
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2020

MatlabTA: A Style Critiquer For Novice Engineering Students MatlabTA: A Style Critiquer For Novice Engineering Students

Marissa L. Walther
Michigan Technological University, mlwalthe@mtu.edu

Copyright 2020 Marissa L. Walther

Recommended Citation Recommended Citation
Walther, Marissa L., "MatlabTA: A Style Critiquer For Novice Engineering Students", Open Access Master's
Report, Michigan Technological University, 2020.
https://doi.org/10.37099/mtu.dc.etdr/981

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Educational Technology Commons, and the Software Engineering Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/981
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F981&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1415?utm_source=digitalcommons.mtu.edu%2Fetdr%2F981&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.mtu.edu%2Fetdr%2F981&utm_medium=PDF&utm_campaign=PDFCoverPages

MATLABTA: A STYLE CRITIQUER FOR NOVICE ENGINEERING STUDENTS

By

Marissa L. Walther

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2020

© 2020 Marissa L. Walther

This report has been approved in partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE in Computer Science.

Department of Computer Science

 Report Advisor: Dr. Charles Wallace

 Committee Member: Dr. Laura Brown

 Committee Member: Dr. Jon Sticklen

 Department Chair: Dr. Linda Ott

iii

Table of Contents

Acknowledgements .. iv

Abstract ..v

1 Background ..1

1.1 Engineering Fundamentals ..1

1.2 Review of MATLAB Grader ...1

2 MatlabTA ...3

2.1 Common Antipatterns Recognized By MatlabTA...3

2.2 Similarity Check ..4

2.3 Website ..5

2.4 Error Messages ..5

3 Regex ...7

3.1 MParser ..7

4 Implementation ..8

5 Future Work ...9

6 Reference List ..10

Appendix A . Copyright documentation ...11

iv

Acknowledgements

I would like to thank my advisor Dr. Wallace for providing me with the tools and

guidance necessary to work on my project. I would also like to thank Mr. Ureel for

providing me with the opportunity to work on this project, along with the Engineering

Fundamentals department for supporting me and providing us with the idea of this

project.

v

Abstract

Novice programmers, considered to be those who have yet to understand the

fundamentals of programming, exist in both engineering and computing fields. Within

computing, various resources exist to help novice programmers understand fundamentals

and style guidelines such as WebTA, a code critique program that gives Java students

feedback about their error and style issues. There is, however, a gap in automated code

critique for MATLAB, a programming language that is popular in the engineering

community. When it comes to MATLAB, there are not many programs that help novices

understand their errors, and even fewer that help them understand style guidelines. To

help assist these engineering novices, I created a program called MatlabTA. Based on

feedback from Engineering Fundamentals instructors on the most common errors they

encounter in student code, MatlabTA exists to give novices more intuitive feedback for a

few of the most common MATLAB errors, along with providing them different style

guidelines for different MATLAB antipatterns such as inconsistent tabbing and function

output variable matching. This report will provide an overview of the process in

developing MatlabTA, along with examples of the different outputs the application

produces.

1

1 Background

As technology continues to play an increasingly critical role in many aspects of everyday

life, more jobs are requiring that disciplines outside of Computer Science teach base

programming skills. One job sector that is depending more on programming is

engineering. As such, many universities are requiring their engineering students go

through different classes that teach the programming skills required to solve engineering

problems. At Michigan Tech, engineering students learn MATLAB in their Engineering

Fundamentals classes. MATLAB was chosen since it is a programming language that

was built for mathematical computation and visualization. As such, engineers and other

scientists are expected to know MATLAB or similar languages in their work. MATLAB

itself is an interpretive language that is based around functions and scripts to do things

such as machine learning, signal processing, image processing, automate tests, and

others. Those who are learning MATLAB, whether experienced in other programming

languages or not, struggle with learning the fundamentals. This is due to MATLAB being

different from object-oriented languages in ways such as all variables are handled by

value instead of reference.

1.1 Engineering Fundamentals

The Engineering Fundamentals department at Michigan Tech has been trying to find

different tools to use in their classes to help their students learn the foundations of

programming. While learning the basics, a student is guided to follow traditional code

styling guidelines to help with readability and to enforce good practices. Since the

Engineering Fundamentals classes has a high student to teacher ratio due to every

engineering student going through their program and learning MATLAB, the

Engineering Fundamentals department wanted to find a tool that would help the students

and alleviate the pressure on the professors to help all of them at once.

As the Engineering Fundamentals students are mostly novice programmers, they are also

presented with the problem that most error messages are cryptic. These hard-to-

understand messages prove to be an issue since most do not include information for how

to debug a segment of code, leaving the novices confused and frustrated. A human TA,

looking at student code, would be on the lookout for common novice mistakes and would

provide feedback tailored to the student. This is what we want to capture in MatlabTA.

1.2 Review of MATLAB Grader

In the past, I worked with the Engineering Fundamentals department to evaluate

MATLAB Grader. MATLAB Grader is an application that was developed by

Mathworks, the creator of MATLAB, to allow for the automated grading of MATLAB

assignments. It works by students writing individual scripts and functions to solve

2

different problems, and then MATLAB Grader runs them and provides a grade based on

the output. To test this, we worked with Mathworks directly to create practice problems

and other curriculum to give to students to see how well the application would work.

During our evaluations, we found that MATLAB Grader had a good foundation for

evaluating and printing out the results of a function or script. However, we found that

there were a few missing functionalities that we wanted to add to the application.

• The first functionality is the presentation of error messages. MATLAB Grader,

being an application created by Mathworks, presented error messages in the same

way that MATLAB does. This was a problem since there were many error

messages that were hard to understand by the novice.

• Another feature was that all code had to be done inline. A student could not work

on their program through the MATLAB IDE and submit a file.

• Lastly, the student would not get any feedback on how they were programming. A

student could hard code values, use inconsistent tabs and spaces, and mismatch

variables while MATLAB Grader gives full points to the student.

After evaluating MATLAB Grader, I worked with the Engineering Fundamentals and

Computer Science departments at Michigan Tech to create an application that would

solve these issues.

3

2 MatlabTA

To help present error messages in a way that helps students debug and critique the style

of their code, I worked with the Engineering Fundamentals and Computer Science

departments at Michigan Tech to create MatlabTA. This new program is a Java

application that runs the student’s code along with providing error and style output

messages. MatlabTA’s main goal is to provide the students with the resources to fix their

bugs while practicing good programming habits. In order to do this, MatlabTA uses

different regular expressions to match error messages and code lines. When a match is

made with an error message, MatlabTA takes out the information that is that is important

to fixing the error and presents it in a different way to allow the student to more easily

recognize what went wrong. Afterwards, if a match is made with a line of code, then

MatlabTA has found a style issue that corresponds with different antipatterns. After

recognizing the antipattern, MatlabTA will print out the style error and provide a link to a

site that provides more examples and information about the style issue.

2.1 Common Antipatterns Recognized By MatlabTA
Antipatterns, defined as code patterns that do not follow good programming style

guidelines, are a common occurrence in novice programmers’ code. An example of a

common antipattern that is prevalent in many different programming languages is not

having spaces on both sides of an equals sign or similar operators.

The above code shows an example of good versus bad style in programming. The first

example is the good code as there are spaces around each operator and assignment

symbol. The second example shows bad programming style as there are not spaces on

both sides of the equals and plus signs. In programming, it is important to have these

spaces for readability, consistency, and professionality. When students use good

programming style practices, it becomes easier for the student and for anyone else who is

reading the code to help reveal bugs and other problems that exist in the code. It also

allows the students to start practicing a habit that they will have to use in a professional

setting.

1.

a = 1 + 2

2.

a=1 +2

4

MatlabTA will also recognize the antipattern of a line of code not being tabbed enough or

if it is tabbed too far. These antipatterns are common with other programming languages

as well such as Java and C. However, MATLAB is different from Java and other object-

oriented languages since it handles all variables by value instead of by reference. Due to

this, when I met with a few professors in the Engineering Fundamentals department to

choose one common antipattern to evaluate that was specific to MATLAB, I chose the

matching the number of variables a function outputs to the number of variables that are

actually being stored. An example of this is as follows:

Function foo is storing values in two different variables, width and distance. The call to

foo, however, is only storing one of those values: width, resulting in the information

stored in distance to be lost. MATLAB sees this as valid code and will run the above

without throwing an error message. In particular, this becomes a warning sign within

novice code that the novice might not understand MATLAB or the assignment that they

are working on. As such, we recognize this error to provide the student with an error

message that tells them how many variables they are storing, along with how many the

function is outputting. In providing the students with this message, the students are able

to reevaluate the amount of variables that are in the function and that they are storing.

2.2 Similarity Check

After MatlabTA compares the number of output variables to the number of variables

stored, it then runs a similarity check for each variable. The similarity check compares

the distance between each data-storing variable to each output variable. In particular, the

similarity check is run to determine the antipattern of whether or not the data-storing

variables are in the right order when compared to the list of output variables. It also looks

to see if the data-storing variables follow a similar naming scheme to that of the output

variable it matches with. If the similarity check returns that there is no match between the

two variable names, MatlabTA then prints out an error message saying that the two do

not match. After printing the message, MatlabTA will then compare the naming schemes

of the remaining variable pairs. If a variable passes the similarity check with the

remaining variables, MatlabTA outputs a message prompting the user to check that their

variables are listed in the correct order. An example is shown below:

width = foo()

function [width, distance] = foo()

 width = 1

 distance = 2

end

5

In this case, the function is outputting two variables: distance and width. However, the

names of the variables storing the results are named distanceA and distanceB. This

implies that either the function is not returning the correct information, or that the

information being stored is misinterpreted by the programmer. As such, MatlabTA will

display an error message saying that distanceB does not closely match the variable name

width, prompting the user to reevaluate the relationship between the two variables.

It is also important to note that we present this information to try and help the student

visualize what is happening in their program. Not every variable will be mismatched if a

note is thrown, however it is important to help novices recognize the different things that

are happening in their program.

2.3 Website

If a check for an antipattern is detected, MatlabTA will print out an error message that

points to the exact style guideline that is being breached, along with providing a link to a

website. I created this website to provide more information and examples for the different

style guidelines that MatlabTA recognizes. In providing this information, the programmer

can see these examples and use them to change their program into “good code”.

2.4 Error Messages

Another feature of MatlabTA is that it reads in error messages that are returned by the

MATLAB compiler, and provides a more novice friendly alternative to help the novice

debug. Novice friendly alternatives to error messages are important, because when a

novice is learning to program, they often get overwhelmed and confused by how cryptic

various compiler messages seem to be. MatlabTA aims to reduce the ambiguity by

extracting the important information from the original message and placing it inside a

more novice friendly message. By providing the information in this way, the programmer

given more ideas on how to fix their bugs and get their program working. A common

error message that MATLAB prints out is “Array indices must be positive integers or

[distanceA, distanceB] = foo()

function [distance, width] = foo()

end

6

logical values.” This message is printed out when a user is trying to access an array at

index 0. When MatlabTA recognizes with this error message, it prints out a new message

that is aimed to help the novice fix their mistake. The new message is “In MATLAB,

arrays start at 1. Make sure that you aren’t trying to get the value at index 0”. By

providing this feedback, it is our hope that students will be able to make connections

between MATLAB’s error messages and what they have to do to debug, allowing them

to grow as programmers.

7

3 Regex

In order to recognize these various antipatterns and error messages, MatlabTA utilizes

different regular expression statements (regex). These regex statements were crafted in a

way that allows for the extraction of useful information such as variable names and

assignments. Initially, the regex that MatlabTA used were very long and required almost

perfect matching for a line to match. As I learned more about regex, they became more

general to reduce complexity. An example of a regex before and after rework:

Before:

After:

3.1 MParser

One of the applications that I looked at integrating into MatlabTA was a project called

MParser. MParser reads in MATLAB code and return a full abstract syntax tree. Also

included was the ability to recognize certain MATLAB errors such as a string variable

missing an ending quotation mark. Additionally, I modified MParser to include the line

numbers along with outputting that information to a file that can be uploaded to

MatlabTA. This will help to provide more information about errors that occurred in their

code. Currently, MParser can only return the correct line numbers of certain errors if

there are no empty lines in the file. However, MatlabTA can run without this abstract

syntax tree file if this poses too big of a problem.

\bUndefined function or variable\b\s'([a-zA-Z]*)'.

Undefined function or variable '(.*)'.

8

4 Implementation

MatlabTA is a Java application with a JavaFX UI. It works by asking the user to choose a

MATLAB file and if possible a syntax tree file that was output by the modified MParser.

The user then inputs the name of the class and name of the function that should be ran by

the MATLAB API. Once the user hits run, MatlabTA calls the MATLAB API that is

included with every standard download of MATLAB, and runs the code from the

specified class name and method. While the API is running, all the standard MATLAB

output is shown in the console. If the API encounters an error, the original compiler

message will be output at that point, after which a novice friendly message will be printed

out with the necessary information from the original message. If a syntax tree file was

also included, MatlabTA will also output the errors found from the abstract syntax tree at

this point.

After the MATLAB API is done running, MatlabTA will run its style check on the

original MATLAB code. Before checking each line for its style, MatlabTA will first go

through the entire MATLAB file and create a dictionary entry for every function, where

the key is the function name and the value is a list of the output variables for that

function. After the dictionary is created, MatlabTA will run line-by-line through the code

and check the lines against various regex statements. If a match is made between a regex

statement and the line of code, then a style error has occurred. MatlabTA will then output

the erroneous line with a customized error message that contains why the line violated the

style guidelines. In addition, MatlabTA will then also print out a URL for a custom-built

style website created from html and css files, allowing the user to have more information

about that style guideline if they want it. After MatlabTA has printed out every line in the

file, the UI changes to show that the job is complete allowing the user to run MatlabTA

again. The similarity check functionality is done using the Apache Commons Text

library. Currently, MatlabTA and the style website are both ran locally..

9

5 Future Work

In the future, the goal is to add more style and error message regex along with fully

integrating the application with WebTA. The integration would allow professors to use

MatlabTA in their classes and connect the results to Canvas, along with hosting the

application on the web instead of being locally ran. In doing this, MatlabTA would also

support the grading of assignments based on criteria given by the professors.

Additionally, MatlabTA should use the results from MParser to recognize more syntax

errors from the syntax tree, along with recognizing when there is good code that is

misplaced in the file. For example, if code is correct but is not within a function and

instead is just sitting in the MATLAB file, the goal would be to detect this and inform the

student. Another way to use the syntax tree would to be to compute the code complexity

using methods such as cyclomatic complexity. Using these methods, we can point out if

students are using logic statements that make the program too complicated. If a statement

is recognized to be too complicated, then we can point out this issue since the more

complicated a program is the harder it is to read and test. With the style website, the goal

is to add more examples and pages to allow the students to explore the different style

issues and learn about different antipatterns. The website would also have a functionality

where a student could interact with the different examples in a game like environment.

The student could be given a prompt to write out a statement, and then go ahead and

write out MATLAB code for that statement. The game could then check the style of the

student’s statement and point out if any style errors were found. This could allow the

students to become more engaged with the information MatlabTA is trying to teach them.

10

6 Reference List

Fangohr H. (2004) A Comparison of C, MATLAB, and Python as Teaching Languages in

Engineering. In: Bubak M., van Albada G.D., Sloot P.M.A., Dongarra J. (eds)

Computational Science - ICCS 2004. ICCS 2004. Lecture Notes in Computer

Science, vol 3039. Springer, Berlin, Heidelberg

Jason Nicholson (2020). Matlab Style Guidelines Cheat Sheet

(https://www.mathworks.com/matlabcentral/fileexchange/45047-matlab-style-

guidelines-cheat-sheet), MATLAB Central File Exchange.

Kang, Hyeonsu, and Philip J. Guo (2017). “Omnicode: A Novice-Oriented Live

Programming Environment with Always-On Run-Time Value Visualizations”

Proceedings of the 30th Annual ACM Symposium on User Interface Software and

Technology UIST 17.

Lee, M. J., & Ko, A. J. (2011). “Personifying programming tool feedback improves

novice programmers' learning” Proceedings of the seventh international workshop

on Computing education research (pp. 109-116).

Ureel II, L. C., & Wallace, C. (2019, February). Automated Critique of Early

Programming Antipatterns. In Proceedings of the 50th ACM Technical

Symposium on Computer Science Education (pp. 738-744).

Ureel II, L. C., & Wallace, C. R. (2018). Webta: Online code critique and assignment

feedback. In Proceedings of the 49th acm technical symposium on computer

science education (pp. 1111–1111).

Watson, Christopher, Frederick W. B. Li, and Jamie L. Godwin (2012). “BlueFix: Using

Crowd-Sourced Feedback to Support Programming Students in Error Diagnosis

and Repair.” Advances in Web-Based Learning - ICWL 2012 Lecture Notes in

Computer Science (pp. 228–39).

11

A Copyright Documentation

MParser is from Github. It is licensed for modification and public use under the MIT

license. Please see below for full citation and attribution information.

“MParser” by Alexander Luzgarev, github.com – MIT. Licensed under MIT via github -

https://github.com/mahalex/MParser

	MatlabTA: A Style Critiquer For Novice Engineering Students
	Recommended Citation

	Michigan Tech Report Template

