
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2021

Modeling Human Visual Detection Using Deep Networks Modeling Human Visual Detection Using Deep Networks

Zach DeKraker
Michigan Technological University, zbdekrak@mtu.edu

Copyright 2021 Zach DeKraker

Recommended Citation Recommended Citation
DeKraker, Zach, "Modeling Human Visual Detection Using Deep Networks", Open Access Master's Report,
Michigan Technological University, 2021.
https://doi.org/10.37099/mtu.dc.etdr/1312

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Artificial Intelligence and Robotics Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/1312
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1312&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1312&utm_medium=PDF&utm_campaign=PDFCoverPages

MODELING HUMAN VISUAL DETECTION USING DEEP NETWORKS

By

Zachary B. DeKraker

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2021

© 2021 Zachary B. DeKraker

This report has been approved in partial fulfillment of the requirements for the Degree

of MASTER OF SCIENCE in Computer Science.

College of Computing

Report Advisor: Dr. Timothy Havens

Committee Member: Dr. Laura Brown

Committee Member: Dr. Tony Pinar

Department Chair: Dr. Linda Ott

Abstract

The work in this report describes the use of machine learning to model human visual

detection. This is in contrast to typical machine learning models, which seek to opti-

mize detection performance overall, e.g., precision versus recall or F1 scores. Instead

the goal is to develop models that can accurately match humans’ abilities to detect

objects in images. Modeling human performance in tasks has long been a benchmark

for artificial intelligence (AI), from computerized chess to conversational robots. Un-

til recently, the goal of AI has been to match human performance in complex tasks,

with the assumption that human performance is an attainable goal. But there are

many AI algorithms that have far surpassed humans in, for example, object detection

in large image databases or games such as Go. What is different about this work

is that the objective is to accurately model humans’ performance in visual detec-

tion tasks, with the supporting task of knowledge discovery on how humans interpret

complex images to detect objects. To accomplish this, deep learning architectures

designed for image classification are adapted, extending these architectures to pre-

dict detection statistics of human observers. Results comparing human performance

against machine performance indicate a strong correlation of the human and machine.

Furthermore, explainable AI (XAI) methods demonstrate that the machine learning

algorithms are interpreting the images in intuitive ways, which supports the notion

that the algorithms are learning an accurate representation of how humans interpret

v

images for object detection.

vi

Chapter 1

Introduction & Goals

Neural networks have become progressively more effective in their various domains.

Many applications of machine learning and neural networks aim to exceed human

capabilities in things like identifying cancerous cells [1], but in this study my objective

is trying to match, rather than exceed, human performance in an observation task.

That is, given a set of data that were presented to human volunteers, can the network

learn which images had objects that most volunteers were able to identify, and can

the network estimate how many were able to identify it? A fair amount of work has

already been done on looking at various aspects of human visual perception. For

instance, Yuan and Li [2] developed a testing method and a model to test various

user interface (UI) designs and predict how long it would take users to identify a

particular object amongst clutter, which would likely be of great interest to websites

1

that generate revenue via advertisements. Another study published by Dodge and

Karam [3] compared how well humans were able to correctly classify noisy images

against how well a trained network did with those same images. These are very

interesting topics, but they do not look at the first of the three main focuses this

project addresses, which is that of predicting the probability that a human will be

able to see a given object. Development of a model that accurately mimics a large base

of volunteers will greatly decrease the cost of obtaining similar probability estimates

for future images (by limiting the number of necessary human volunteers), and will

do so at much greater speed.

The second problem this project looks at is ordinal classification. Ordinal classifica-

tion has received a fair amount of attention in literature. Multi-view max pooling [4]

has been introduced as a technique to increase data augmentation capabilities and

improve network performance on ordinal tasks with respect to images. For instance,

improving the classification of the relative age (young, middle-aged, old) of a person

in an image. Frank et al. [5] also looked at the task of ordinal classification, but took

the route of training (C − 1) classifiers, where C represents the number of classes,

effectively making the problem one-versus-all. Perhaps the most relevant publication,

by Cardoso et al. [6], describes the the most similar approach to that explored in this

report, which is that of considering predicted classes farther away from the correct

class as worse predictions than those closer to the correct class. Unfortunately, [6]

2

focuses more on calculating the error of poorly ordered class predictions. In the prob-

lem domain faced in this project, the network is not predicting a class order, so the

problem becomes evaluating error where classes have some inherent numerical value

such that, given an image and an observed Probability of Detection (Pd), e.g., 0.0, a

prediction vector representing 0.1 produces a more optimal loss value than that of a

prediction vector representing 0.5.

The third and final area of focus is incorporation of explainable AI (XAI). There

are several legends about networks that achieved incredible training accuracy only to

be completely thwarted by the testing set due to some minor difference the network

engineers never considered. Incorporating XAI provides evidence that the network is

not training on irrelevant image features.

Some of the material in this report was published in [7].

3

Chapter 2

Methods

2.1 Data

The data used for this project consist of renders of an environment and an object

within that environment, which varied across the horizontal-axis but with a fixed

vertical coordinate at half the image height. The image is then mirrored horizontally,

and these two images are then presented to a human observer for a short time (∼ 2

seconds). The volunteer must decide if an object exists in one of the two images, and

if so, respond by pressing a button indicating which side they believe the object to be

on. The probability of detection (Pd) of an object can then be calculated by dividing

the total number of true positives by the sum of true positives and false negatives.

5

Figure 2.1: Human observation testing data - mirrored asphalt image with
crack shown in right image

The aggregated Pd of the human subjects is used as the truth data for this project,

while the corresponding images with an object in them are used for the prediction

input. Figure 2.1 shows human testing imagery, while Figure 2.2 shows the type of

image that would be used to train the network. Volunteers would be asked to identify

which half of Figure 2.1 contains the crack in the asphalt, if indeed they believe there

is a crack on one of the two sides. In this case, because the crack is quite obvious,

it is reasonable to assume the observed Pd, corresponding to the training image in

Figure 2.2, would be 1.0. Thus, Figure 2.2 and the value 1.0 would form one training

sample.

2.2 Network Architecture

A convolutional neural network (CNN) was a natural solution to solve the problem

that involved training on images. A great deal of work has already been done in

6

Figure 2.2: Training sample corresponding to human tested image in Fig-
ure 2.1

optimizing network architectures for image recognition problems, and so a trans-

fer learning approach was used to compare models that leveraged Xception [8] and

ResNet50 [9]. However, the high resolution of the input images, compared to the sizes

of the training sets for which Xception and ResNet50 were designed, necessitated the

addition of extra input layers to “down-sample” the image; albeit the down-sampling

function is a learned attribute of the network. ResNet50 accepts 224× 224 images as

input, and Xception accepts 299× 299 images, so the training image from our study

was zero-padded to a square shape of 1196 × 1196 for Xception or 1120 × 1120 for

ResNet50, and then down-sampled using a two-dimensional convolutional layer with

3 filters to match each network’s native input size. Furthermore, the different prob-

lem domain that Xception and ResNet50 were intended for required a change in the

classification layers of these networks. Both Xception and ResNet50 were designed

7

Figure 2.3: One input architecture

for multiclass classification, not regression. Thus, the final dense layers of these net-

works were removed and replaced with a new dense layer. For solving the problem

via regression, only a single output node was used with a sigmoid activation. For the

ordinal problem, 101 nodes were used with a softmax activation. These extra layers

can be seen sandwiching the blocks labeled “Functional” in Figures 2.3–2.4.

Two approaches to predicting the Pd were explored. The first such paradigm in-

volved one output neuron activated by a sigmoid function. The second paradigm was

8

Figure 2.4: Parallel architecture

designed for ordinal classification using a softmax activation with 101 output neu-

rons. In addition, an alternative architectural paradigm was explored, in which two

instances of a pretrained network exist on parallel dataflows through the network.

Thus, such a design trains on two inputs, one full resolution input, and that same

full resolution input cropped to a pretrained network’s native size centered around

the object, based off the assumption that a perfect object detector would be able

to provide such an input. This two-input architecture has been dubbed the parallel

9

path architecture. This gives a total of 8 different network architectures that are com-

pared in Chapter 3. These architectures are referred to as X-to-Y networks, where

X indicates the number of inputs, with 2 being the parallel path architecture, and

Y denoting the number of outputs, with 1 referring to the sigmoid regression net-

work and 101 referring to the ordinal classification network. Figures 2.3 and 2.4 show

Keras-generated plots of the general shapes of the one- and two-input architectures,

with “Functional” referring to the spot in the architecture where either a pretrained

Xception or ResNet50 model would be inserted, and the final “Dense” layer designed

to have either 1 or 101 output neurons.

2.3 Ordinal Classification

The idea behind ordinal classification is to get a measure of the level of confidence of

the network. The way this works is by using a one-hot encoded vector instead of a

single continuous value. Pd values from 0 to 1 are mapped to equally-spaced classes,

say (0, 0.1, . . . , 0.9, 1). Thus, the regression problem transforms into a classification

problem where the ith class represents a Pd of i
n
, i = 0, 1, . . . , n. A single Pd can

still be predicted by taking the class with the maximum score, but the distribution of

scores around the predicted class can provide a measure of confidence in the predic-

tion, demonstrated by the amount of spread in Figures 2.5 and 2.6. In 2.6, the highest

scoring classes are clustered around roughly 90%, showing that the network calculates

10

a very high probability that the true Pd is somewhere within 90%±5. Conversely, 2.5

shows a distribution in which there is no particularly strong clustering of scores. To

reach the same level of assurance that the network had when making the prediction

for 2.6, the upper and lower bounds are much further apart, indicating a significantly

lower level of certainty in the prediction. Note that the predicted probability distribu-

tion can only be interpreted as such because there is an ordering relation between all

the classes. In most classification problems, there is no such meaningful relation be-

tween adjacent classes. Consider a small example using 4 classes. Given y = [1, 0, 0, 0]

and two theoretical predictions, ŷ1 = [0, 0, 0, 1] and ŷ2 = [0, 1, 0, 0], calculating the

MSE of ŷ1 and ŷ2 yields f(y, ŷ1) = f(y, ŷ2) = 0.5 (where f(·) represents MSE), and

categorical crossentropy produces g(y, ŷ1) = g(y, ŷ2) ≈ 16.12 (where g(·) represents

categorical crossentropy). The problem with existing loss functions, such as those

discussed here, is that the error is calculated based on whether a class is predicted

correctly or not, and pays no regard to how close the predicted class is to the true

class. In traditional classification tasks, this approach makes sense. There is no order-

ing relation between classes that represent a boat and a pomegranate. Consequently,

the network is either correct or incorrect, and there is no degree of incorrectness to

consider. However, such an ordering relation does exist in the ordinal classification

task discussed here. To resolve this issue, a new loss function called Squared Ordinal

11

Loss is introduced, which is defined as

LORD =
K∑
k=1

((Cy)kŷk)2, (2.1)

where y is a one-hot encoded vector (rounded to the nearest percentage point) indi-

cating what the observed Pd is in terms of classes, and ŷ is the network’s prediction.

C is a K×K weight matrix that allows for the ordering relation between classes to be

accounted for by linearly applying more weight to classes farther away from the true

class according to Cij = |i− yj|, though one could imagine using any weight mapping

appropriate for their problem. Multiplying C by y retrieves the correct weight vector

from C and applies those weights to the prediction. Summing the squares of the

weighted predictions provides a loss for the training sample. Considering the above

example, where y = [1, 0, 0, 0], the weight matrix is

C =



0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0


,

and multiplying by y reduces the matrix into the appropriate weight vector C0 =

[0, 1, 2, 3]. Thus, a prediction of y1 should be calculated to be much worse than a

prediction of y2. Indeed, calculating these losses shows that LORD(y1) = 0+0+0+3 =

3 > LORD(y2) = 0 + 1 + 0 + 0 = 1. A sample weight vector extracted from the weight

12

Figure 2.5: Low confidence ordinal prediction

matrix used during training is shown in Figure 2.7 with a Pd truth of ŷ = 0.40. At

a prediction of y = 0.40 (the 40th class), the weight is 0, and it increases linearly as

classes continue to grow more incorrect to a maximum weight of 60 for the 101st class,

which corresponds to a Pd of 100%. Now that the ordinal loss function is defined,

the application of an XAI approach to provide interpretability of the trained deep

network will be discussed next.

13

Figure 2.6: High confidence ordinal prediction

2.4 Class Activation Mapping

Class activation mapping (CAM) [10] is an XAI technique that can be used to vi-

sualize the pixels that most impact a network’s prediction. Shown in Figure 2.8 is

an example heatmap generated using CAM on an unmodified Xception network. As

this figure shows, the pixels in the image that contributed most significantly to the

classification—shown as white and gray colors—are concentrated around the rivet

and blades.

14

Figure 2.7: Sample Weight Vector for a 0.40 Pd

Figure 2.8: CAM with Xception on a pair of scissors

15

This technique was applied to the data using a 1-to-1 Xception-based architecture,

and in the majority of cases, CAM produced a circular heatmap centered on the

object which Figure 2.11 demonstrates. The instances in which it did not were images

where the object was nearly invisible, coinciding with a Pd near 0.0, which Figure 2.12

demonstrates. The difference between these two high- and low-Pd heatmaps is rather

stark. The network is very tightly focused on one area of the image that has a Pd of

1.0, and is not particularly focused at all in the image with a low corresponding Pd.

Finally, to visualize the pixels that tended to be weighted most highly by the network,

an input image where all pixels had a value of 1 was used. This CAM heatmap is

depicted in Figure 2.9, and shows that the network weights pixels towards the side

of the input more heavily. A higher-resolution version shown in 2.10 upsampled to

1196× 1196 via bi-linear interpolation shows a smoother distribution of the weights.

The distributions shown agree with the majority of the object positions, which tended

to be away from the center of the image; see Figure 2.13 for a histogram of the object

locations in the image data set.

16

Figure 2.9: CAM heatmap produced from a uniform image

Figure 2.10: Upsampled version of Figure 2.9

17

Figure 2.11: High Pd (1.0) CAM Heatmap

Figure 2.12: Low Pd (0.0) CAM Heatmap

18

200 400 600 800
X coordinate

0

1000

2000

3000

4000

In
st

an
ce

 C
ou

nt

Figure 2.13: Histogram of horizontal X coordinate of object locations in
image data set

19

Chapter 3

Results and Discussion

As mentioned in Section 2.2 there are 8 different network architectures being com-

pared here, each with different base networks, different numbers of inputs, and dif-

ferent methods of classification being used. Each combination of these variables

produce one architecture, which was trained and tested using 5-fold cross validation

for 80 epochs, and with a decaying learning rate that started at 0.01 and decayed

by an order of magnitude every 20 epochs to a minimum of 1 × 10−5 at the start of

epoch 60. These parameters, including the order and contents of each fold, were held

constant across each trial to help ensure consistency in the results. In addition to

comparing the architectures instantiated with the aforementioned variables, various

weight initialization strategies are also analyzed in an effort to determine how such

strategies affect the performance of the parallel architectures. An interesting note is

21

that peak performance may include a prediction that indicates maximum uncertainty,

i.e. a Pd ≈ 0.5. The truth data in this study are calculated from the mean of human

performance, which will never approach the same surety as truth data that, for in-

stance, classifies an image as a cat or a dog. Because the probability of detection can

vary depending on where the observer happens to be looking, eye or mental fatigue

and the existence of outliers, among other factors, a perfect prediction will always

be rare, so some measure of distance between prediction and truth must be used in

every metric.

Tables 3.1 and 3.2 summarize the mean-squared-error (MSE) calculated per fold of

the 8 different architectures tested. The MSE of the regression-style networks (the

networks that used MSE to converge to a single Pd prediction in the continuous

interval [0, 1]) was calculated using

LMSE =
1

n

n∑
i=0

(y − ŷ)2 (3.1)

where y represents the truth and ŷ the prediction. The prediction and truth vectors of

the ordinal classification-style architecture (the networks which use a classification-

style approach with 101 classes representing each percentage point between 0 and

100 inclusive) were condensed into single Pd by taking the index of the class with the

greatest probability, yielding the truth index (it) and the predicted index (ip). MSE

22

Table 3.1
Xception Architectures: MSE on Validation Set for 5 Folds

1-to-1 1-to-101 2-to-1 2-to-101
Fold 1 0.154 0.033 0.025 0.033
Fold 2 0.168 0.015 0.047 0.023
Fold 3 0.158 0.020 0.044 0.021
Fold 4 0.103 0.020 0.035 0.021
Fold 5 0.136 0.033 0.039 0.020

Mean MSE 0.144 0.024 0.038 0.024
Standard Deviation 0.023 0.007 0.008 0.005

Table 3.2
ResNet50 Architectures: MSE on Validation Set for 5 Folds

1-to-1 1-to-101 2-to-1 2-to-101
Fold 1 0.058 0.184 0.063 0.207
Fold 2 0.095 0.190 0.052 0.245
Fold 3 0.143 0.178 0.041 0.304
Fold 4 0.098 0.245 0.054 0.189
Fold 5 0.153 0.177 0.051 0.188

Mean MSE 0.109 0.195 0.052 0.226
Standard Deviation 0.035 0.026 0.007 0.044

can then be applied via equation 3.1 where y = it
100

and ŷ = ip
100

.

The experiment consisted of setting up a trial for each network architecture and

different methods of instantiating the weights of those that are parallel. Each trial

consisted of training a network 5 times, with each training instance holding back a

different fold to use as a validation set. These folds were determined by splitting up

a randomized collection of references to the data into five unique and disjoint sets.

These sets were then serialized so that the same data in the same order could be

used across the different architectures. Each architecture was trained for 80 epochs

on each of the five folds, and the mean and standard deviation of the MSEs from the

23

Table 3.3
Means Over Fold MSE’s for Parallel Architecture Weight Initialization

Strategies

Ordinal Regression
ResNet50 Xception ResNet50 Xception

Random 0.2898 0.2235 0.2005 0.1138
Imagenet 0.1804 0.0204 0.0440 0.1185

Pretrained 0.2258 0.0165 0.0324 0.1120

five trials were calculated as overall measures of performance. One very important

distinction between the parallel and non-parallel architectures is that some of the

parallel architectures used base networks initialized with weights from the trained

non-parallel network, though this is not the case for all trials.

Three methods of initialization were explored for the parallel architectures. The first,

random, simply randomly initialized all weights. The second, imagenet, loaded each

subnetwork of the parallel architecture with the pretrained imagenet weights for that

network. Finally, pretrained refers to a weight initialization that used the weights

of the matching, fully trained non-parallel network. The comparison among these

results is made in Table 3.3. For brevity, only the arithmetic mean of the validation

loss across the five folds is shown.

To compare the results across the different architectures, an unpaired two-sample

T-test is used between the sample of means computed over the folds for the archi-

tectures being compared. The T-test shows the statistical significance of the possible

different performance, highlighting which network (and weight initialization variant

24

Table 3.4
Shaprio-Wilk P-values of Weight Initialization Strategies

Xception ResNet50
Regression Ordinal Regression Ordinal

Random 0.858 0.000 0.463 0.491
Imagenet 0.728 0.245 0.609 0.125

Pretrained 0.690 0.467 0.821 0.003

Table 3.5
Shapiro-Wilk P-values of all Explored Architectures

Architectures Xception ResNet50
1-to-1 0.419 0.595
2-to-1 0.810 0.010

1-to-101 0.2128 0.786
2-to-101 0.041 0.196

for the parallel instances) performs most optimally. Tables 3.4 and 3.5 show the

Shapiro-Wilk P-values calculated for each weight initialization strategy and architec-

ture, respectively, to show that each set of errors is roughly sufficiently normal to

proceed with the T-tests. There are some exceptions, but the data sets are generally

sufficiently normal for this test to proceed.

The tables showing the T-test comparisons display the statistical difference between

the mean of the first item listed and the mean of the second (in other words, the

statistical difference µ1 − µ2) at 95% confidence. The value contained in the cell is

a confidence interval (CI), showing what the upper and lower bounds are of that

statistical difference at 95% confidence. If µ1 > µ2 (where > represents statistically

larger), the lower bound of the CI will be greater than 0. If mu1 < µ2 (where

< represents statistically lesser) the upper bound of the CI will be less than 0. If

25

µ1 == µ2 (where == represents statistically equivalent), 0 will fall between the

CI’s upper and lower bounds. The cells which show either that a parallel design

outperformed the single-input design or that ordinal loss outperformed MSE are green.

Those that show the opposite are highlighted in red. In the instance that there is no

difference, the text will be black.

The first comparisons will be between the various weight initialization strategies ex-

plored. The results shown in Tables 3.6 and 3.7 demonstrate that for most pairings

there was no significant difference in mean performance between any pair of initial-

ization methods. This somewhat surprising as the pretrained initialization strategies

effectively received more training time, via each half of the parallel network getting

instantiated from weights obtained from a non-parallel network already trained for 80

epochs. In general, it appears that the weight initialization strategy does not greatly

affect the loss. The only situation in which an improvement is seen is in the parallel

ResNet50 regression architecture, where randomized initialization was outperformed

by alternative strategies. Given these results, it appears that weight initialization

does not play an important role, and the remaining architectural comparisons will

take place between networks instantiated with imagenet.

Tables 3.8 and 3.9 show the comparisons between the regression and ordinal net-

works, and between the parallel and non-parallel architectures respectively. Table

3.8 reveals that for all cases except one, ordinal prediction and training results in

26

Table 3.6
95% CI’s of T-tests comparing Weight Initialization Strategies for Xception

Initializations Compared CI Bounds
Regression Ordinal

Pretrained vs Imagenet (-0.015, 0.002) (-0.013, 0.006)
Pretrained vs Random (-0.017, 0.013) (-0.325, -0.089)
Imagenet vs Random (-0.010, 0.019) (-0.321, -0.085)

Table 3.7
95% CI’s of T-tests comparing Weight Initialization Strategies for ResNet50

Initializaitons Compared CI Bounds
Regression Ordinal

Pretrained vs Imagenet (-0.064, 0.155) (-0.425, 0.262)
Pretrained vs Random (-0.182, -0.153) (-0.217, 0.089)
Imagenet vs Random (-0.169, -0.143) (-0.326, 0.361)

Table 3.8
95% CI’s of T-tests comparing the Ordinal Architectures to the Regression

Architectures

Architectures Compared Xception ResNet50
1-to-1 vs 1-to-101 (0.088, 0.151) (-0.136, 0.035)
2-to-1 vs 2-to-101 (0.003, 0.025) (-0.235, -0.114)

no worse behavior than a regression-style network; the one exception being paral-

lel ordinal ResNet50. However, Table 3.9 shows that using a parallel network never

results in worse behavior. In every case it is either a performance improvement or

it makes no difference. From this, parallel ordinal Xception appears to be the best

network architecture of all those explored in this report, and indeed, looking at the

resulting means and standard deviations presented in Tables 3.1 and 3.2 reinforces

this suggestion. By performance metrics alone, ordinal loss is statistically at least as

good as MSE, and due to the extra information it can convey about the uncertainty

of a prediction, one could claim it is a more useful loss function than MSE.

27

Table 3.9
95% CI’s of T-tests comparing Parallel to Non-Parallel

Architectures Compared Xception ResNet50
1-to-1 vs 2-to-1 (0.075, 0.138) (0.009, 0.105)

1-to-101 vs 2-to-101 (0.024, 0.011) (-0.093, 0.029)

28

Chapter 4

Conclusion and Future Work

In this report, existing networks optimized for image classification tasks are leveraged

in a transfer learning approach in order to predict human visual detection perfor-

mance. Utilizing a weight visualization technique called CAM rationalized network

performance and indicated the networks behave as expected and as desired. Exper-

imenting with various weight initialization strategies showed that how weights are

initialized is irrelevant, and testing the remaining permutations of variables against

each other to find the most optimal network revealed that parallel instances of the

Xception architecture utilizing the ordinal loss function outperformed the alterna-

tives. Finally, and most significantly, a new loss function is explored that attempts

to classify an image’s probability of detection as one of 101 discrete ordered values

representing discrete bins of percentage points, allowing for a single prediction to

29

simultaneously provide information about the appropriate class and a measure of

confidence in that prediction.

In future work, exploring how scaling the number of parallel networks impacts per-

formance may yield favorable results, given that the parallel architectures generally

outperformed the non-parallel architectures. Further investigation into how the dis-

tribution of classified Pd “bins” can inform epistemic uncertainty, and the feasibility

of transforming that hyperparameter into a variable that can be learned may also

lead to interesting finds.

30

References

[1] Z. Xu and J. Huang, “Efficient lung cancer cell detection with deep convolu-

tion neural network,” in International Workshop on Patch-based Techniques in

Medical Imaging, 2015.

[2] A. Yuan and Y. Li, “Modeling human visual search performance on realistic

webpages using analytical and deep learning methods,” in CHI Conference on

Human Factors in Computing, 2020.

[3] S. Dodge and L. Karam, “A study and comparison of human and deep learning

recognition performance under visual distortion,” in 26th ICCCN, 2017.

[4] C. Zhang, X. Xu, and C. Zhu, “Image ordinal classification with deep multi-view

learning,” Electronics Letters, vol. 54, pp. 1280–82, 2018.

[5] E. Frank and M. Hall, “A simple approach to ordinal classification,” in European

Conference on Machine Learning, pp. 145–56, 2001.

31

[6] J. Cardoso and R. Sousa, “Measuring the performance of ordinal classification,”

International Journal of Pattern Recognition and Artificial Intelligence, vol. 25,

pp. 1173–95, 2011.

[7] S. Whitaker, Z. DeKraker, A. Barnard, T. Havens, and G. Anderson, “Uncertain

inference using ordinal classification in deep networks for acoustic localization,”

in IJCNN, 2021.

[8] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in

IEEE CVPR, 2017.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion,” in IEEE CVPR, 2016.

[10] B. Zhou, A. Khosla, A. Oliva, and A. Torralba, “Learning deep features for

discriminative localization,” in IEEE CVPR, 2016.

32

	Modeling Human Visual Detection Using Deep Networks
	Recommended Citation

	Abstract
	Introduction & Goals
	Methods
	Data
	Network Architecture
	Ordinal Classification
	Class Activation Mapping

	Results and Discussion
	Conclusion and Future Work
	References

