538 (ground)
539 (inst −1 "[|P!1`seq(0), P!1`seq(i!1)|]" "1")
540 (("1" (expand "integ_inclus_fun?") (ground))
541 ("2"
542 (expand "StrictInterval?")
543 (lemma "parts_order")
544 (inst −1 "a!1" "b!1" "eq_partition(a!1,b!1,2^m!1+1)" "0" "i!1")
545 (("1" (ground))
546 ("2" (typepred "i!1") (expand "eq_partition") (field 1))))))

549 Riemann_integ_interval_approx.general_integ_split: proved −
complete [shostak](n/a s)

551 (""
552 (assert)
553 (skolem!)
554 (flatten)
555 (induct "i")
556 (("1" (expand "sum_n_split") (ground))
557 ("2"
558 (skosimp*)
559 (name−replace "P_1" "eq_partition")
560 (case " integral(P_1(a!1, b!1, 1 + 2 ^ m!1)`seq(0),
561 P_1(a!1, b!1, 1 + 2 ^ m

!1)`seq(k!1 + 1), g!1)
= integral(P_1(a!1, b
!1, 1 + 2 ^ m!1)`seq
(0), P_1(a!1, b!1, 1 +
2 ^ m!1)`seq(k!1), g
!1)+ integral(P_1(a!1,
b!1, 1 + 2 ^ m!1)`seq
(k!1), P_1(a!1, b!1, 1
+ 2 ^ m!1)`seq(k!1 +
1), g!1) ")

562 (("1"
563 (rewrite −3)
564 (case "sum_n_split(a!1, b!1, m!1, k!1 + 1, g!1)= sum_n_split(a

!1, b!1, m!1, k!1, g!1) +integral(P_1(a!1, b!1, 1 + 2 ^ m
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!1)`seq(k!1), P_1(a!1, b!1, 1 + 2 ^ m!1)`seq(k!1 + 1), g!1)
")

565 (("1" (assert))
566 ("2"
567 (case " integral(P_1(a!1, b!1, 1 + 2 ^ m!1)`seq(0),
568 P_1(a!1, b!1,

1 + 2 ^ m
!1)`seq(k
!1 + 1), g
!1)=
sum_n_split
(a!1, b!1,
m!1, k!1

+ 1, g!1)
")

569 (("1" (propax))
570 ("2"
571 (hide 1)
572 (both−sides −
573 "integral(P_1(a!1, b!1, 1 + 2 ^ m!1)`seq(k!1),P_1(a!1, b

!1, 1 + 2 ^ m!1)`seq(k!1 + 1), g!1)"
574 −1)
575 (("1"
576 (field −1)
577 (hide 2)
578 (case−replace
579 " sum_n_split(a!1, b!1, m!1, k!1, g!1)=integral(P_1(a

!1, b!1, 1 + 2 ^ m!1)`seq(0), P_1(a!1,b!1, 1 + 2 ^ m
!1)`seq(1 + k!1), g!1) −integral(P_1(a!1, b!1, 1 + 2
^ m!1)`seq(k!1),P_1(a!1, b!1, 1 + 2 ^ m!1)`seq(1 +

k!1), g!1) ")
580 (("1"
581 (field 1)
582 (expand 'sum_n_split '1)
583 (case−replace
584 " sum_n_split(a!1, b!1, m!1, k!1, g!1)=integral(P_1(a

!1, b!1, 1 + 2 ^ m!1)`seq(0), P_1(a!1,b!1, 1 + 2 ^
m!1)`seq(1 + k!1), g!1) −integral(P_1(a!1, b!1, 1
+ 2 ^ m!1)`seq(k!1),P_1(a!1, b!1, 1 + 2 ^ m!1)`
seq(1 + k!1), g!1) ")

585 (field 1)
586 (field 1)
587 (assert)
588 (expand 'p_1 '1)
589 (propax))
590 ("2" (assert))))
591 ("2" (field 1))))))))
592 ("2"
593 (lemma "integral_split[real]")
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594 (("1"
595 (inst −1 "P_1(a!1, b!1, 1 + 2 ^ m!1)`seq(0)"
596 "P_1(a!1, b!1, 1 + 2 ^ m!1)`seq(k!1)"
597 "P_1(a!1, b!1, 1 + 2 ^ m!1)`seq(k!1 + 1)" "g!1")
598 (case "P_1(a!1, b!1, 1 + 2 ^ m!1)`seq(0) <
599 P_1(a!1, b!1, 1 + 2 ^

m!1)`seq(k!1)
600 AND
601 P_1(a!1, b!1, 1 + 2 ^

m!1)`seq(k!1) <
602 P_1(a!1, b!1, 1 + 2

^ m!1)`seq(k!1 +
1)

603 AND
604 integrable?(P_1(a!1,

b!1, 1 + 2 ^ m
!1)`seq(0),

605 P_1(a!1,
b!1,
1 +
2 ^ m
!1)`
seq(k
!1),
g!1)

606 AND
607 integrable?(P_1(a

!1, b!1, 1 + 2 ^
m!1)`seq(k!1),

608 P_1(a
!1,
b!1,
1 +
2 ^
m

!1)`
seq(
k!1
+ 1)
, g
!1)
")

609 (("1" (assert))
610 ("2"
611 (lemma "parts_order")
612 (inst?)
613 (assert)
614 (lemma "parts_order")
615 (expand "P_1")
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616 (inst −1 "a!1" "b!1" "eq_partition(a!1, b!1, 1 + 2 ^ m!1)"
617 "k!1" "k!1+1")
618 (("1"
619 (assert)
620 (hide−all−but 1)
621 (typepred "g!1")
622 (inst −1
623 "[|eq_partition(a!1,b!1,1+2^m!1)`seq(0),eq_partition(a

!1,b!1,1+2^m!1)`seq(k!1)|]"
624 "1")
625 (("1"
626 (expand 'integ_inclus_fun? '−1)
627 (assert)
628 (ground)
629 (hide −2)
630 (typepred "g!1")
631 (inst −1
632 "[|eq_partition(a!1,b!1,1+2^m!1)`seq(k!1),

eq_partition(a!1,b!1,1+2^m!1)`seq(1+k!1)|]"
633 "1")
634 (("1" (expand 'integ_inclus_fun? '−1) (assert))
635 ("2"
636 (expand 'strictinterval? '1)
637 (lemma "parts_order")
638 (inst −1 "a!1" "b!1" "eq_partition(a!1,b!1,1+2^m!1)"
639 "k!1" "k!1+1")
640 (("1" (assert))
641 ("2"
642 (expand 'eq_partition '1)
643 (typepred "k!1")
644 (field 1))))
645 ("3" (expand 'eq_partition '1) (field 1))
646 ("4" (expand 'eq_partition '1) (field 1))))
647 ("2"
648 (expand 'strictinterval? '1)
649 (lemma "parts_order")
650 (inst −1 "a!1" "b!1" "eq_partition(a!1,b!1,1+2^m!1)"

"0"
651 "k!1")
652 (assert))
653 ("3"
654 (expand 'eq_partition '1)
655 (typepred "k!1")
656 (field 1))))
657 ("2" (expand 'eq_partition '1) (field 1))
658 ("3" (expand 'eq_partition '1) (field 1))))))
659 ("2" (expand "connected?") (propax))))
660 ("3"
661 (typepred "g!1")
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662 (inst −1
663 "[|P_1(a!1, b!1, 1 + 2 ^ m!1)`seq(k!1),P_1(a!1, b!1, 1 + 2 ^

m!1)`seq(1+k!1) |]"
664 "1")
665 (("1" (expand "integ_inclus_fun?") (assert))
666 ("2"
667 (lemma "parts_order")
668 (expand 'strictinterval? '1)
669 (inst −1 "a!1" "b!1" "eq_partition(a!1,b!1,1+2^m!1)" "k!1"
670 "1+k!1")
671 (("1" (assert) (ground) (expand "P_1") (propax))
672 ("2" (expand 'eq_partition '1) (field 1))
673 ("3" (expand 'eq_partition '1) (field 1))))))
674 ("4"
675 (lemma "parts_order")
676 (inst −1 "a!1" "b!1" "eq_partition(a!1,b!1,1+2^m!1)" "k!1"
677 "1+k!1")
678 (("1" (expand "P_1") (assert))
679 ("2" (expand 'eq_partition '1) (field 1))
680 ("3" (expand 'eq_partition '1) (field 1))))
681 ("5" (expand 'p_1 '1) (expand 'eq_partition '1) (field 1))
682 ("6" (expand 'p_1 '1) (expand 'eq_partition '1) (field 1))
683 ("7" (expand 'p_1 '1) (expand 'eq_partition '1) (field 1))))
684 ("3"
685 (typepred "g!1")
686 (skosimp*)
687 (inst −1
688 "[|eq_partition[real](a!1, b!1, 1 + 2 ^ m!1)`seq(0),

eq_partition[real](a!1, b!1, 1 + 2 ^ m!1)`seq(i!2)|]"
689 "1")
690 (("1" (expand "integ_inclus_fun?") (assert))
691 ("2"
692 (expand "StrictInterval?")
693 (lemma "parts_order")
694 (inst −1 "a!1" "b!1" "eq_partition(a!1,b!1,1+2^m!1)" "0" "i

!2")
695 (assert))))
696 ("4"
697 (skosimp*)
698 (lemma "parts_order")
699 (inst −1 "a!1" "b!1" "eq_partition(a!1,b!1,1+2^m!1)" "0" "i!2")
700 (assert))
701 ("5" (skosimp*) (typepred "i!2") (expand "eq_partition") (field

1))
702 ("6" (assert)) ("7" (expand 'eq_partition '1) (propax))
703 ("8" (field 1))))

706 Riemann_integ_interval_approx.general_integ_splitâĆĄ_TCC1: proved −
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complete [shostak](n/a s)

708 (""
709 (skosimp*)
710 (typepred "g!1")
711 (inst?)
712 (inst −1 "1")
713 (ground)
714 (expand "integ_inclus_fun?")
715 (propax))

718 Riemann_integ_interval_approx.general_integ_splitâĆĄ_TCC2: proved −
complete [shostak](n/a s)

720 (""
721 (induct "m")
722 (("1" (typepred "m!1") (propax)) ("2" (typepred "m!1") (propax))
723 ("3" (ground))
724 ("4"
725 (skosimp*)
726 (ground)
727 (("1"
728 (field 1)
729 (typepred "j!1")
730 (field 1)
731 (case " 2^(1+j!1)= 2*2^(j!1)")
732 (("1" (rewrite −1) (lazy−grind)) ("2" (lazy−grind))))
733 ("2" (lazy−grind))))))

736 Riemann_integ_interval_approx.general_integ_splitâĆĄ: proved −
complete [shostak](n/a s)

738 (""
739 (lemma "general_integ_split")
740 (skolem!)
741 (inst −1 "lb(X!1)" "ub(X!1)" "g!1" " m!1")
742 (assert)
743 (musimp)
744 (("1"
745 (inst −1 "2^m!1")
746 (lemma "simple_two")
747 (inst?)
748 (case "eq_partition(lb(X!1), ub(X!1), 1 + 2 ^ m!1)`seq(0)= lb(X

!1)")
749 (("1"
750 (case "eq_partition(lb(X!1), ub(X!1), 1 + 2 ^ m!1)`seq(2^m!1)=

ub(X!1)")
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751 (("1"
752 (case " ub(X!1)=eq_partition(lb(X!1), ub(X!1), 1 + 2 ^ m!1)`

seq(2^m!1)")
753 (("1"
754 (case " lb(X!1)=eq_partition(lb(X!1), ub(X!1), 1 + 2 ^ m

!1)`seq(0)")
755 (("1" (hide −3) (hide −3) (rewrite −1) (rewrite −2) (

ground))
756 ("2" (ground))))
757 ("2" (ground))))
758 ("2" (ground))))
759 ("2" (ground))))
760 ("2" (ground) (typepred "X!1") (expand "StrictInterval?") (propax

))))

763 Riemann_integ_interval_approx.trivial: proved − complete [shostak](
n/a s)

765 ("" (skosimp*) (lazy−grind))

768 Riemann_integ_interval_approx.Fundamental_Riemann_inclusionâĆĄ_TCC1
: proved − complete [shostak](n/a s)

770 ("" (subtype−tcc))

773 Riemann_integ_interval_approx.Fundamental_Riemann_inclusionâĆĄ_TCC2
: proved − complete [shostak](n/a s)

775 ("" (subtype−tcc))

778 Riemann_integ_interval_approx.Fundamental_Riemann_inclusionâĆĄ_TCC3
: proved − complete [shostak](n/a s)

780 (""
781 (skosimp*)
782 (expand "StrictInterval?")
783 (lemma "parts_order")
784 (inst −1 "lb(X!1)" "ub(X!1)" "eq_partition(lb(X!1),ub(X!1),2^m

!1+1)"
785 "i!1−1" "i!1")
786 (("1" (ground) (ground) (rewrite −2) (ground) (lazy−grind))
787 ("2" (expand "eq_partition") (typepred "i!1") (field 1))
788 ("3" (expand "eq_partition") (typepred "i!1") (field 1))))
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791 Riemann_integ_interval_approx.Fundamental_Riemann_inclusionâĆĄ:
proved − complete [shostak](n/a s)

793 (""
794 (skosimp*)
795 (assert)
796 (induct "i")
797 (("1"
798 (lemma "Integ_inclusionâĆČ_f")
799 (skosimp*)
800 (expand "sum_n_split")
801 (expand "RiemannSum_R2I")
802 (expand "R")
803 (simplify)
804 (assert)
805 (assert)
806 (inst?)
807 (hide−all−but 1)
808 (use "expt_ge1")
809 (assert)
810 (lemma "Integ_inclusionâĆČ_f")
811 (simplify)
812 (inst?)
813 (inst −1 "g!1" "n!1" "lb(X!1)")
814 (assert)
815 (inst −1 "1")
816 (musimp)
817 (("1"
818 (inst?)
819 (("1" (ground)) ("2" (typepred "Eval!1") (inst −1 "1") (ground

))))
820 ("2" (expand "##") (ground))))
821 ("2"
822 (skosimp*)
823 (inst?)
824 (expand "sum_n_split" 1)
825 (expand "RiemannSum_R2I" 1)
826 (case "integral(lb([|finseq_appl[closed_interval[real](lb(X!1),

ub(X!1))](eq_partition(lb(X!1), ub(X!1), 1 + 2 ^ m!1))(k!1),
finseq_appl[closed_interval[real](lb(X!1), ub(X!1))](
eq_partition(lb(X!1), ub(X!1), 1 + 2 ^ m!1)) (1 + k!1)|]), ub
([|finseq_appl[closed_interval[real](lb(X!1), ub(X!1))](
eq_partition(lb(X!1), ub(X!1), 1 + 2 ^ m!1))(k!1),finseq_appl
[closed_interval[real](lb(X!1), ub(X!1))](eq_partition(lb(X
!1), ub(X!1), 1 + 2 ^ m!1))(1 + k!1)|]),g!1) ## R(lb(X!1), ub
(X!1), m!1, 1 + k!1, n!1, Eval!1)")

827 (("1"
828 (lemma "Add_inclusion")
829 (inst −1 "R(lb(X!1), ub(X!1), m!1, 1 + k!1, n!1, Eval!1)"
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830 "RiemannSum_R2I(lb(X!1), ub(X!1), m!1, k!1, n!1, Eval!1, R)"
831 "integral(lb
832 ([|finseq_appl[closed_interval[real](

lb(X!1), ub(X!1))]
833 (eq_partition(lb(X!1), ub(X!1),

1 + 2 ^ m!1))(k!1),
834 finseq_appl[closed_interval[real](

lb(X!1), ub(X!1))]
835 (eq_partition(lb(X!1), ub(X!1),

1 + 2 ^ m!1))
836 (1 + k!1)|]),
837 ub
838 ([|finseq_appl[closed_interval[real](

lb(X!1), ub(X!1))]
839 (eq_partition(lb(X!1), ub(X!1),

1 + 2 ^ m!1))(k!1),
840 finseq_appl[closed_interval[real](

lb(X!1), ub(X!1))]
841 (eq_partition(lb(X!1), ub(X!1),

1 + 2 ^ m!1))
842 (1 + k!1)|]),
843 g!1)"
844 "sum_n_split(lb(X!1), ub(X!1), m!1, k!1, g!1)")
845 (assert))
846 ("2"
847 (hide 2)
848 (expand "R")
849 (lemma "Integ_inclusionâĆČ_f")
850 (inst?)
851 (inst −1 "g!1" "n!1"
852 "lb([|finseq_appl[closed_interval[real](lb(X!1), ub(X!1))]
853 (eq_partition(lb(X!1), ub(X!1)

, 1 + 2 ^ m!1))
854 (k!1),
855 finseq_appl[closed_interval[real](

lb(X!1), ub(X!1))]
856 (eq_partition(lb(X!1), ub(X!1)

, 1 + 2 ^ m!1))
857 (1 + k!1)|])")
858 (assert)
859 (inst −1 "k!1+1")
860 (("1"
861 (ground)
862 (("1"
863 (inst?)
864 (typepred "Eval!1")
865 (inst −1 "k!1+1")
866 (("1" (ground)) ("2" (lemma "trivial") (inst? −1) (ground)

)))
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867 ("2"
868 (hide 2)
869 (expand "##")
870 (ground)
871 (lemma "parts_order")
872 (lemma "parts_order")
873 (inst −1 "lb(X!1)" "ub(X!1)"
874 "eq_partition(lb(X!1),ub(X!1),2^m!1+1)" "k!1" "k!1+1")
875 (("1" (ground))
876 ("2" (typepred "k!1") (expand "eq_partition") (field 1)))

)))
877 ("2"
878 (field 1)
879 (ground)
880 (hide 2)
881 (hide −2)
882 (field)
883 (lemma "trivial")
884 (inst?)
885 (ground))))))
886 ("3" (typepred "X!1") (expand "StrictInterval?") (assert))
887 ("4"
888 (skosimp*)
889 (expand "StrictInterval?")
890 (lemma "parts_order")
891 (inst? −1)
892 (inst −1 "i!3")
893 (ground))
894 ("5" (skosimp*) (typepred "i!3") (expand "eq_partition") (field))
895 ("6" (typepred "X!1") (skosimp*) (expand "StrictInterval?") (

propax))
896 ("7" (skosimp*) (expand "eq_partition") (typepred "i!3") (field))
897 ("8" (use "expt_ge1"))))

900 Riemann_integ_interval_approx.Simple_Riemann_Soundness_TCC1: proved
− complete [shostak](n/a s)

902 (""
903 (skosimp*)
904 (lemma "parts_order")
905 (ground)
906 (inst?)
907 (ground)
908 (typepred "X!1")
909 (hide−all−but (−1 1))
910 (expand "StrictInterval?" −1)
911 (lemma "parts_order")
912 (ground)
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913 (inst?)
914 (typepred "X!1")
915 (hide−all−but (−1 1))
916 (expand "StrictInterval?" −1)
917 (lemma "parts_order")
918 (inst?)
919 (inst?)
920 (expand "StrictInterval?")
921 (assert)
922 (lemma "parts_order")
923 (ground)
924 (inst?)
925 (ground))

928 Riemann_integ_interval_approx.Simple_Riemann_Soundness: proved −
complete [shostak](n/a s)

930 (""
931 (skosimp*)
932 (assert)
933 (skosimp*)
934 (lemma "Fundamental_Riemann_inclusion1")
935 (inst?)
936 (inst −1 "X!1" "g!1" "n!1")
937 (assert)
938 (inst −1 "2^m!1")
939 (inst −1 "Eval!1")
940 (case "integral(lb(X!1), ub(X!1), g!1) = sum_n_split(lb(X!1), ub(X

!1), m!1, 2 ^ m!1, g!1)")
941 (("1" (rewrite −1)) ("2" (lemma "general_integ_split1") (inst?))))
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Appendix D
Binary agreement protocol

D.1 PSS Binary Agreement Rings
In this section, we use theorem proving techniques to generalize a small synthesized
agreement protocol on a unidirectional ring (presented in [25]) that is weakly stabi-
lizing for any 3 ≤ n ≤ 6, where n is the number of processes. First, we introduce the
agreement protocol.

Example D.1.1. The agreement protocol, denoted AG(n), includes n > 2 processes
located on a unidirectional ring. Each process pj has a variable cj with a domain
Dom = {0, 1}. Thus, AG(n) has the set of variables VAG(n) = {c0, c1, ..., cn−1}.
Each process can read but not write its left neighbor; i.e., Readp = {cj	1, cj} while
Writep = {cj}. Each process has the following parameterized action:

Aj : cj	1 < cj → cj := cj	1 (D.1)

If the variable cj has a value greater than its predecessor then the process pj sets the
value of cj to cj	1 (which is equal to 0 due to the binary domain). A legitimate state
of the AG(n) protocol is a state where all variables have the same value. Let I denote
the set of legitimate states of AG(n). If the condition (cj	1 < cj) holds for a process
j, then we call it a locally corrupted process; otherwise, we say the protocol is silent
at process j.

D.1.1 PVS Specification of AG(n)
In our PVS specification of AG(n) there are n processes, where n is a theory parameter
of type positive natural numbers, denoted posnat. We assume that n > 2. We define
the type Bin: below[2] to capture the domain of binary variables. Moreover, we
formalize a global state of AG(n) as a finite binary sequence of length n; i.e., STC:
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NONEMPTY_TYPE {s:finseq (Bin) | s‘length=n}. Furthermore, since each variable cj
has two pieces of information namely the process position and its value, we model its
type by a tuple ndx_varb:TYPE+=[Bin,below[n]].

D.1.1.1 Specifying the Processes

We define the set of readable variables of a process pj by the function READp.

Definition D.1.1. READ_p(s:STC, j:below[n]): set[ndx_varb]= {L:(ValPos(s, j 	 i))
| i=0,1}, where 	 denotes subtraction modulo 2.

Similarly, we define the set of writable variables of process j by the function
WRITEp.

Definition D.1.2. WRITE_p(s:STC,j:below[n]): set[ndx_varb]= {L:ndx_varb | L =
ValPos(s, j)}

Finally, we define the set of transitions of each process pj as the set of all possible
transitions generated by the action function of pj. The action function will not be
activated on a process j unless the state was locally corrupted at process j. We
define the function action(s, j) such that a locally corrupted state s at process j will
be mapped non-deterministically to the state generated by action(s, j).

2 action(s:{ state:STC| not is_LEGT?(state)},j:below[n]): STC = TABLE
3 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
4 |not is_LEGT?(s) | (# length := n,seq := (LAMBDA (i:below[n]):
5 IF (i=j and LocallyCorrupted?(s,i) )
6 THEN 0 ELSE s`seq(i) ENDIF) #) ||
7 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
8 |is_LEGT?(s) | ||
9 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

10 ENDTABLE

Listing D.1: action of binary agreement protocol at process j

DELTA_p(s, j) captures the set of transitions of a process j originated at a global
state s.

Definition D.1.3. DELTA_p(s:S_ill, j:below[n]): set[Transition] = { tr: Transition |
active_LocallyCorrupted?(s,j) ∧ tr = (s, action(s,j)) }

For an arbitrary global state s, we now define a process of AG(n).

Definition D.1.4. PRS_p(s:STC,j:below[n]): p_process = (READ_p(s,j), WRITE_p(s,j),
DELTA_p(s,j))
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D.1.1.2 Specifying the Parameterized Protocol AG(n)

We parameterize the definition of the protocol AG(n) with an arbitrary illegitimate
state s. To capture the set of processes of the AG(n) protocol, we define the function
PROC_prt as follows:

Definition D.1.5. PROC_prt(s:STC): set[p_process]={p:p_process | ∃ (j:below[n]): p
= PRS_p(s,j) }

The function VARB_prt returns the set of variables of the protocol AG(n).

Definition D.1.6. VARB_prt(s:S_ill): set[ndx_varb]= {v:ndx_varb | ∃ (j:below[n]):v
∈ WRITE_p(s,j))}

Likewise, the function DELTA_prt returns the set of transitions of the protocol
AG(n).

Definition D.1.7. DELTA_prt(s:STC): set[Transition]= {tr:Transition | ∃ (j:below[n]):
tr ∈ DELTA_p(s,j)}

Thus, starting from an initial state s the formalization of AG(n) is given by
defining AG(n) as a function of type nd_Protocol with the images of READ_prt,
WRITE_prt and DELTA_prt functions over the state s as the components of AG(n).

AG_n_s: nd_Protocol= ( PROC_prt(s), VARB_prt(s), DELTA_prt(s) )

D.1.2 Weak Stabilization of AG(n)
In this section, we show that the Add_Weak algorithm generates a weakly stabilizing
version of the protocol AG(n) for any n > 2. To this end, we build a similar proof of
coloring protocol by showing that AG(n) has a recursive constructor function.

This implicitly means that from any state outside the set of legitimate states I
of the protocol AG(n) (for any n > 2), there exists a prefix that reaches I. (PVS
specifications and proofs of binary agreement are available at https://sites.google.
com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/Bin_Agreemen_n)

https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/Bin_Agreemen_n
https://sites.google.com/a/mtu.edu/amertahatpvs/fault-tolerance-ss-protocols/Bin_Agreemen_n
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Appendix E
Copyright Documentation

The animation in Chapter 8, Fig 8.1 was created by Dr.Kapil Sheth, Aviation System
Division, NASA Ames research center, Mofett field, CA, USA. Using NASA’s Future
Air Traffic Management Tool (FACET), data from Federal Aviation Administration’s
Enhanced Traffic Management System (ETMS). Material in the public domain 1,
includes material created by employees of the federal government, can be used or
reproduced without the need for a permission.

1http://www.aviationsystemsdivision.arc.nasa.gov/research/modeling/facet.
shtml

http://www.aviationsystemsdivision.arc.nasa.gov/research/modeling/facet.shtml
http://www.aviationsystemsdivision.arc.nasa.gov/research/modeling/facet.shtml
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