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Abstract

With the advent of new commodity depth sensors, point cloud data processing plays

an increasingly important role in object recognition and perception. However, the

computational cost of point cloud data processing is extremely high due to the large

data size, high dimensionality, and algorithmic complexity. To address the compu-

tational challenges of real-time processing, this work investigates the possibilities of

using modern heterogeneous computing platforms and its supporting ecosystem such

as massively parallel architecture (MPA), computing cluster, compute unified device

architecture (CUDA), and multithreaded programming to accelerate the point cloud

based object recognition. The aforementioned computing platforms would not yield

high performance unless the specific features are properly utilized. Failing that the

result actually produces an inferior performance. To achieve the high-speed perfor-

mance in image descriptor computing, indexing, and matching in point cloud based

object recognition, this work explores both coarse and fine grain level parallelism,

identifies the acceptable levels of algorithmic approximation, and analyzes various

performance impactors. A set of heterogeneous parallel algorithms are designed and

implemented in this work. These algorithms include exact and approximate scalable

massively parallel image descriptors for descriptor computing, parallel construction

of k-dimensional tree (KD-tree) and the forest of KD-trees for descriptor indexing,

parallel approximate nearest neighbor search (ANNS) and buffered ANNS (BANNS)

xxvii



on the KD-tree and the forest of KD-trees for descriptor matching. The results show

that the proposed massively parallel algorithms on heterogeneous computing plat-

forms can significantly improve the execution time performance of feature computing,

indexing, and matching. Meanwhile, this work demonstrates that the heterogeneous

computing architectures, with appropriate architecture specific algorithms design and

optimization, have the distinct advantages of improving the performance of multime-

dia applications.
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Chapter 1

Introduction

Object recognition is a fundamental and active research topic in computer vision.

Typical applications include robotics, automation, surveillance, remote sensing, nav-

igation and medical treatment [7] [8]. In the past few decades, the methods of two-

dimensional (2D) object recognition have been extensively explored and became ma-

ture technologies. Compared to 2D images, three-dimensional (3D) images exhibit a

lot of advantages. The feature descriptor for 3D images encodes much more invariant

geometrical information, which makes it robust under clutter and occlusion. More-

over, the increasing availability of low-cost 3D sensors promotes migration toward

the processing of 3D information [9] [10] [11]. With the advent of cheap commodity

hardware, point cloud based 3D object recognition, aiming to identify objects in a

point cloud correctly, has become progressively popular [12] [13]. Although many
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algorithms have been proposed in the area of 3D object recognition, it is still very

challenging to recognize objects in complex scenes in real-time. Good recognition

accuracy typically incurs high computational complexity.

The emerging heterogeneous architecture system and its developing ecosystems, such

as multi-core central processing unit (CPU), massively parallel architecture (MPA)

such as graphical processing unit (GPU) and computing cluster, offer new oppor-

tunities for 3D point cloud based object recognition. The extensive computation

in 3D point cloud processing can be accelerated by performing them in parallel on

the heterogeneous architectures, leading to significant runtime reduction. However,

designing efficient architecture-specific algorithms require deep analysis of the recog-

nition pipeline and the exploration for parallel processing in the compute-extensive

stages in the pipeline.

1.1 Point Cloud Based Object Recognition

1.1.1 Point Cloud

A point cloud is a data structure for the representation of a multi-dimensional collec-

tion of points. In a 3D point cloud, a point on the surface of an object is represented

by its x, y and z coordinates [12] [13]. An extension to 3D point cloud is achieved by
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adding the color information. The typical sources for point cloud datasets are stereo

cameras sensors, 3D scanners, or time-of-flight cameras. They are also generated syn-

thetically from a computer model. Figure 1.1 is a classic Stanford Bunny generated

by a 3D point cloud editor [14] and Figure 1.2 is an example of Granite Dells LiDAR

point cloud 1.

Figure 1.1: Point cloud of bunny

Figure 1.2: Point cloud of mountains

1This figure is from the open topography website: http://www.opentopography.org/.
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1.1.2 Object Recognition Pipeline

Object recognition involves recognizing and determining the pose of the model (user

chosen object) in a scene such as a photograph or range scan. Typically, an example

of the object to be recognized is presented to a computer vision system in a controlled

environment, and then for an arbitrary input such as a video or image stream, the

system locates the previously presented object [15]. The approaches for recognizing

a 3D object depends on the properties of the object in the presence of significant

clutter and occlusion [16]. The point cloud based 3D object recognition approaches,

employing the surface feature of objects, can be classified into two categories: global

feature based recognition and local feature based recognition [13] [17].

The global feature based recognition use low-level object surface information to locate

the object in the scene. The whole surface of the object is represented by a single

descriptor. Typically, it does not take the 3D geometric constraints of the object

into account during the matching, nor handle the clutter and occlusion [17] [18]. In

the recognition procedure, the scene point cloud needs to be segmented to extract

individual object instance in the clutters and occlusions situation. This approach is

mainly investigated in object shape classification and model retrieval [19] [20].

The local feature based recognition, in contrast, encodes the geometric information
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of each key point extracted from the model, which makes it more robust to clutter

and occlusion [21] [22] [23]. It first identifies some key points in a scene and then

computes a feature descriptor for each key point as local image descriptors. These

feature descriptors of the scene are finally matched against the feature descriptors

of the model for association pairing in recognition. This approach works well for

objects which have distinctive features. Objects which have good edge features or

blob features can be successfully recognized [24] [25] [26].

Figure 1.3: 3D object recognition pipeline

This work concentrates on the local feature based object recognition through surface

matching. An object can be recognized in a scene by comparing a scene surface to a

model surface stored in a database. When the model surface is matched to the scene

surface, an association is made between the model and the scene. The conventional

3D object recognition pipeline comprises four stages as shown in Figure 1.3. In the

first stage, descriptor computing, we explore an efficient and compact local represen-

tation of 3D objects in the scene and model, known as local 3D descriptors. The

descriptors, localized descriptions of the global shape of the object, are invariant to

rigid transformations. In the second stage, descriptor matching, through correlation

of images, point correspondences between the model and the scene descriptors are
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established. In the third stage, correspondence grouping, geometric consistency is

used to group the correspondences from which plausible rigid transformations that

align the model with the scene are calculated. In the last stage, the transformations

are then refined and verified using a modified iterative closest point algorithm [27]

[28] [29]. We concentrate on the first two stages in this work, since the first two stages

consume most of the recognition time and some of the algorithms can be reused in

the works in the last two stages.

1.1.2.1 Descriptors Computing

Before computing the descriptors of model and scene, the key points should be de-

tected and extracted from the model and the scene datasets. Key point detection

aims to identify a set of interest points that are distinctive and repeatable under

some variations including occlusion, clutter, viewpoint changes, noising and so on.

There are several detectors proposed in the literature addressing these issues [30]

[31] [32]. The two primary characteristics of the key point detector are repeatabil-

ity and distinctiveness. With good repeatability, a detector can extract the same key

points in a variety of noisy conditions. With super distinctiveness, a detector extracts

key points that can be easily described, matched and classified, and therefore highly

characterizing a surface [33]. Moreover, the distinctiveness of detector depends on the

local descriptor of the key point. A set of key points can be salient depending on the
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traits of the local descriptors applied on them. To conduct a fair comparison among

local descriptors, in this work, we did not adopt any existing detector technologies.

Instead, we use a uniform sampling of key points over the point cloud datasets.

Once key points have been detected and extracted from a point cloud, a set of local

descriptors will be associated with them. A local descriptor projects the local surface

features around the key point into a proper feature space. A common trait of the

local descriptors is the definition of a local support which is used to determine the

subset of neighboring points around each key point. These neighbor points will be

used to compute the descriptor of the key point [34] [35], [36]. Descriptiveness and

robustness are two critical qualifications for a local feature descriptor [37]. The higher

descriptiveness of the descriptor, the more distinctive it becomes in classification and

matching. The robustness is used to characterize the invariability of a descriptor in

the presence of noise, detection errors, clutter, occlusion, and geometric deformations.

A good descriptor can provide a good trade-off between the descriptiveness and the

robustness. Recall versus 1 − Precision is a generally used criteria for local image

descriptor evaluation. It calculates the feature recall and precision under different

thresholds for feature matching [38] [39] [40].

In the past two decades, there has been active research interest in local image descrip-

tors. The proposed descriptors include structural indexing [41], point signature [42],

3D point fingerprint [43], exponential mapping [44], spin images [45], local surface
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patches [46], shape index [47], 3D shape context [48], and intrinsic shape signatures

[49]. The computation of a local descriptor depends on the local reference of each key

point, with respect to a normal surface vector. However, in all these proposals, the

choice of local reference for each descriptor is ambiguous or not unique. The work

[50] has analyzed the repeatability and robustness of the existing local descriptors

and divided them into two major categories, viz., signature and histogram. To lever-

age on benefits of both categories, a novel local descriptor for 3D point cloud named

signature of histogram of orientations (SHOT) was proposed in [38]. It combines the

merits of signature and histogram descriptors. In this work, we concentrate on the

parallelization of this novel specified local image descriptor on the MPA.

1.1.2.2 Descriptors Matching

Descriptors of the scene and model will be similar, but not exactly the same due to

variations in surface sampling, noise from a different view and other environmental

factors. Once the image descriptors are computed for the scene and each model in

the point cloud, descriptor matching is launched to generate point-to-point corre-

spondences. The closeness of a pair of descriptors is measured through the Euclidean

distance in this work. A matching threshold in the Euclidean distance is commonly

used to remove descriptor pairs that are far apart in the descriptor space. Finally, the

correspondences are built up between each scene descriptor and its nearest neighbor
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in the model descriptor database [51] [52][53].

Figure 1.4 illustrates how the descriptor matching works. For a key point Pi in the

model of a bunny, its image descriptor is dmi , where d
m
i ∈ RD, with D features for each

descriptor. The matching algorithm is performed to search for the closet neighbor in

the descriptor dataset of the scene {ds0, ds1, ds2 ... dsN}. It computes the distance of

this image descriptors of model (dmi ) to each descriptor of the scene (dsj). During the

search, the P nearest neighbors of point Pi index and their associated distance are

kept as the search results.

Descriptors of Model Descriptors of Scene

Matching

Pi

md 0
md1

m
id

m
Md

sd 0

sd1

s
id

s
Nd

Figure 1.4: Model and scene descriptors matching

There has been a large body of work in image descriptor matching, exploring the

efficient indexing and nearest neighbor search (NNS) in a point cloud. A brute force

P -NNS compares M query points with all the N points in the search set, to obtain

their P nearest neighbors. It results in the time complexity of O
(
MN

)
[54]. However,
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the search can be made more efficient by using spatial data structures, such as R-

tree, B-tree, quad-tree, binary space partitioning (BSP) tree, K-means tree and K-

dimensional tree (KD-tree). These structures subdivide the space containing all the

points into smaller spatial regions, where a hierarchy is recursively imposed on the

smaller regions. The NNS on this hierarchical spatial data structure is generally more

efficient since it can prune large portions of target dataset.

In 3D point cloud object recognition, the NNS require fast performance [55] [56].

Unlike the typical applications with single point query [57], the NNS in these point

cloud applications involves batch processing a large number of query points to match

them against the points in the model object. To increase the feature descriptiveness,

the image descriptors, typically, require high dimensionality [58] [59] [60] [3] [61] [62]

[63] [64]. However, feature matching in high-dimensional space demands extremely

high computational workload. To mitigate the computational workload associated

with high-dimensional digital image descriptor matching, in this work, we propose a

suite of massively parallel algorithms for indexing during the tree construction and

the approximate NNS (ANNS) on the GPU and the GPU cluster.

1.1.2.3 Correspondence Grouping

In 3D object recognition, the stage followed by descriptor matching is correspondence

grouping. As the result of the descriptor matching, point-to-point correspondences are

10



built up by associating pairs of descriptors between model and scene in the descriptor

space [65] [66]. However, only one correspondence between model and scene cannot

be used to compute a transformation between them because a descriptor encodes less

than six necessary degrees of freedom. Two or more oriented point correspondences

are needed to compute a transformation between model and scene if the position

and normals are encoded in the descriptors. If many correspondences are grouped,

the resulting transformation will be more robust than the one computed from only a

few correspondences [67] [68] . To avoid combinatoric explosion problem, geometric

consistency is used to determine groups of correspondences. Some correspondences

are discarded by enforcing geometrical consistency between them [69]. With the

refined correspondences, the plausible transformations between model and scene can

be computed [70] [71].

The common approach used in point cloud based object recognition is an iterative

algorithm. Assuming the initial transformation between the model and the scene is

rigid, the set of correspondences related to each model is grouped into subsets, each

one holding the consensus for a specific rotation and translation of that model in

the scene. If the consensus of the subsets of correspondences is too small, it will

be removed. All correspondences are grouped into subsets that are geometrically

consistent [69]. Starting from a seed correspondence ci = {dmi , dsi}, where dmi and
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dsi are the descriptors of key points in model and scene in correspondence ci, then

scanning all the un-grouped correspondences, the correspondence cj = {dmj , dsj} is

added to the subset computed by ci if it satisfies the following threshold,

|‖dmi − dsi‖ − ‖dmj − dsj‖| < ε (1.1)

with ε being a parameter of this method, intuitively representing the consensus

set dimension. Figure 1.5 demonstrates how the correspondence grouping works.

We assume that there are seven correspondences between the model and the scene

(ck = {dmk , dsk}, k ∈ {0, 1, 2...6}). Starting from {c0}, we check all the remaining

correspondences. Since correspondences c2, c3, c5 and c6 satisfy 1.1 with respect to

c0, we put them in a single group {c0, c2, c3, c5, c6}, and ignore c1 and c4.

md 0
md1

md2
md3

md4
md5

md 6

sd1
sd2

sd3
sd4sd5

sd 6

sd 0

Figure 1.5: Model and scene correspondence grouping
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1.1.2.4 Hypothesis Verification

The geometric consistency in correspondences grouping prunes a large number of

inconsistent correspondences. However, it cannot ensure that all the existing cor-

respondence pairs in each cluster are consistent with unique six degrees of freedom

(like rigid rotation and translation of the model over the scene). The purpose of

hypothesis verification is to find the best transformation of the model to the scene

by eliminating transformations that are inconsistent when all of the scene data are

compared to all of the model data. The general verification algorithm is the iterative

closest point algorithm that can handle partially overlapping point sets and arbitrary

transformations [72] [73]. During verification, point correspondences are spread over

the surfaces of the scene and the model from the initial correspondences cluster. If

many correspondences are established through spreading, a match between model

and scene is validated [74].

Verification starts with an initial group of correspondences which are pruned through

geometric consistency in correspondence grouping stage. With this group of corre-

spondences, the transformation of the model to the scene is computed. Next, this

transformation is applied to the model point cloud. The other correspondences are

spread from the initial correspondence cluster as follows: for each scene point in an

initial correspondence group, its closest scene points in the surface point cloud are
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turned into correspondences with their closest model points if the distance between

the scene and closest model points is less than a threshold. This process is applied to

each of the correspondences just added until no more correspondences can be created

in a recursive fashion [75] [76] [77]. Figure 1.6 illustrates how initial correspondences,

established by matching point cloud image descriptors, are spread over the surfaces

of a model of the bunny point cloud.

Figure 1.6: Initial and final correspondences of hypothesis verification

1.1.3 Point Cloud Library (PCL)

The point cloud library (PCL) is an open source project for large-scale point cloud

based 2D and 3D image processing. This open source library contains various state-

of-the-art algorithms including filtering, feature estimation, surface reconstruction,
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registration, model fitting, and segmentation. These general algorithms can be used

to remove outliers from noisy datasets, integrate 3D point clouds, segment parts of

a scene, extract key points, compute descriptors based on their geometric features,

recognize objects, reconstruct surfaces from point clouds and visualize point clouds

[12] [13]. The massively parallel algorithms designed and implemented in this work

are based on the commonly used serial algorithms in this library.

1.2 Heterogeneous Parallel Computing

Heterogeneous computing refers to applications running on heterogeneous computing

architecture (HCA) with two or more processor types. The HCA platform we em-

ployed encompasses a mix of general-purpose processors and massively parallel proces-

sors. General purpose processors like the CPUs provide powerful features like multiple

execution units, branch prediction, floating point operations, and elaborate caching

schemes to enhance the performance. Massively parallel processors, such as the GPU,

being single instruction multiple data style processor, are used to reduce computing

cost on the parallel data stream. These architectures require the customized data-

parallel algorithm to mitigate response time to critical events [78][79][80]. Typically,

the HCA utilizes multiple CPUs and GPUs as shown in Figure 1.7, and allows the

developer writing applications that can seamlessly integrate the resource of the CPUs

and GPUs [81] [82] [83]. The proposed works in this dissertation focus on this HCA.
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The GPUs, apart from its well-known graphics rendering capabilities, have been ex-

tended to perform general intensive computations on big datasets in parallel, while

the CPUs can run the operating system and perform traditional serial tasks. The

general purpose parallel processing on the GPU is supported by standard APIs and

tools such as CUDA and OpenCL [84][85].

CPU-0 CPU-1

CPU-2 CPU-3

Main Memory GPU Memory

CPU multicore GPU

PCI express

Figure 1.7: Heterogeneous computing architecture (HCA)

1.2.1 GPU Hardware Architecture

All algorithms in this work have been designed and implemented on the NVIDIA

Fermi platforms GTX 570 or GTX 660, so we present a general review of the Fermi

architecture here.

As shown in Figure 1.8, the Fermi architecture features up to 512 accelerator cores
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Figure 1.8: Fermi GPU architecture

called CUDA cores, or streaming processor (SP). The CUDA cores are organized in

16 streaming multiprocessors (SMs), each with 32 CUDA cores. Each CUDA core, as

shown in Figure 1.9, has a fully pipelined integer arithmetic logic unit (ALU) and a

floating point unit (FPU) that executes one integer or floating point instruction per

clock cycle.

Fermi also includes a unified 768 KB L2 cache that is shared across all 16 multipro-

cessors. It also has a 384bit GDDR5 DRAM memory interface supporting up to 6

GB on-board memory. The host interface connects the GPU to the CPU via periph-

eral component interconnect express (PCIe) bus. The GigaThread global scheduler

distributes thread blocks to multiprocessor thread schedulers. This scheduler handles

concurrent kernel execution and out of order thread block execution. Each multi-

processor has 16 load/store units, allowing source and destination addresses to be
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Figure 1.9: Streaming multiprocessor architecture

calculated for 16 threads per clock cycle. Special function units (SFUs) execute in-

trinsic instructions such as sine, cosine, square root, and interpolation. Each SFU

executes one instruction per thread, per clock. The multiprocessor schedules threads

in groups of 32 parallel threads called warps. Each multiprocessor features two warp

schedulers and two instruction dispatch units, allowing two warps to be issued and

executed concurrently. The Fermi dual warp scheduler selects two warps, and issues

one instruction from each warp to a group of 16 CUDA cores, 16 load/store units, or

four SFUs. The multiprocessor has 64 KB of on-chip memory that can be configured

as 48 KB of shared memory with 16 KB of L1 cache or as 16 KB of shared mem-

ory with 48 KB of L1 cache. A traditional critique of GPUs has been their lack of

IEEE compliant floating point operations and error correcting code (ECC) memory.
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However, these shortcomings have been addressed by NVIDIA, and all of their re-

cent GPUs offer fully, IEEE754 compliant single and double precision floating point

operations, in addition to the ECC memory [86] [87] [88].

1.2.2 CUDA Programming Model and Memory Model

In CUDA, parallel programs are encapsulated in kernel functions written in C and

C++. The applications on GPU use single program multiple data (SPMD) computing

paradigm. The computing model in CUDA is shown in Figure 1.10. All copies of the

parallel program, named threads, execute the same set of instructions but operate

on different data. The threads, then, are further grouped into a thread block. The

threads in a thread block have access to a common shared memory. Thread blocks,

in turn, are arranged in a grid with a common access to the global DRAM memory

and cache. The thread blocks are executed on the GPU multiprocessors. As each

multiprocessor has 32 computing cores, the threads in a thread block execute in units

of 32 threads as a thread warp.

The CUDA memory hierarchy is depicted in Figure 1.11. A thread executing on the

GPU can access the global DRAM, and on-chip memory through 6 different memory

spaces; registers, local memory, shared memory, global memory, constant memory,

and texture memory.
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Figure 1.10: CUDA programming model

The global memory is used to exchange data between the CPU and the GPU and

transferring data between the threads from different blocks. As an off-chip mem-

ory, global memory has a high latency. Shared memory, being on-chip, has much

faster access time, especially if bank conflicts between the threads in a thread block

are avoided. However, per thread block allocated shared memory is limited (64 KB

on Fermi GPU). Another type of memory is a cache enabled constant memory for

read-only data with high-speed access time if high hit rate can be guaranteed. Like
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Figure 1.11: CUDA memory model

constant memory, texture memory is cached on-chip, so in some situations, it can

provide higher effective bandwidth by reducing memory requests to off-chip DRAM.

Specifically, texture caches are designed for graphics applications where memory ac-

cess patterns exhibit a great deal of spatial locality.

1.3 Scope of This Work

The goal of this work is to investigate and develop highly efficient algorithms and

optimization techniques for the point cloud based 3D object recognition by exploiting

a variety of parallel technologies and pruning less effective computations in local image

descriptor computing, indexing, and matching on heterogeneous architecture system.
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1.3.1 Parallelization of Image Descriptor Computing

Compact local feature descriptor of the 3D object that relies on local invariant features

is a key in surface matching. The descriptor SHOT as a new 3D object local descriptor

can achieve a good balance between descriptiveness and robustness [38]. However, its

computation workload is much higher than the other 3D local descriptors. To make it

usable for real-time applications, we investigate the development of suitable massively

parallel algorithms on the GPU for computation of high density and large-scale 3D

object local descriptors. We design two alternative parallel algorithms (G-SHOT);

one exact and one approximate, on the GPU to speed up the original serial SHOT.

Experimental results show both algorithms exhibit outstanding speed performance.

1.3.2 Parallelization of the ANNS

To overcome the high computing cost associated with high-dimensional digital im-

age descriptor matching, we present a massively parallel ANNS on the KD-tree on

the modern MPA [89] [90]. The proposed algorithm is of comparable quality to the

traditional sequential counterpart on the CPU. However, it achieves a high speedup

factor when applied to high-dimensional real-world image descriptor datasets. The
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algorithm is also studied for factors that impact its performance to obtain the op-

timal runtime configurations for various datasets. The performance of the proposed

parallel ANNS algorithm is also verified on typical 3D image matching scenarios. The

implementation in this work will potentially benefit the real-time image descriptor

matching in high dimensions.

1.3.3 Parallelization of the Construction of KD-tree and the

BANNS

To mitigate the image descriptor indexing, we present a parallel KD-tree construction.

Moreover, to reduce the cost of descriptor matching, we propose a buffered ANNS

(BANNS) on KD-tree on the MPA. To improve the runtime performance of the ANNS,

we design an efficient sliding window for a parallel BANNS on KD-tree to mitigate

the high cost of global memory accesses. When applied to high dimensional real-

world image descriptor datasets, the proposed KD-tree construction and the BANNS

algorithms are of comparable quality to the traditional sequential counterparts on

the CPU, while outperforming their serial CPU counterparts by significant speedup

factors. Moreover, we verify the features of the parallel algorithms on typical 3D

image matching scenarios.
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1.3.4 Parallel and Distributed BANNS on the Forest of Ran-

domized KD-trees

To further address the computational challenges of KD-tree construction and the

ANNS to real-time processing, we present parallel and distributed algorithms for

the construction of the forest of randomized KD-trees and the BANNS on a cluster

equipped with the MPA devices of the GPU [91] [64]. To utilize the GPU cluster plat-

form, we design distributed randomized KD-tree forest for the BANNS to alleviate

the backtracking cost on single KD-tree. Additionally, the algorithms are studied for

the performance impact factors to obtain the optimal runtime configurations for vari-

ous datasets. When applied to high-dimensional real-world image descriptor datasets,

the proposed algorithms for KD-tree forest construction and the BANNS on the GPU

cluster are of comparable matching quality to the coarse grain parallel counterparts

on the CPU cluster with message passing interface (MPI), while outperforming coun-

terparts by significant speedup factors. Moreover, we verify the features of the parallel

algorithms on typical 3D image matching scenarios.
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1.4 Overview of Chapters

This dissertation consists of five chapters. Chapter 2 presents the design of two novel

parallel SHOT local image descriptors, one exact G-SHOT and the other approxi-

mate G-SHOT, to significantly reduce image descriptor computing time. Chapter 3

describes the design and implementation of a parallel ANNS on the MPA which can

accelerate the descriptor matching greatly. Chapter 4 presents algorithms for parallel

KD-tree construction and a massively parallel BANNS on the GPU, which can ac-

celerate the indexing and matching significantly. Chapter 5 describes the distributed

ANNS on the randomized forest of KD-tree on the GPU cluster. Chapter 6 concludes

the major contributions.
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Chapter 2

Massively Parallel 3D Local Image

Descriptor G-SHOT

Surface matching is one of the core techniques for 3D object recognition and surface

registration in computer vision. Compact local feature descriptor of 3D object that

relies on local invariant features is a key in surface matching. The SHOT as a novel

3D object local descriptor can achieve a good balance between descriptiveness and

robustness. However, its computation workload is much higher than the other 3D

local descriptors. To make it usable for real-time applications, it requires parallel

search algorithms that can run on a common massively parallel processor such as

the GPU. This chapter investigates the development of suitable massively parallel

algorithms on the GPU for computation of high density and large-scale 3D object local
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descriptors. The chapter presents the design of two alternative parallel algorithms

(G-SHOT); one exact, and one approximate, on the GPU to speed up the original

serial SHOT. Experimental results show both algorithms exhibit outstanding speed

performance. The exact massively parallel G-SHOT descriptor comes at no cost to

the descriptiveness with a speedup factor of up to 40.70, with respect to the serial

SHOT on the CPU. The approximate parallel achieves a speedup factor of up to

54 with minor degradation in descriptiveness, with respect to its serial counterpart.

The chapter also analyzes the descriptiveness of both parallel G-SHOTs algorithms

through a set of recall-precision curves at two noise levels. The proposed algorithms

are integrated into the PCL, an open source project for image and point cloud.

2.1 Introduction

Surface matching is a key tool in the 3D object recognition that locates model objects

in a scene through building local correspondences between the model and the scene. It

has found its way in numerous areas such as computer vision, robotics, automation,

remote sensing, and perception. The most common method for surface matching

is to explore effective and compact local representations of the point cloud of 3D

objects, known as local 3D descriptors, and establish correspondences by matching

those descriptors. In the past 20 years, there has been strong research interest in local

descriptors. The techniques proposed include structural indexing [41], point signature
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[42], 3D point fingerprint [43], exponential mapping [44], spin images [45], local surface

patches [46], shape index [47], 3D shape context [48], and intrinsic shape signatures

[49]. The computation of a local descriptor depends on local reference of each key

point, with respect to a normal surface vector. However, in all these proposals, the

choice of local reference for each descriptor is ambiguous and not unique.

Most recent work [38] [50] has analyzed the repeatability and robustness of existing

local descriptor techniques and divided them into two major categories, viz., signa-

ture and histogram. The signature-based descriptor describes the 3D neighborhood

of a given key point by defining an invariant local reference frame (LRF), accord-

ing to the local coordinates of points in the neighborhood point set. For each point

in the neighborhood point set, one or more geometric measurements are encoded.

The histogram based descriptor describes the key point by accumulating local ge-

ometrical or topological measurements into histogram bins according to a specific

quantized domain which requires the definition of either a reference axis or reference

frame. Broadly, signature descriptors are potentially highly descriptive due to the

use of spatially well-localized information, whereas histograms descriptors trade-off

descriptive for robustness by compressing geometric structure into bins. To leverage

on benefits of both categories, a novel local 3D descriptor named SHOT [38] combines

the merits of signature and histogram descriptors. Due to its repeatable LRFs, the

SHOT descriptor exhibits a better descriptive power and robustness. However, its

benefits come at a significant increase in the computational complexity.
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A point cloud is a data structure for the representation of a multi-dimensional collec-

tion of points. In a 3D point cloud, for example, a point on the surface of an object is

represented by its x, y and z coordinates. The typical sources for point cloud datasets

are stereo camera sensors, 3D scanners, or time-of-flight cameras. They are also gen-

erated synthetically from a computer model. Figure 2.3 is the classic Stanford Bunny

generated by a 3D point cloud editor.

SHOT as an effective 3D descriptor has already been integrated into the PCL, a large-

scale, open source project for 2D and 3D image and point cloud processing [12]. PCL

framework contains numerous state-of-the-art algorithms that can be used to filter

outliers from noisy data, stitch 3D point clouds together, segment relevant parts of a

scene, extract key points and compute descriptors to recognize objects in the scene

based on their geometric appearance, create surfaces from point clouds and visualize

them.

To overcome the performance bottleneck of the SHOT descriptor in the PCL frame-

work, this chapter proposes two alternative highly efficient parallel algorithms that

target the massively parallel architecture of the GPU. We have targeted implemen-

tation on the GPU platform, as it is finding its way beyond graphics processing into

general purpose computing. It offers massively data-parallel architecture alternative

to the CPU through a large number of computing cores. In particular, the GPU

has been widely employed for fast and real-time implementation of 3D image and
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point cloud processing algorithms [92] [93] [94] [95] [96]. The potential for the im-

plementation of the surface matching algorithm on the GPU comes from the fact

that descriptor computations for key points are independent of each other. It is well

suited for parallelization on a massively parallel programming paradigm of GPUs1.

This work presents two efficient GPU accelerated parallel SHOT descriptors named

G-SHOTs.

This chapter is organized as follows. Section 2.2 briefly outlines the mathematical

model of the SHOT descriptor. Section 2.3 describes the complexity of the SHOT de-

scriptor and presents the exact and approximate parallel alternative implementations

of the SHOT on GPU (G-SHOT) as a library component in the PCL framework.

Section 2.4 presents the experimental results of both algorithms. Section 2.5 eval-

uates the trade-off between the speedup and descriptiveness of two parallel SHOT

descriptors. Section 2.6 concludes the chapter.

2.2 Mathematical Model of the SHOT Descriptor

The strength of the SHOT descriptor is based on two features. First, the SHOT

is a 3D descriptor and has a repeatable and robust LRF. Second, it combines the

1In this chapter, we use NVIDIA’s compute unified device architecture (CUDA)[97] computing
paradigm. The GPU used in the experiment in this work is the NVIDIA GTX 570 with 15 streaming
multiprocessor (SM), with each SM having 32 stream processor (SP) cores [98] [99]
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merits of signature and histogram categories of descriptors to create a more effective

descriptor.

2.2.1 Repeatable Local Reference Frame (LRF)

To facilitate the following mathematical derivation of LRF, we assume that the radius

of the neighborhood sphere for key point p is R, there are K nearest neighbors pi in

the sphere, the covariant matrix of the K points in the neighborhood sphere is M,

and the distance between key point p and neighbor point pi is di.

The repeatable LRF is based on the estimation of the normal direction of key point

on a surface [50]. This estimation involves the total least squares (TLS) of the normal

direction computed by eigenvalue decomposition (EVD) of the covariant matrix M

of the K points in the neighborhood sphere. TLS of normal direction is represented

by the eigenvector corresponding to the smallest eigenvalue of M. To increase the

repeatability of the LRF, in the SHOT algorithm, smaller weights are assigned to

distant points in the sphere and bigger weights are assigned to nearby points. Also,

to improve the robustness, all the K points laying within the sphere that will be used

to calculate the descriptor are included in formation of the covariant matrix as,

M =
1

K∑
i:di≤R

(R− di)

·
K∑

i:di≤R

(R− di)(pi − p)(pi − p)� (2.1)
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To uniquely determine the sign direction of the normal at the key point the methodol-

ogy described in [38] for sign disambiguation for EVD is employed. The methodology

is to change the sign of each singular value or reorient each eigenvector to make it

consistent with the majority of the vectors used for the computation of the normal.

The sign of a normal along a local axes s ∈ {x, y, z} is determined to be as s+ or s−

in the opposite direction as,

S+
s

.
= {i : di ≤ R ∧ (pi − p) · s+ ≥ 0} (2.2)

S−
s

.
= {i : di ≤ R ∧ (pi − p) · s− ≥ 0} (2.3)

2.2.2 Descriptor Organization

Inspired by the well-established 2D feature descriptor, scale invariant feature trans-

form (SIFT) [100], the SHOT relies on a set of local histograms that compute on

a specific subset of points defined by a regular grid superimposed on the key point

patch. For each key point, the SHOT technique uses an isotropic spherical grid par-

titioned along the radial, azimuth and elevation axes. The coarse partitioning of the

spatial grid produces a small cardinality of the descriptors. The choice 32 spatial

volumes are proven to be adequate, resulting in eight azimuths, two radial and two
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elevation divisions [38] [50]. Figure 2.1 shows the formation of eight azimuths and the

two radial divisions, and Figure 2.2 exhibits the formation two elevation divisions.

Figure 2.1: Azimuth/radial partition

Upper Partition

Lower Partition

Figure 2.2: Elevation partition

Each segment within sphere in Figure 2.3 encodes a descriptive entity represented

by its local histogram. The formation of the local histogram is shown in Figure
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Figure 2.3: Local histogram for each volume in key point sphere

2.3, for a key point in the point cloud of Stanford Bunny, with one neighbor sphere

encompassing the point (light green). For the local histograms of this segment, we

accumulate point counts for each of the 32 segments into bins according to function

cos θi, with θi the angle between the normal at each point pi within the spherical

grid segment (nvi), and the normal at the key point (nui
). Choice of binning using

cos θ has the advantage that it can be easily computed by the dot production as

cosθi = nvi · nui
. Further, an equally spaced bin on cosθi is equivalent to a spatial

varying spaced bins on θi. This has a significant advantage that coarser bins are

created for directions close to the reference normal direction and finer ones for the

orthogonal directions. For each of 32 volumes in the neighborhood sphere of the key

point, there are local histograms with 10 bins. So, there is a total of 320 bins for each

key point descriptor. Since the descriptor is based upon a set of local histograms,

to avoid boundary effects for each point being accumulated into a specified local

histogram bin, SHOT perform quadrilinear interpolation between the bin in the local

histogram and the bins having the same index in the local histograms corresponding
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to the neighbor spherical segments within the neighborhood sphere of the key point

under consideration.

2.3 Implementation of the G-SHOT Algorithms

The SHOT descriptor consists of two key parts: one the calculation of unique LRF

for each key point, and the other computation of the descriptor histogram. The data

profiling results of SHOT descriptor on the CPU show that these two parts of the

algorithm together consume more than 90% of the total computing time. Since key

points can be processed independent of each other, both parts can be performed in

parallel on the GPU to achieve a significant speed advantage through massive parallel

programming model of CUDA.

2.3.1 Exact G-SHOT Algorithm

The process of parallelization of key point calculations is carried out in six phases,

that include two CUDA kernels, two memory copy operations and two host functions

as show in Algorithm 1.

Before the launch of Kernel I for the computation of LRF and Kernel II for the

histogram, for execution on GPU, we need to copy the data structure (key and surface
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points data) for the descriptor from the CPU host memory to GPU device memory.

After the completion of execution of Kernel II end result is transferred from the device

memory to host memory. Prior to the launch of kernel II, the irregular key points

must be removed.

2.3.2 Approximate G-SHOT Algorithm

The G-SHOT Algorithm I even though achieves high speedup with respect to the

existing serial CPU SHOT, suffers from multiple bottlenecks limiting the speedup

performance. The reason is that Algorithm I provides for massively parallel processing

of key points, but the workload associated with key points (or the GPU threads), is

highly uneven. The thread block execution time is determined by the CUDA thread

with the longest runtime that associated with key point with the largest number of

neighbors. Unfortunately, the number of key point neighbors varies greatly in most

typical datasets. For example, in a point cloud with 66053 key points and 307200

surface points, the number of neighbors for key points ranges from 6 to 1172, with the

median of only 90. If we restrict neighbors for each key point to less than 400, 300,

200 and 90, the speedup performance of SHOT can be improved by 5.44%, 8.72%,

11.13% and 15.54% accordingly. To even the processing workload, in the approximate

Algorithm II, each CUDA thread truncates the neighbor points of a key point so that

it does not exceed the median. In Kernel I, each thread only process up to a median
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number of neighbor points to compute the unique LRF. The similar pruning work is

done in Kernel II to compute the descriptor feature.

Table 2.1
Experimental platform details

OS Type Ubuntu 12

Kernel Version 2.6.34.969.fc13.x86 64

CPU Type Intel i7− 960

CPU Clock Speed 3.20GHz

Number of Core 4

Number of Thread 8

GPU Type GeForce GTX 570

Global Memory Size 2559MBytes

Multiprocessor Number 15

CUDA cores/Multiprocessor 32

GPU Clock Speed 1.46GHz

Memory Clock Rate 1900.00Mhz

Memory Bus Width 320bit

Table 2.2
Profiling results of the parallel SHOT on the GPU

Operations Time(s) Percentage

Data Structure Conversion 0.83 2%

H2D Memory Copy 2.90 7%

GPU Kernels 36.91 89%

D2H Memory Copy 0.82 2%

2.3.3 Performance Optimizations

Performance of SHOT algorithm on the GPU is determined by a composition of

several factors, including access coalescing in global memory, bank conflicts in shared

memory, branch divergences, thread synchronization overhead and the organization
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of thread blocks [97].

To ensure that global memory accesses on the GPU are coalesced, i.e. threads accesses

to memory are combined into a single transaction into an aligned and contiguous block

of global memory, we perform a preprocessing, prior to copying the input data from

host to device. we restructure data employing the structure of array (SOA) instead

of array of structure (AOS) in the representation of key and surface points data.

Second, the multiprocessor’s 64 KB shared memory/cache [98] is not large enough

to buffer the intermediate variables even if it is configured as shared memory with

the largest possible size of size 48 KB. Unfortunately, kernel profiling results show

the workload for each thread causes a great deal of register spilling that lands in

the L1 cache. In this case, any performance improvement should come through the

configuration of this memory as L1 cache. Therefore, 64 KB shared memory/cache

is configured to a maximum allowable L1 cache size of 48 KB (and 16 KB of shared

memory.)

Third, in the design of this work, the read-only data are placed in texture and surface

memory spaces to boost the performance of reading accesses. These memory spaces

reside in the device memory and are cached in the texture cache.

Fourth, there are multiple iterations of loops in the LRF and histograms computing.
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We improve performance by loop unrolling through the use of #pragma unroll direc-

tive in CUDA C/C++. Loop unrolling, of course, results in register pressure, which is

alleviated through increase in the size of the L1 cache. There are four large for loops

in the parallel SHOT algorithm that are candidates for loop unrolling. Unrolling

these four loops can result in 20% speedup performance improvement.

Table 2.3
Speedup of the serial SHOT over the parallel SHOT

Model/Scene Dataset NSurf Nkey Tc(s) Tga(s) Tga(s) Sgp Sga

Milk Box Model 13704 13704 1.05 0.24 0.21 4.38 5.08

Office Chair Model 18815 18715 3.33 0.37 0.30 9.00 11.07

Stanford Bunny Model 204800 40251 6.51 0.83 0.65 7.84 10.04

Chicken Model 135142 135142 12.42 1.09 0.83 11.39 14.92

Stanford Dragon Model 313260 121550 15.75 1.06 0.88 14.86 17.98

Happy Buddha Model 614560 487951 97.27 2.36 1.81 40.70 53.72

Office Scene 145511 145505 13.67 1.23 0.97 11.12 14.12

Table Scene 307200 66053 12.53 0.91 0.73 13.76 17.06

Five people Scene 307198 241407 41.46 1.71 1.29 24.25 32.25

2.4 Experiment Results and Discussion

In this section, we provide experimental validation of the GPU accelerated G-SHOT

algorithm. The serial SHOT algorithm has already been integrated into the PCL. We

have integrated the GPU parallel G-SHOT algorithm into the PCL, with experimental

platform given in Table 2.1.
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Table 2.4
Physical limits for CUDA compute capability 2.0

Parameters Size
CUDA driver version 4.0
CUDA capability version 2.0
Maximum local memory/thread 512 KB
RAM/SM 64KB
Shared memory/SM 16KB
L1 cache/SM 48KB
Shared memory allocation unit size 128
Threads/warp 32
Maximum warps/SM 48
Maximum threads/SM 1536
Maximum thread blocks/SM 8
Number of 32-bit registers/SM 32768
Register allocation unit size 64
Register allocation granularity warp
Maximum registers/thread 63
Warp allocation granularity 2
Maximum thread block Size 1024

Table 2.2 presents the profiling results of the parallel G-SHOT on the GPU for one

typical point cloud scene model from around ten models we studied. The input size

in this experiment is 307200 surface points and 206775 key points. The memory copy

operations from host to device (H2D Memory Copy) and vice versa (D2H Memory

Copy), consume 7% and 2% of the total SHOT descriptor computation time, respec-

tively. Moreover, the cost of preprocessing the data prior to transfer from host to

the device is 2%. The computation time is dominated by two GPU kernels which

contribute to 89% of overall time.
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Table 2.5
Kernel CUDA occupancy

Kernels Kernel I Kernel II
Register ∼ 48 ∼ 48
Shared Memory 0 0
Thread layout [256,1] [128,1]
Block layout [Np/256 + 1] [Np/128 + 1]
Active Thread 512 640
Active Warp 16 20
Active Block 2 5
SM Occupancy 33% 42%

The runtime performances of the serial SHOT on the CPU and two parallel G-SHOT

alternatives on the GPU are compared in Table 2.3 for six selected 3D point cloud

models and three scenes which are commonly used in computer graphics and computer

vision. All these models are available for download from the PCL official website. In

this table, we list the number of surface point (Nsurf ), the number of key-points

(Nkey), the runtime of serial SHOT on the CPU (Tc), exact G-SHOT on the GPU

(Tge), approximate G-SHOT on the GPU (Tga), the speedup of the exact G-SHOT

runtime with respect to the serial SHOT on the CPU (Sga) and the speedup of the

approximate G-SHOT runtime with respect to the serial SHOT on the CPU (Sga)

respectively. The speedup of the exact parallel SHOT (Sge) marked in red ranges

from 4.38 to 40.70, and that of the approximate parallel SHOT (Sga) marked in blue

varies from 5.08 to 53.72, with minor degradation in the descriptiveness. Compared

to the exact parallel SHOT, the runtime improvement of the approximate algorithm

is between 16% and 33%.
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The computing time of descriptors for each model or scene depends on multiple

factors: number of surface points, number of key points, point density and the contour

outline. Larger number of surface points results in larger number of neighbor points

to be computed for each key point. Similarly, more key points leads to computation of

more descriptors. We only list the sizes of surface point set and key points set in Table

2.3, as they are the primary factors in determining the computational complexity. For

the third model (Stanford Bunny Model), although the number of surface points is

more then 10 times, and the number of key points are more then 20 times larger then

that of the second model (Office Chair Model), the speedup decreases from 9 to 7.8.

This is due to the irregular point density around the key points in Stanford Bunny

Model. So, the workload of a few CUDA threads is 10 to 100 times larger then other

CUDA threads, resulting in a performance bottleneck. This issue will be discussed

further in the next sections.

Next, we illustrate the limiting factors influencing the performance of this parallel

algorithm across big data-sets with a large number of key and surface points. For

this discussion, we refer to information in Table 2.4 for the GPU platform that we

used. For the many-core architecture of the GPU, a common measurement criterion

is multiprocessor occupancy [101]. It is a measure of the number of parallel program

thread warps that are actively running on multiprocessor cores. Ideally, we like the

number of active thread warps to be equal to the the maximum number defined by

CUDA compute capability version (48 for compute capability 2.0). However, due to

43



hardware resource limitation (shared memory, and register) and the organization of

thread blocks (number of threads per block), it cannot reach its peak value. The

allocation of hardware resource for the best choice of number of threads per block is

shown in Table 2.5. From the data, the occupancy for both Kernel I and II (33% and

42%, respectively) are limited by the number of registers allocated per thread (∼ 48)

in the program.

2.5 Comparative Performance Evaluation of the

Two Parallel G-SHOT Algorithms

In this subsection, we provide experimental results of both exact and approximate

parallel G-SHOT algorithms in terms descriptiveness in presences of noise. The quan-

titative evaluation of G-SHOT algorithms has been carried out in a typical surface

matching scenario, where the aim is to establish a correspondence between a set of

feature extracted from a scene and those present in a model. We used all the models

and scenes listed in Table 2.3 for the evaluation. We created up to 40 scenes by ran-

domly rotating and translating different subsets of the model set in Table 2.3; then.

The models with average mesh resolution were corrupted with Gaussian random noise

with standard deviation of 10%(σ1) and 20%(σ2). The precision-recall curves in Im-

ages 2.4 and 2.5 demonstrate that the approximate parallel G-SHOT on GPU loses
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no more than 5% descriptiveness compared to exact G-SHOT. This comes at the

speedup performance improvement by a factor of 15% to 30% for the datasets listed

Table 2.3.
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2.6 Conclusion

In this chapter, we have analyzed the latest local descriptor algorithm SHOT and

designed two suitable alternative parallel G-SHOT descriptor algorithms on the GPU
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for large and high density point cloud models and scenes. Both parallel G-SHOT

descriptors can achieve high speedup and competitive descriptiveness. The speedup

of exact parallel G-SHOT can reach up to 40.7, while the approximate parallel G-

SHOT reaches higher to 53.72 with minor matching performance deterioration. We

conclude that a low cost many-core parallel programming platform such as GPU is

a suitable programming environment for accelerating the computation of 3D point

cloud local descriptor. These speedups will benefit the real-time recognition of 3D

objects in complicated scenes, for robotics and other machine vision applications.
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Algorithm 1 The GPU Accelerated SHOT Algorithm

1: Input: Key-points coordinates,
2: Surface points coordinates,
3: Near neighbor points coordinates.
4: Output: SHOT descriptor histograms of key-points.
5:

6: procedure G-SHOT
7: threadsPerBlock ← 0;
8: blocksPerGrid← 0;
9: [Host] Compute the k NNPs for each key-point, and preprocess the data
10: structure of key-point’s surface points coordinates.
11:

12: [Host→Device] Copy coordinates of surface points and key-points, distances
13: and coordinates information of NNPs of each key-point from host to device.
14:

15: //compute block and grid layout for Kernel I
16: threadsPerBlock ← 256;
17: blocksPerGrid← number keypoint/256;
18: [Kernel I]This kernel is to compute the local reference frame (LRF) for all
19: the key points. One thread is responsible for computing the LRF of one
20: key-point. The workload for each thread in this kernel includes the covariance
21: matrix computation for the NNP of one key-point, eigenvalue decomposition
22: of the covariance matrix, ambiguity resolution.
23:

24: [Host] Base on the LRF computing results, remove irregular key points.
25:

26: //compute block and grid layout for Kernel II
27: threadsPerBlock ← 128;
28: blocksPerGrid← number keypoint/128;
29: [Kernel II] This kernel is to compute descriptors for all the key points. One
30: thread is in charge of calculating the descriptor histogram of one key-point.
31: The major overhead contains vector multi-plication,multiple bin value
32: interpolations and normalization.
33:

34: [Device→Host] Copy all the SHOT descriptor histograms of key-points to
35: host.
36: end procedure
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Chapter 3

Massive Parallelization of the

ANNS on the KD-tree

To overcome the high computing cost associated with high-dimensional digital image

descriptor matching, this chapter presents a massively parallel ANNS on the KD-

tree on the modern MPA. The proposed algorithm is of comparable quality to the

traditional sequential counterpart on the CPU. However, it achieves a high speedup

factor of 121 when applied to high-dimensional real-world image descriptor datasets.

The algorithm is also studied for factors that impact its performance to obtain the

optimal runtime configurations for various datasets. The performance of the proposed

parallel ANNS algorithm is also verified on typical 3D image matching scenarios. With

the classical local image descriptor SHOT, the parallel image descriptor matching can
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achieve a speedup of up to 128. The implementation in this work will potentially

benefit real-time image descriptor matching in high dimensions.

3.1 Introduction

Point descriptors have become popular for obtaining an image to image correspon-

dence for 3D reconstruction and object recognition. Search for the image point de-

scriptors that are similar to the query, is one of the core techniques in object recog-

nition and surface registration. To increase the feature descriptiveness, the image

descriptors, typically, require high dimensionality [58] [59] [60] [3] [61] [62] [63] [64].

However, feature matching in high-dimensional space demands extremely high com-

putational workload.

There has been a large body of work in image descriptor matching, exploring the

efficient indexing and the NNS in the point cloud. A brute force P -NNS compares

M query points with all the N points in the search set, to obtain their P nearest

neighbors. It results in the time complexity of O
(
MN

)
[54]. Search can be made

more efficient by using spatial data structures, such as R-tree, B-tree, quad-tree,

binary space partitioning (BSP) tree, K-means tree and the KD-tree. These structures

subdivide the space containing all the points into smaller spatial regions, where a

hierarchy is imposed on the smaller regions in a recursive fashion. The NNS on this
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hierarchical spatial data structure is generally more efficient since it can prune large

portions of target dataset.

In 2D/3D point cloud object recognition and perception, the NNS require fast per-

formance [55] [56]. Unlike the typical applications with single point query [57], the

NNS in these point cloud applications involves batch processing a large number of

query points to match them against the points in the model object.

The current computing trends favor flexibility of heterogeneous programming model

that combines multi-core CPU and many-core GPU. The GPU, as a typical MPA

complement through a large number of computing cores, is finding its way into general

purpose computing, where fine-grain parallelism is needed. The CUDA and OpenCL

standards exemplify this paradigm [102] [103]. In particular, the GPU has been widely

employed for fast and real-time implementation of 3D image processing algorithms [3],

[104], [105], [106], [2], [4]. The inherent massive-parallelism in the NNS algorithm can

be exploited for implementation on any computing platform that supports fine-grain

parallelism.

To mitigate the computational workload associated with high-dimensional digital im-

age descriptor matching, in this chapter, we propose a massively parallel approximate

P -NNS (P -ANNS) on GPU to accelerate image descriptor matching. The parallel P -

ANNS in all stages is fine-grain parallelized for high-dimensional image descriptor

datasets. We employ a hybrid technique which combines non-linear and linear search
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features. For backtracking we use a priority queue which records the distances to

the axis aligned bounding box (AABB). In trading off the efforts in tree traversal

and backtracking (due to branch divergence) with the effort in linear search (due

to leaf node size or the KD-tree height), the technique used in this work finds the

near-optimal performance point. Moreover, set an upper bound on the number of

backtracks for all query points, to reduce the impact of query outliers. Further, all

factors that impact the performance are evaluated for the a near optimal configuration

of the P -ANNS. The chapter is organized as follows. Section 3.2 presents the basic

concepts of KD-tree construction, the NNS on the KD-tree, and programming model

of CUDA. Section 3.3 briefly outlines the related works and highlights the innovations

in the proposed work. Section 3.4 presents the design and implementation details of

the massively parallel P -ANNS on the GPU. Section 3.5 discusses the experimental

results. Section 3.6 concludes this chapter.

3.2 Background

3.2.1 KD-tree

The KD-tree is a hierarchical spatial partitioning data structure for organizing el-

ements (points) in K-dimensional space R
K . It provides the structure to perform
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P -NNS, with the average and best time complexity of O
(
N logN

)
and O

(
N
)
, re-

spectively, and a space complexity of O
(
N
)
[90]. The KD-tree partitions the points

in the dataset into axis-aligned cells in a hierarchical fashion, with each cell repre-

sented by a node in the tree. Starting at the root of KD-tree, the cells are partitioned

into two halves by a cutting hyperplane orthogonal to a chosen partition dimension.

Typically, the dimension with the maximum span is selected as the partition dimen-

sion, and the split value is chosen as the median. Alternatively, the midpoint between

the extreme points in that dimension is chosen as the split mark. Each of the two

split cells from the root is then recursively split, in the same manner, into other cells.

The recursive branching terminates when the number of points that are contained in

a cell is no more than a given upper bound. For a KD-tree with leaf nodes containing

only a single point, the height is log2N .

3.2.2 NNS on the KD-tree

In the NNS problem, given are set S of N searchable reference points, set Q of M

query points, and a distance metric (e.g., Euclidean, Manhattan, and Mahalanobis)

in K dimensions. In a P -NNS, the purpose is to search for the P closest points in S

for each point q in Q.

For high-dimensional feature matching, the most promising approximate indexing
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structures and the NNS algorithms including the KD-Tree, K-means tree, and locality

sensitive hashing (LSH), are evaluated in [64].

The P -NNS on KD-tree can be more efficient since large portions of search region are

quickly pruned. Starting from the root node, the search moves down the tree using

depth first search (DFS). Once the search reaches a leaf node, P points within this

node with the shortest distance to the query point are selected as the initial P near-

est neighbor candidates. However, the initial candidates may not necessarily be the

nearest neighbors to the query point. This requires a further search for the best can-

didates in the neighborhood of this initial cell. In the standard search, implemented

through backtracking, a closer subtree is visited prior to visiting the more distant

subtree [107]. To avoid visiting the unproductive nodes, in this work we replace the

normal queue with a priority queue.

In high-dimensional space, the efficiency of exact search on the KD-tree is no better

than the brute force technique, as most nodes need to be visited [108] [107] [89].

Therefore, practical KD-tree based applications perform the ANNS [89], by simply

setting an upper bound on the number of leaf nodes that can be visited. The ANNS

can perform an order of magnitude faster, with a relatively small number of errors.
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3.3 Related Work and Proposed Innovation

3.3.1 Related Work

There has been a great deal of work on employing parallel architecture to accelerate

the NNS in a broad range of areas. These works can be classified into two categories:

linear and non-linear searches.

3.3.1.1 Linear NNS

Linear search algorithms use brute force approach in which the distances between the

query point in Q and the reference points in S are computed in parallel. Then, a

sequence of a parallel scan on the GPU is deployed to locate the point with the shortest

distance. The parallel implementations of these linear search algorithms on the GPU

are straightforward. The expected time complexity of these parallel algorithms is

O(N2/C), where C is the number of available cores that can execute in parallel. The

work in [109] applied a parallel linear search method for photon mapping to locate

the nearest photons in the grid and compute the radiance estimation at any surface

location in the scene. In [110] points were stored as textures on the GPU memory,

and three program fragments were used to compute Manhattan distances, and then
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perform reductions to find the minimum distance. The work in [111] implemented a

bucket sort on the GPU to partition 3D points into cells. A parallel linear search was

used to find the best matches for query points in the buckets.

The work in [112] used an octree and proposed to deploy shifted sorting to sort both

query and reference points on the GPU. It used Morton codes to order the octree cells

[113] [114]. The NNS was implemented through multiple iterations of shifted sorting

on the GPU. These works focus on the domain of the computer graphic applications

with three-dimensional datasets. The data structures employed were adapted to

specific needs of the applications.

The work in [57] used an R-tree and proposed a traversal algorithm for multi-

dimensional range query that converts recursive tree node access to sequential access.

A parallel brute force scan on the GPU was adopted to achieve fast single query re-

sponse time. The work in [115] designed a parallel brute force linear search on GPU,

with high 96-dimensional synthetic datasets, and a reported speedup of up to 35 com-

pared with the serial counterpart on CPU. However, when applied to real image de-

scriptor datassets with the dimensionality of 27, the speedup is no more than 10. The

limit of 96 dimensions, however, is far short of what is needed for high-dimensional

image matching descriptors such as scale-invariant feature transform (SIFT) and the

SHOT in [58] [60].
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3.3.1.2 Non-linear NNS

Non-linear techniques use data structures like the KD-tree to alleviate the search

complexity by pruning the dataset. There have been some recent attempts towards

the implementation of non-linear NNS on the GPU. The work in [116] built a three-

dimensional KD-tree on CPU with the linked list first, and then relocated it to the

GPU to accelerate the NNS queries. It targeted parallel ray-tracing on the GPU

and reported a speedup factor of 8 over the serial recursive counterpart on the CPU.

The work in [105] adopted a similar method for 3D registration problem as [116]. It

constructed an array based KD-tree on the CPU first, and then migrated it to the

GPU for parallel NNS. Moreover, it used a small fixed length priority queue to reduce

the backtracking, thereby, producing approximate query results. In 3D registration

experiment with 68229 three-dimensional points, it reported a speedup factor of up to

88 with respect to the serial counterpart. However, the KD-tree node size is only one,

which will increase the probability of backtracking, resulting in a loss of the speed

performance.

The work in [117] employed buffers to hold query points at leaf nodes of KD-tree before

launching three kernels on the GPU to perform parallel brute force searches on the

leaf nodes. It yielded significant speedup of up to 50 over the sequential counterpart

on the CPU for a 12-dimensional problem. It does an exact NSS backtracking all
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the way to the root. The work in [118] using a similar procedure to [117], designed

a random ball cover (RBC) data structure which subdivides and prunes the dataset.

The NNS is completed through two rounds of parallel brute force scans. The first

round searches for the candidate subset, and the second round searches for the nearest

neighbors in the subset. However, it is hard to ascertain the accuracy of the obtained

results.

3.3.2 Proposed Innovation

Building upon the works so far, we propose a massively parallel P -ANNS algorithm

for high-dimensional image descriptor matching on the MPA of the GPU. In the

algorithm of this work, all stages of the P -ANNS are fine-grain parallelized.

We propose a hybrid P -ANNS technique that combines non-linear and linear search

features. We perform the bulk of the work using linear search, by choosing a suit-

ably sized leaf node. In the backtracking the KD-tree we employ a priority queue,

adequately sized, to terminate some of the backtracking threads early with no loss

of accuracy. In addition to priority queue, we also set an upper limit on the number

of backtracks, (similar to other implementations e.g., PCL), to mitigates the loss of

speed performance, by sacrificing some accuracy. Through extensive experimenta-

tion, we studied the effects of number of points in the leaf node, and the number of
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backtracks on the speedup performance. It was observed that the best choices for

these parameters vary with the size and dimensionality of the datasets.

The hybrid approach designed in this work, with the right choice of parameters, has

the advantage of increasing the probability of locating P nearest neighbors, through

the use the linear search, in the first candidate node, hence reducing the need for

excessive backtracking that leads to the undesirable thread branch divergence. This is

made possible through the parallel fabric of the GPU that allows further enlargement

of the leaf node size (lowering of the tree height) for a fast linear search.

Moreover, instead of using cell boundaries, we use the AABB, which is much simpler

to test for the boundaries in the branching operations in the NNS and reduces the

search efforts. Further, to obtain a relatively balanced thread workload, in high-

dimensional space, we only use the mean value of the extreme points in the chosen

dimension during the KD-tree construction. Further, points in S are all located in

the leaf nodes and internal nodes only include the split information. These steps

collectively lead to an efficient implementation of the P -ANNS on the MPA of the

GPU.

We have applied the implementation to 320-dimensional descriptor SHOT matching

for 3D object recognition, where the massive parallelization approach in this work

exhibits excellent performance.
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3.4 Massive Parallel Implementation

3.4.1 Parallel Algorithm Design

The breath first search (BFS) based construction technique in the previous work [4]

builds an array representation of KD-tree on the MPA of the GPU. In this section,

we exploit the hierarchical structure of streaming multiprocessor of GPU to design a

fast massively parallel P -ANNS using the hybrid linear, non-linear technique with a

priority queue. The algorithm performs P -ANNS for all M query points in the query

set Q on an N point dataset S in parallel.

The priority queue is very effective mean in early termination of unproductive back-

tracks on the KD-tree [107] [89]. With the priority queue, starting the DFS at the

root node, the children nodes that are not visited are inserted into the queue at each

branch point. Upon reaching a leaf node where the P nearest neighbors to the query

point are most likely to be found, a brute force linear search is initiated. However,

some or all of the nearest points may reside outside of this node. Therefore, a back-

tracking is performed for the other possible candidate points in the neighboring leaf

nodes.

Priority queue as a dynamic data structure, is updated at each visited node. During
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the backtracking as internal nodes are extracted from the top of the queue (dequeued),

the indices of their unvisited children nodes are enqueued at each branch point during

the DFS. A node priority is determined based on the closeness of the distance between

the query point and the AABB of the cell with unvisited node. These distances are

computed easily in an incremental fashion during the branching in DFS [107]. The

search terminates when the priority queue is emptied, or as soon as the distance

between the query point to the bounding box of the cell extracted from the top of

the queue is greater than the shortest distance between the query point and the

best candidate so far, or when the backtracking has reached its upper bound. The

illustration of the NNS on the KD-tree is shown in Figure 3.1 and 3.2.

The size of the priority queue for single query point is set to be slightly larger than the

height of the KD-tree. Setting the size of the priority queue below the height of the

tree, potentially increases the level of approximation in the ANNS. A suitable upper

bound for the number of backtracks, for the desired level of accuracy, is obtained

from the profiling. The following steps explain the iterative P -ANNS on the KD-tree,

using the priority queue.

† The workload of one query point is assigned to one CUDA thread. The thread

descends to one the leaf nodes through the DFS. At each branch point, the

priority queue is updated with the node index and the distance between the

query point and AABB of the child node to which it does not branch.
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Figure 3.1: Two-dimensional KD-tree point layout and partitions
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Figure 3.2: NNS on the two-dimensional KD-tree

† On the entry to a leaf node, the P shortest distances between the query point

and the points in the leaf node are computed. In addition, the entries in the

priority queue whose distance are greater than the current P th shortest distance

are purged from the queue, thereby, eliminating the unproductive search paths.

† In the next step backtracking starts by dequeuing the node from the top of
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Figure 3.3: Computing of distance from the query point to the AABB

priority queue, and launching another DFS to a leaf node in search for other

candidates. As soon as the priority queue becomes empty, or the backtracking

search reaches the root node, or the backtracking counter reaches its upper

bound limit, the search terminates.

The distance from the query point to the AABB of a node is computed as follows.

During KD-tree construction, the minimum and maximum values at each dimension

are recorded as part of the AABB array. For a given query point, if its projection

along a dimension remains outside the minimum and maximum limits of the given

AABB in that dimension, then the orthogonal distance between the query point and

the AABB at that dimension is recorded as the partial distance between the query

point and the AABB. The squared distance from the query point to the AABB is the

accumulation of the partial squares of orthogonal distances in all dimensions. Figure

3.3 demonstrates three scenarios of computation of distance from query point to the

AABB in a two-dimensional space as,
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† Figure 3.3 (a), minx < qx < maxx, and qy > maxy, so dAABB x = 0, and d2AABB =

d2AABB y;

† Figure 3.3 (b), miny < qy < maxy, and qx > maxx, so dAABB y = 0, and d2AABB =

d2AABB x;

† Figure 3.3 (c), qy > maxy, and qx < minx, so, d
2
AABB = d2AABB x + d2AABB y.

Note that by the associating one thread per query point, the P -ANNS for all points

in the query set Q are performed concurrently independent of each other. The detail

of the implementation is shown in Algorithm 2. We use a while loop to convert the

recursion in the traditional DFS algorithm to an iterative algorithm that can work

better on the GPU. The backtracking is implemented through iterative exchange of

three pointers (leftchild, bestchild and otherchild), and the priority queue.

To better understand the P -ANNS, we demonstrate the key procedures of 2-NNS on

the two-dimensional KD-tree with ten points. As depicted in Figures 3.1 and 3.2, the

red point marks the query point, and points 1 to 9 are the points in the constructed
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KD-tree. Further, each leaf node contains two points at most.

First, the search traverses down to the leaf node 4. As it passes through intermediate

nodes (0 and 1), it inserts records of nodes 2 and 3 which are not branched to,

and distances to their corresponding AABBs (dAABB 2 and dAABB 3) into the priority

queue in a sorted manner (Figure 3.4, steps 1 and 2). This is completed through two

runs of the while loop in Algorithm 2 (lines 30 to 50). Upon reaching the leaf node

4, distances between the red query point and two points in the leaf node (point 4

with distance d0 and point 9 with distance d1) are computed and placed in the search

result list of 2-NNS (one run of the while loop, lines 22 to 28). In the same run of the

of while loop, entry (node 2, dAABB 2) in the priority queue with an AABB distance

(dAABB 2) greater than the longest distance (d1) in the 2-NNS result list is removed

(Figure 3.4, step 3). In the next run of the while loop (lines 53 to 63), node 3 at

the head of the priority queue is extracted as the backtrack start node. At the end

of this run, the priority queue becomes empty (Figure 3.4, step 4). In the following

iteration of the while loop (lines 30 to 50) the search descends to leaf node 8, and

entry (node 7, dAABB 7) is placed on the priority queue (Figure 3.4, step 5). On the

later run of the while loop (lines 22 to 28) point 3, the only point in node with the

distance d2 < d1, is placed on the 2-NNS result list, replacing node 4 as the nearest

point. Point 4, in turn, replaces point 9. Since the dAABB 2 > d0 the queue is purged

(Figure 3.4, step 5). In the final run of the while loop (lines 53 to 56) the priority

queue is found empty and the search terminates. At the end of the whole process,
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the 2-NNS produces an ordered result list of {3, 4} and a corresponding distance list

of {d2, d0}.

3.4.2 Performance Optimization

Performance of parallel P -ANNS algorithm on the GPU is influenced by several fac-

tors, including the memory access coalescing in the global memory, bank conflicts in

the shared memory, branch divergences, local and global synchronization overhead

and the organization of thread blocks [119].

First, as mentioned in [4], the KD-tree is constructed using the SOA. The GPU

SIMD (or SPMT) architecture can process vectors more efficiently than the non-

linear data structure such as a tree. Second, to ensure that global memory accesses

on GPU are coalesced, i.e. threads accesses to memory are combined into a single

transaction, into an aligned and contiguous block of global memory, we perform a

preprocessing, prior to copying the input data from the CPU host to the GPU device.

We restructure data employing the SOA instead of the AOS in the representation of

data structures. Third, in this design, the read-only data are placed in the texture and

surface memories as much as possible to boost the performance of reading accesses.

The texture and surface memories reside on the device and are cached in the texture

cache, and therefore, presents a better alternative to accessing the global memory.
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Algorithm 2 NNS on the KD-tree

1: Input: node data structure (parent, child, splits), aabbMin,
2: aabbMax, query, P , bk bound.
3: Output: results data structure
4: procedure P -NNS-POINTS
5: allocate memory and copy M query points to GPU;
6: launch P -NNS kernel with one thread for each query point;
7:
8: [P -NNS Kernel on GPU]
9: //initialization for search from root node
10: backtrack ← false;
11: currentnode← 0, bk counter ← 0;
12: create a priority queue Qp;
13:
14: //iterative search for P -NNS
15: while true do
16: //initialize flags
17: leftchild = child[currentnode];
18:
19: //backtracking or travel down to leaf node and examine it
20: if (!backtrack) then
21: if leftchild == −1 then
22: //process leaf node in this branch
23: compute the distances from query node to all
24: points in this leaf node and store P points
25: with the 1shortest distances in results[i];
26: remove entries with distances to their AABBs
27: greater than restults[i].index[P − 1] in Qp;
28: backtrack ← true, bk counter++;
29: else
30: //process intermediate nodes in this branch
31: //initialize flags
32: bestchild = leftchild;
33: otherchild = leftchild;
34:
35: //check candidate node in left or right child node
36: split← splits[currentnode];
37: delta← query[i].[split.dim val]− split.split val;
38: if delta < 0 then
39: otherchild++;
40: else
41: bestchild++;
42: end if
43:
44: //compute distance from query point to AABB
45: dAABB ← compute the distance from query point
46: to bounding box AABB of otherchild;
47: enqueue(Qp)← (otherchild, dAABB);
48:
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Algorithm 2 NNS on the KD-tree (Continued)

49: //prepare for the next search iteration
50: currentnode← bestchild;
51: end if
52: else
53: //search terminate condition
54: if (length(Qp) == 0) ‖ (bk counter ≥ bk bound) then
55: break;
56: end if
57:
58: //extract node with mindist from Qp

59: (currentnode,mindist) ← dequeue(Qp);
60: //examine candidate sub-tree in next iteration
61: if (mindist ≤ restults[i].index[P − 1]) then
62: backtrack ← false;
63: end if
64: end if
65: end while
66: end procedure

Fourth, to improve the performance, we try to reduce the branch conditions in loops in

the algorithm. We achieve this by loop unrolling through the use of #pragma unroll

directive in CUDA. Loop unrolling, of course, results in register pressure, which is

alleviated through increase in the size of the L1 cache. There are multiple large for

loops in the parallel algorithms that are candidates for loop unrolling. Finally, branch

divergence effect of parallel P -ANNS on the KD-tree is minimized by making the size

of the leaf node/(tree height) sufficiently large/(small).

3.4.3 Memory Usage

The usage of per-thread private memory is rather high resulting in spill over to L1

cache and global memory. The usage of global memory increases rapidly with the
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dimensionality. With 4 GB DRAM, we were limited to the dimensionality of 512. If

the dataset is small, shared memory can be used to hold priority queue. However,

for large and high-dimensional datasets we have to use global memory. The memory

required to hold the AABB dimensional limits is also high.

3.5 Experiments and Results

In this section, we provide experimental performance validations for the GPU ac-

celerated P -ANNS algorithm 1. Unlike the previous work in [4], we use real-world

image descriptor datasets with a wide range of sizes and dimensionality which were

generated from Winder and Brown image dataset [120] [121], as well as datasets with

high-dimensional SHOT feature descriptors, extracted from typical point clouds. We

perform multiple sets of experiments to measure the speedup performance and ac-

curacy of the P -ANNS (the fraction of the correct neighbors matched by the ANNS

compared with that matched by the exact brute force technique). We also explore the

performance impact factors including the dimensionality, node size, the upper bound

on the number of backtracks, and the number of nearest neighbors for single query

point (P ).

To compare the algorithm in this work with the previous arts, the serial P -ANNS on

1The platform contains a 4-core, 3.2 GHz Intel i7-970 processor, with Ubuntu 12.04 OS, with 1.14
GHz, GeForce GTX 760 GPU with 4 GB RAM with 7 Streaming multiprocessors
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KD-Tree algorithm in the PCL is used as the baseline. The ANNS implementation

in the PCL uses three pointers, and a single counter to track and bound the number

of backtracks that controls the approximation. Further, the leaf node size of the

KD-Tree in the serial PCL P -ANNS is one. So the major differences between the

proposed parallel P -ANNS on GPU and the serial PCL version are that we place

no restriction on the size of leaf nodes, and we use a priority queue. To make a

fair speed performance comparison, we modified the serial PCL counterpart to have

no restriction on the size of leaf nodes. In the following experiments, the input

parameters including dataset size, leaf node size, upper bound on the number of

backtracks and the number of nearest neighbors (P ) are set to be identical to the

serial counterpart in the PCL and the parallel algorithm in this work.
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3.5.1 Performance Evaluation on Real-world Image Descrip-

tors

In the experiments with real-world image descriptors, we have used the approach in

[120] [121] to generate the points in the datasets of various dimensionality, by random

sampling from Trevi Fountain image patch suites2. The suites include up to 100900

key point descriptors. We set the query set to be identical to the reference set that

was used to construct the KD-tree (Q = S). This is justified as in the image matching

every query point descriptor has to be matched. To make sure the query accuracy

is more than 90%, we have adjusted the upper bound on the number backtracking

according to the dataset size and dimensionality.

3.5.1.1 Performance Comparison with Related Works

Table 3.1 provides a brief comparison of this work with the related works from multiple

aspects including the dimensionality (DIM), number of query points (M), the ANNS

speedup (SANNS) and the accuracy of the ANNS (AANNS). As seen, the parallel

P -ANNS presented in this work provides the highest performance when applied to

2Data from: http://phototour.cs.washington.edu/patches/. The data is taken from Photo
Tourism reconstructions from Trevi Fountain (Rome). Each dataset consists of a series of corre-
sponding patches, which are obtained by projecting 3D points from Photo Tourism reconstructions
back into the original images.
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higher dimensions of up to 512 where the dataset size is large. We also achieve an

accuracy of above 90%.

3.5.1.2 Performance Comparison Between the Serial and the Parallel Al-

gorithms

Next, we compare the performance of parallel P -ANNS with respect to its serial

counterpart. We generated seven N -point datasets and set Q = S, with M = N

range from 2560, to 100900 to cover a wide range of reference and query dataset sizes.

To evaluate the results for a high dimension we set K = 512. We set the number of

nearest neighbors P = 4. Table 3.2 presents the results, where parameters Tcnns and

Tgnns represent the execution times for serial and parallel P -ANNS on the CPU and

the GPU, respectively. Parameter Snns denotes the speedup factor, Tcnns/Tgnns . As

shown the speedup of parallel P -ANNS on the KD-tree increases with the data size

reaching to a high value of 121.

Table 3.2
High-dimensional (d=512) P -ANNS (P = 4) execution times (in ms) and

speedups

dataset size Tcnns Tgnns Snns

2560 9817 554 17.7
5120 37534 773 48.6
10240 121807 2194 55.5
20480 391551 6369 61.5
40960 1201617 18908 63.6
81920 4498158 48014 93.7
100900 8330679 68701 121.3
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3.5.1.3 Effect of Divergence

The parallel P -ANNS algorithm in this work is based on braided parallelism [122]

technique (mix of data and task parallelism), where multiple queries are performed

as a set of parallel tasks on GPU, with group of tasks assigned to a thread block

and each task assigned to a thread. Each task traverses down the KD-tree to one

of the leaf nodes using an independent path. However, tasks are executed on GPU

hardware in units of warps (32 threads). Any thread divergence within a warp cost

execution clock cycles. However, since the KD-tree is a binary tree, there can only be

a maximum of one divergence within a warp at each stage of the tree. Therefore, it

costs no more than one clock cycle per warp per KD-tree stage. With a suitable choice

of the KD-tree height (leaf node size) the effect of the divergence can be minimized.

To evaluate the impact of divergence, we launched M queries with the same query

point, and then perform P -ANNS and measured the runtime. In the parallel 4-ANNS

test with 512-dimensional 100900 image descriptors, the warp divergences resulted in

the total search execution time increase of 44%. ing processors in a batch sequential

mode.

Fortunately, for the image descriptor datasets we studied here, the query points are

not indexed randomly. The query points in the same neighborhood have a high

probability of being assigned to the same warp. This significantly reduces the effect of
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the divergence. Furthermore, with a large query size, the workload imbalance between

the thread blocks has no effect on the performance. That is because the thread blocks

are scheduled to the streaming processors in a batch sequential mode. To study the

impact of index ordering of the query points, we performed a random shuffle on all

the query points and repeated the test with the same parameters (M = N = 100900,

K = 512, and P = 4). The random shuffle caused 42% increase in the search time.

3.5.1.4 Speedup Impact Factors

This section studies the impact on the P -ANNS execution time, from several factors

including dataset size, leaf node size, the upper bound on the number of backtracks,

and the number of nearest neighbors for a single query (P ).

3.5.1.4.1 Effect of the Dataset Size and the Dimensionality Figure 3.5

presents the plots of execution times of the parallel P -ANNS versus the number of

query points for several different dimensions K. As seen the rate of growth in the

execution time gradually increases with the dataset size. The reason for this is that

in the parallel P -ANNS (Algorithm 2), with larger datasets the effects of execution

divergence, uneven workload due to backtracking become more severe, leading to

degradation in resource utilization and speed performance loss. Further, it was ob-

served that for a given number of query points, the rate of increase in the runtime
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Figure 3.5: Runtime of parallel P -ANNS versus the dataset size with var-
ious dimensionality

slowly grows with the dimensionality K. This is because to maintain high accuracy,

at higher dimensions we have to increase the number of backtracks. More frequent

backtracking, enqueue and dequeue operations at the higher dimensions contribute

to the increased rate in the execution time.

3.5.1.4.2 Effect of the Node Size The execution time of the parallel P -ANNS is

impacted by the leaf node size. Searches with a large leaf node size are more linear-like,

with an increase in the execution time, as the opportunity for pruning the KD-tree

structure diminishes. On the other hand, with a leaf node size excessively reduced, the
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Figure 3.6: Runtime of parallel P -ANNS versus the leaf node size for
256-dimensional KD-tree

search encounters more frequent backtracking, leading to runtime degradation, due to

thread divergence. Even though decreasing the tree height reduces the opportunity for

pruning, GPU compensates for the increased linear search through parallel processing

of the query points in the leaf node. Plots in Figure 3.6 present the effect of the leaf

node size on the execution time of the parallel P -ANNS for the 256-dimensional

KD-tree, where for the dataset size ranging from 10240 to 81920, the optimum leaf

node size is between 64 to 256. Figure 3.7 shows the effect of the leaf node size on

the execution time of the serial P -ANNS with the same configuration as the parallel

counterparts. Figure 3.8 depicts the leaf node size impact to the speedup.
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Figure 3.7: Runtime of serial P -ANNS versus the leaf node size for 256-
dimensional KD-tree

3.5.1.4.3 Effect of the Backtracking In all experiments so far, the number of

backtracks was chosen based on the dimensionality and size of image descriptor set,

to achieve an accuracy of more than 90% for P -ANNS. An increase in the number of

backtracks leads to higher search accuracy, since more leaf nodes will be inspected.

Plots in Figure 3.9 present the effect of the number of backtracks on the execution

times of the parallel P -ANNS on the dataset size of 81920 for various dimensionality

choices of 4, 16, 64 and 256. The respective saturation points, when the node size

is set to 64, are around 50, 200, 1500, and 2000, indicating to reach the same level

of accuracy the number of leaf nodes that need to be visited increases with the
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Figure 3.8: Speedup of parallel P -ANNS over the serial counterpart versus
the leaf node size for 256-dimensional KD-tree

dimensionality.

3.5.1.4.4 Effect of the Number of Nearest Neighbors of Single Query

Point (P ) In all experiments so far, the number of nearest neighbors for single

query point is set as P = 4 in all the P -ANNS tests. To study the effect of P , we

evaluated the speed performance of P -ANNS for a range of P values for several 256-

dimensional datasets. Plots in Figure 3.10 show that the execution time of parallel

P -ANNS increases linearly first, but then slowly with the value of P .
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Figure 3.9: Runtime of parallel P -ANNS with 81920 test points versus the
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3.5.2 Experimental Results for Local Descriptor SHOT

Matching

To verify the performance of the massively parallel P -ANNS in high-dimensional space

in this work, on real application, we conducted a series of matching experiments on

nine real point cloud datasets. The sets chosen include six 3D point cloud models and

three scenes, commonly used in computer graphics and computer vision. Datasets

are available online for download [55]. The sets are shown in Table 3.3. For each
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Figure 3.10: Runtime of parallel P -ANNS versus the value of P on a
256-dimensional KD-tree

point cloud dataset, we first sampled out the key points and then computed the

SHOT local descriptors for each key point. We chose the SHOT because as a novel

3D object local descriptor it can achieve a good balance between descriptiveness and

robustness. With the dimensionality 320 [59] [60], the regular SHOT descriptor also

provides a good test case for the evaluation of this work. Next, we constructed a

KD-tree with those 320-dimensional descriptors and then searched for P = 4 nearest

neighbors for each key point on the tree (Q = S). The results are presented in Table

3.3, where the parameter Nkey, denotes the number of key points. Further, Tcsrch

and Tgsrch denote the execution times of serial P -ANNS on the CPU and the parallel
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equivalent on the GPU, respectively. Parameters Ssrch denotes the speedup factor,

Tcsrch/Tgsrch. As seen, the maximum speedup of parallel P -ANNS on the GPU reaches

to 128.

Table 3.3
Matching runtime (in ms) and speedup of the parallel algorithm over the

serial algorithm

Model/Scene Dataset Nkey Tcsrch Tgsrch Ssrch

Milk Box Model 13704 135679 2993 45.3
Office Chair Model 18715 283344 4484 63.2
Stanford Bunny Model 20446 321337 7441 43.2
Chicken Model 85693 4198083 34021 123.4
Stanford Dragon Model 80047 3340781 30317 110.2
Happy Buddha Model 99614 6253534 61902 101.1
Office Scene 89031 5087316 43419 117.2
Table Scene 66053 1306562 17358 75.3
Five people Scene 91143 5734613 44913 127.7

3.6 Conclusion

In this chapter, we designed a massively parallel P -ANNS on the GPU for high-

dimensional image descriptor matching. The proposed algorithm is of comparable

quality to the traditional sequential counterpart on the CPU while achieving high

speedup performance in a wide range of dimensions. The parallel algorithm was

tested on real-world image descriptors datasets with varying dimensionality, as well
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as classical point cloud descriptors datasets in real applications. The speedup of P -

ANNS reaches up 121 with real-world image descriptors with 512 dimensions. For the

real application with SHOT descriptor datasets, the corresponding speedup raises up

to 128.
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Chapter 4

Highly Parallel KD-tree

Construction for the BANNS

To overcome the high computational cost associated with the high-dimensional digital

image descriptor matching, this chapter presents a set of integrated parallel algorithms

for the construction of the KD-tree and the BANNS on the modern MPA. To improve

the runtime performance of the ANNS, we propose an efficient sliding window for

a parallel BANNS on KD-tree to mitigate the high cost of global memory accesses.

When applied to high-dimensional real-world image descriptor datasets, the proposed

KD-tree construction and the BANNS algorithms are of comparable quality to the

traditional sequential counterparts on the CPU, while outperforming their serial CPU

counterparts by speedup factors of up to 17 and 163, respectively. Moreover, we verify
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the features of the parallel algorithms on typical 3D image matching scenarios.

4.1 Introduction

Point descriptors have become popular for obtaining an image to image correspon-

dence for 3D reconstruction and object recognition. Searching for the image point

descriptors that are similar to the query descriptor is one of the core techniques in

object recognition and surface registration. To increase the feature descriptiveness,

the image descriptors, typically, require high dimensionality [58] [59] [60] [3] [61] [62]

[63] [64]. However, feature matching in high dimensions demands extremely high-

computational workload.

There has been a large body of research work in image descriptor matching, exploring

the efficient indexing and search algorithms for that NNS that find the closest point

descriptors to a specified number of query point descriptors. A brute force NNS

compares a query point to all the N points in the reference set and results in the time

complexity of O
(
N2

)
[54]. However, its search time performance can be made more

efficient by using spatial data structures, such as R-tree, B-tree, quad-tree, BSP tree,

K-Means tree and KD-tree. These data structures subdivide the space containing all

the points into smaller spatial regions, where a hierarchy is imposed on each smaller

region in a recursive fashion. The NNS on this hierarchical spatial data structure is
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generally more efficient since it can prune a large portion of target dataset.

In 2D/3D point cloud object recognition and perception, indexing of image descriptors

and the NNS of them require fast performance [55] [56]. In these applications, a

captured scene changes in a dynamic fashion, and hence, indexing of descriptors in

the new scene through the KD-tree construction becomes time critical. Moreover,

unlike the typical applications with single point query [57], the NNS in these point

cloud applications involves a batch of a large number of query points for matching

with the points in the model object.

The current trends favor flexibility of heterogeneous computing model that combines

multi-core CPU and many-core GPU. As a typical MPA complement to the CPU, the

GPU is finding its way beyond graphical processing into general purpose computing.

The CUDA and OpenCL standards exemplify these features [102] [103]. The GPU has

been widely employed for fast and real-time implementation of 3D image processing

algorithms [3], [104], [105], [106], [2], [4]. The inherent massive-parallelism in the

KD-tree construction and the NNS algorithms can be exploited for implementation

on any computing platform that supports fine-grain parallelism.

To mitigate the computational workload associated with high-dimensional digital im-

age descriptor matching, in this chapter, we propose two massively parallel algorithms

on the GPU to accelerate both KD-tree construction and the BANNS. The chapter
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is organized as follows. Section 4.2 presents the basic concepts of the KD-tree con-

struction and the NNS. Section 4.3 briefly outlines the related works and highlights

the innovations of this work. Section 4.4 presents the design and implementation de-

tails of the massive parallelization on the GPU. Section 4.5 describes the performance

optimization considerations. Section 4.6 presents experimental results. Section 4.7

concludes this chapter.

4.2 Background

4.2.1 P -NNS on the KD-tree

In the NNS, given are set S of N searchable points, set Q of M query points, and

a distance metric in K dimensions, such as Euclidean, Manhattan or Mahlanobis

distance. In a P -NNS, the purpose is to search for the P closest points in S for

each point q in Q. This search can be performed efficiently by using the structure of

KD-tree to quickly prune large portions of the search space. Starting from the root

node, the search moves down the tree using the DFS. Once the search reaches a leaf

node, the point within this node that has the shortest distance to the query point is

selected as the initial nearest neighbor candidate. However, the initial candidate may

not necessarily be the nearest neighbor to the query point. This requires a further
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search for the best candidate in the neighborhood of this initial cell. However, in

high dimensions, the efficiency of exact search on the KD-tree is not better than the

brute force technique, as most nodes need to be visited [108] [107] [89]. To overcome

the problem, practical KD-tree based applications use the ANNS algorithms [89] that

can perform an order of magnitude faster, often with a relatively small error.

For matching high-dimensional features the works in [64] and [123] evaluate the most

promising approximate indexing structures and the ANNS algorithms in literature

including KD-Tree, K-means tree and the LSH. It was shown in [64] that the KD-tree

is one the most efficient structures that can work well with high-dimensional image

feature matching where the descriptors are correlated. However, these tree structures

do not work well with randomly distributed descriptors [124] [125].

The work in [107] presents an efficient ANNS algorithm using a balanced KD-tree with

a priority queue to avoid unproductive search paths, and find the nearest neighbor

point with high probability in an approximate way. A priority queue is used to

restrict the search to a fixed number of cells that are most likely to contain the

nearest neighbor point [4], [107], [89]. With the priority queue, starting with the

root node, the children nodes that are not visited are inserted into the queue at each

branch point during the DFS. The priority of a node and its subtree is determined

based on the closeness of the distance between the query point and the bounding box

of the cell corresponding to the unvisited node. These distances are computed easily
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in an incremental fashion as each node is visited [4] [107]. After finding the candidate

in a leaf node, other nodes in the queue are visited according to their priorities in the

queue. The algorithm terminates when the priority queue becomes empty, or as soon

as the distance between the query point to the bounding box of the cell corresponding

to the point with the highest priority is greater than the shortest distance between

the query point and the best candidate so far.

4.3 Related Work and Proposed Innovation

As discussed, KD-tree is one of the most efficient structures for high-dimensional im-

age descriptor matching. Therefore, in this chapter we primarily address the massive

parallelization of KD-tree construction and the ANNS for high-dimensional image

descriptor matching.

4.3.1 Related Work

Large-scale parallelization of the KD-tree construction, using nonlinear algorithms,

requiring tight synchronization among the execution threads, is a challenging task.

A further challenge is the requirement for a design that is efficient for the ANNS

[118]. A parallel design of 3D KD-tree construction on the GPU in a breadth-first
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search (BFS) manner was first introduced in [56], and applied to ray-tracer using

the dynamic scenes. The input is limited to geometric primitives in a mesh where

triangles instead of a general points are the objects of interest. This work proposed a

strategy for fine-grain parallelism in the partitioning of nodes at the upper tree levels

where their corresponding cells are larger. The approximate split metric used for

partitioning combines empty space and median split technique using either the surface

area heuristic (SAH) or the voxel volume heuristic (VVH). The speedup factor of this

parallel KD-tree construction is about 9 to 13 with respect to the serial counterpart

on the CPU.

Heuristic partitions in [56], however, are not suitable for extension to high-dimensional

spaces due to the limited shared memory resource, and highly uneven workload among

the threads when extended to high dimensions. The work in [126] proposed a fast

architecture sensitive tree (FAST) for search. It takes the underlying memory access

patterns (cache, TLB and page access) into account for the optimization of the algo-

rithm. The speed improvement, however, is less than 2. Other related works [105],

[116] and [117] build the KD-trees on the CPU and transfer the tree to the GPU for

the NNS. To the best of our knowledge, there has been no work to deploy the GPU

to accelerate high-dimensional KD-tree construction.
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4.3.2 Proposed Innovation

Building upon the works so far, we propose highly parallel KD-tree construction and

the BANNS algorithms for high-dimensional image descriptor matching on the GPU.

All stages of the KD-tree construction and BANNS are fine-grain parallelized for

high-dimensional datasets. To obtain a relatively balanced thread workload, in high-

dimensional space, we use the midpoint of the extreme points in the chosen dimension

during the KD-tree construction. Further, points in S are all located in the leaf nodes

and internal nodes only include the split information. The new technique of this work

is a hybrid nonlinear and linear search which with the right choice of parameters

(size of leaf nodes, and the number of backtracks) has the advantage of increasing the

probability of locating the nearest neighbor in a small number of backtracks. Through

extensive experimentation, we studied the effects of KD-tree height, and the number

of backtracks on the runtime and accuracy performance. It was observed that best

choice for these parameters varies with the dimensionality and the size of the datasets.

Moreover, to improve the speed performance of P -ANNS, we design a novel sliding

window for the parallel P -BANNS on the KD-tree (Sec. 4.4.2), to mitigate the global

memory access latency. Further, instead of using cell boundaries, we use axis aligned

bounding box (AABB) (Sec. 4.4.1), which is much simpler to test for the boundaries

in the branching operations in the NNS. We have applied the massive parallelization

to 320-dimensional descriptor SHOT matching in 3D object recognition.
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4.4 Massive Parallel Implementation

This section, describes a scalable massively parallel technique to construct a KD-tree

from N points in set S, and perform a BANNS for all the M query points in the query

set Q. We exploit the hierarchical structure of streaming multiprocessor of the GPU

to achieve high speedup. To facilitate the development of the KD-tree construction

with minimal programming effort, we use basic general parallel algorithms and data

structures from the Thrust library that comes with high-level abstraction interfaces.

The for a common comparison benchmark we have used the serial construction of

KD-tree and the NNS algorithms in the PCL [55].

4.4.1 Parallel Construction of the KD-tree

We employ the BFS to fully exploit the fine-grain parallelism of streaming multi-

processor architecture of the GPU in all stages of construction of the KD-tree. The

quality of the proposed parallel KD-tree construction algorithm on the GPU is com-

parable to the serial counterpart on the CPU. At each BFS step in the parallel

implementation in this work, each of the nodes with the same distance from the root

spawns a new CUDA thread, with number of threads doubling with each step. Fol-

lowing the conventional construction of KD-tree, the algorithm in this work can be
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described in the following major steps.

† index all the K-dimensional N points in set S.

† sort points in each dimension, and store the results in the index array of the

respective dimension.

† compute the AABB of each intermediate node, its split dimension and value

based on the AABB.

† split nodes iteratively in each level of the tree.

The details are shown in Algorithms 3 and 4. Before launching the GPU kernel, we

allocate global memory on the GPU for the needed data structures for each node,

and each point within a node. For each node, we define the node data structure with

struct and union. Prior to splitting a node, we store indices of the leftmost and

rightmost points in the sub-array for the current node in the Split structure. After

the split, we also store the split dimension and its value.

To avoid using the AOS that have inefficient uncoalesced global memory accesses

on the GPU [119], we allocate the following arrays on the GPU global memory;

array of points, arrays of dimensional values (one array per dimension), array of pre-

allocated parent nodes, children nodes, array of owners and split node indices, array

of bounding boxes for all nodes, left and right binary marks for all points, and so on.
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Algorithm 3 Construct KD-tree on the GPU

1: Input: Set S with N K-dimensional points, and node size
2: (maximum number of point in a leaf node)
3: Output: KD-tree on the GPU
4: procedure KD-TREE-CONSTRUCTION-GPU
5: //allocate global memory on GPU
6: M ← N/node size;
7: for all M pre-allocated nodes do
8: allocate global memory for children nodes array;
9: allocate global memory for parent nodes array;
10: allocate global memory for current nodes array;
11: allocate global memory for split array ;
12: allocate global memory for AABB array;
13: end for
14:
15: for all N points ∈ S do
16: allocate global memory for all points index array;
17: allocate global memory for all owners index array;
18: end for
19:
20: for all N point in each of the K dimensions do
21: allocate global memory for points array;
22: allocate global memory for points index array;
23: allocate global memory for owner nodes array;
24: allocate global memory for left and right marks array;
25: end for
26:
27: //point preprocessing
28: assign indices (0 to N − 1) to N points;
29: for for each of K dimensions do
30: assign indices (0 to N − 1) to N points in index array;
31: sort N points along the dimension and update index array;
32: end for
33:
34: //prepare for the split at root node
35: compute AABB for root node according to the minimal and
36: maximal value at each dimension;
37:
38: //split nodes of KD-tree
39: NODE-SPLITS;
40: end procedure

To benefit from the coalesced global memory accesses we performed the preprocessing

through the SOA that significantly improves the efficiency of accessing arrays of set

S, temporary points, child nodes, parent nodes, and left and right binary marks. To

compute the AABB for each node’s cell, we first sort all points along all dimensions.
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Sorts are performed by multiple GPU kernel launches (one launch per dimension).

After the sorts, the maximum and minimum values in each dimension are stored in

the AABB array.

The split operation on the GPU is also implemented with parallel reduction kernels.

One CUDA thread works on one node split. The number of nodes involved in the

split doubles with each iteration. There are two major steps in each split iteration.

The first step as shown in Algorithm 4 (lines 4 to 67) computes the indices of the

parent and children of the split node, as well as the split value and dimension. In the

event of a node undergoing a split, its associated thread first checks to see if enough

memory space has been allocated for the addition of new nodes. If the number of

points in the current node falls below the threshold of the number of points in a

leaf node, no further split will be undertaken and the node will be marked as a leaf

node. Otherwise, the left and right split nodes indices for the current split node i are

computed as (2i + 1) and (2i + 2). The Split information of current split node is

also updated with the new split value and dimension. After the split, all the CUDA

threads are synchronized to ensure completion of all split operations at a given level

from the root of the tree. Finally, at the end of this step, a check is made to see if any

node remains that requires split in this iteration. If no nodes are left the loop breaks

out and the procedure terminates. Otherwise, we will prepare for the next split.
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The second major step as shown in Algorithm 4 (lines 68 to 139) focuses on the re-

distribution of points to the children nodes once all the split related information for

children and parent nodes are computed. The algorithm launches N CUDA threads

to process N groups of K-dimensional points. Each group contains K points with

each point from a sorted list of N values in ascending order in one dimension. Each

thread projects the dimensional values in each group to the split dimension. Each

point in each group is placed in one of the children nodes on the left or right through

a comparison of the projected value with the split value. The results are stored in

the left and right marks, and the owner arrays for each node. Next, the points in

the newly created nodes are sorted in all dimensions through three Thrust library

functions working on the left and right mark flags; exclusive scan, transform and

scatter. These operations are performed on all the K dimensions for all points in

the dataset S. The sorted lists in each node are used to compute the AABB on the

left and right children for the next iteration of the split.

To better understand the parallel KD-tree construction on the GPU in this work, we

demonstrate the key procedure of the first split through an example with ten points in

a two-dimensional space. Figure 4.1 presents the arrangement of points in this space.

Along the x dimension the list sorted in ascending order is {9, 4, 5, 3, 0, 6, 7, 2, 8, 1}.

Similarly, the sorted list along the y dimension is {0, 5, 2, 1, 3, 6, 4, 8, 7, 9}. In this

example the threshold of the number of points in one node is set to 2. The first split

is performed along the x dimension and the split value chosen as the midpoint of the
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Algorithm 4 Node split and points re-distribution

1: Input: indices of points in all K dimensions
2: Output: parent node, child nodes, split info update
3: procedure NODES-SPLIT
4: //Initialization for first split
5: node count ← 1;
6: M ← N/node size;
7: out space ← false;
8: last node count ← 1;
9:
10: while true do
11: //launch (last node count) threads for this kernel
12: [GPU Kernel]split check
13: split enable ← false;
14: shared new nodes to add;
15: shared allocated enough;
16: if (threadIdx == 0) then
17: new nodes to add ← 0;
18: end if
19: synchronization;
20:
21: //check if any node in this round undergoes split, and
22: //and if so, compute its children node numbers
23: if (child[threadIdx] == −1) and ((splits[threadIdx].right
24: −splits[threadIdx].left) > node size) then
25: split enable ← true;
26: atomicAdd(new nodes to add, 2);
27: end if
28: synchronization;
29:
30: //check the total number of nodes split sofar and
31: //check if enough number of nodes are pre-allocated
32: if (threadIdx == 0) then
33: atomicAdd(node count, new nodes to add);
34: allocated enough ← (node count < m);
35: if (!allocated enough) then
36: atomicAdd(node count,−new nodes to add);
37: end if
38: end if
39: synchronization;
40:
41: //split current node and update split/child/parent info
42: if (split enable) and (allocated enough) then
43: left ← 2 ∗ threadIdx+ 1
44: splits[threadIdx].split dim ←
45: compute the split dimension with maximal span;
46: splits[threadIdx].split value ←
47: compute the split value with mean;
48: child[threadIdx] ← left;
49: parent[left] ← threadIdx;
50: parent[left+ 1] ← threadIdx;
51: end if
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Algorithm 4 Node split and points re-distribution (Continued)

52: [CPU coordinate]while loop termination and node
53: reallocation.
54: //no node deserving split, break out while loop
55: if ((last node count == node count) and
56: (allocated enough)) then
57: break;
58: end if
59: last node count ← node count;
60:
61: //resize pre-allocated node size
62: if (!allocated enough) then
63: double pre-allocated node size;
64: update new nodes’ split/child/parent info;
65: M ← 2 ∗M ;
66: continue;
67: end if
68: //launch N threads for this kernel, one thread
69: //works for one column of dimensional values;
70: [GPU Kernel]L R mark
71: owner ← owner[threadIdx];
72: leftchild ← child[owner];
73:
74: //leaf node does not deserve split
75: if (leftchild == -1) then
76: return;
77: end if
78:
79: //compute split dimension and split value
80: split dim ← splits[owner].dim;
81: split value ← splits[owner].value;
82:
83: //projection of points at each dimension to split dimension
84: for j = 0 to K − 1 do
85: project[j] ← [projection]
86: (split dim, point array[j, threadIdx]);
87: end for
88:
89: //update owner and left/right marks at each dimension.
90: for i = 0 to K − 1 do
91: L R mark[i, threadIdx]
92: ← (project[i] > split value);
93: end for
94: owner[threadIdx]
95: ← leftchild + L R mark[0, threadIdx];
96: synchronization;
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Algorithm 4 Node split and points re-distribution (Continued)

97: //launch N threads in the following three Thrust kernels,
98: //to sort points in each leaf node.
99: [GPU Kernels]distribute points to children nodes
100: for i = 0 to K − 1 do
101: L R temp[i, threadIdx] ← [exclusive scan]
102: (L R mark[i, threadIdx];)
103: L R map[i, threadIdx] ← [transform]
104: (L R temp[i, threadIdx]);
105: sorted index[i, threadIdx] ← [scatters]
106: (L R map[i, threadIdx], sorted index[i, threadIdx]);
107: end for
108: owner[threadIdx] ← [scatters]
109: (L R mark[0, threadIdx], owner[threadIdx]);
110:
111: //launch N threads in the following Thrust kernels, to
112: //compute unique labels and count.
113: [GPU Kernel]point unique ownership label
114: number of labels ← [unique by key copy]
115: (owner, count index, unique labels,
116: unique count index);
117:
118: //launch number of labels number of threads to compute
119: //AABB for children nodes after the split.
120: [GPU Kernel]compute AABB for children nodes
121: //gather split info for current children nodes
122: index ← unique lables[threadIdx];
123: left ← unique count index[threadIdx];
124: splits[index].left ← left;
125: if (threadIdx < (number of labels− 1)) then
126: right ← unique count index[threadIdx+ 1];
127: else
128: right ← N ;
129: end if
130: splits[index].right ← right
131:
132: //compute AABB info for current children nodes
133: for k = 0 to K − 1 do
134: update AABB[k] of current node according to left and
135: right indices;
136: end for
137: end while
138: end procedure

extreme points in the sorted list along with that dimension. The process is easily

understood from Figures 4.1 to 4.4.
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Figure 4.1: Two-dimensional KD-tree point layout and partitions

Node 0

Node 1 Node 2

Node 3 Node 4 Node 5 Node 6

Node 7 Node 8 Node 13 Node 14

9 4 5 3 0 6 7 2 8 1

9 4 5 3 0 6 7 2 8 1

4 9

0 5 3 6 8 7

2 1

6 7 80 5 3

Figure 4.2: Two-dimensional KD-tree construction

Figure 4.3 shows the first iteration of node split. As seen, points are sequenced from

0 to (N − 1), with N = 10. At the start, points in set S are assigned three sequences

as shown in table a. The sorting operations in the ascending order in the x and y

dimensions, as shown in table b, are performed through two GPU kernels. So, two se-

quences in x and y dimensions are, respectively, computed as {9, 4, 5, 3, 0, 6, 7, 2, 8, 1}

and {0, 5, 2, 1, 3, 6, 4, 8, 7, 9}. This corresponds to preparation for node split in Algo-

rithm 3 (lines 27 to 32). After sorting the points in two-dimensional sequences, the
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point_index 0 1 2 3 4 5 6 7 8 9
index(x) 0 1 2 3 4 5 6 7 8 9
index(y) 0 1 2 3 4 5 6 7 8 9

point_index 0 1 2 3 4 5 6 7 8 9
sorted_index(x) 9 4 5 3 0 6 7 2 8 1
sorted_index(y) 0 5 2 1 3 6 4 8 7 9

dimension x y
aabbMin[0] p[9].x p[0].y
aabbMax[0] p[1].x p[9].y

threadID T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
sorted_index(x) 9 4 5 3 0 6 7 2 8 1
sorted_index(y) 0 5 2 1 3 6 4 8 7 9

Sort points in each 
dimension respectively

Compute axis aligned 
bounding box (AABB)

Compute the top Nd split 
dimensions and randomly 
select one of them

Group sorted points from each 
dimension for split processing

threadID T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
owner 1 1 1 1 1 2 2 2 2 2
L_R_mark(x) 0 0 0 0 0 1 1 1 1 1
L_R_mark(y) 0 0 1 1 0 1 0 1 1 0

Resolve node ownership after the 
split for each point by scan 
through each of the sorted lists 

Table a

Table b

Table c

Table d

Table e

Table f

threadID T0 T1
node 2 1
min_index 0 5
max_index 4 9
aabbMin_x p[6].x p[9].x
aabbMin_y p[2].y p[0].y
aabbMax_x p[1].x p[0].x
aabbMax_y p[7].y p[9].y

unique_labels 2 1 …
unique_count_index 0 5
number_of_labels 2

Identify nodes that require split 

Compute the AABB for each 
new nodeTable k

threadID T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
owner 2 2 2 2 2 1 1 1 1 1
count_index 0 1 2 3 4 5 6 7 8 9

threadID T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
L_R_mark(y) 0 0 1 1 0 1 0 1 1 0
L_counter(y) 0 0 0 1 2 2 3 3 4 5
temp_index(y) 5 6 7 7 7 8 8 9 9 9
L_R_map(y) 5 6 0 1 7 2 8 3 4 9
sorted_index(y) 2 1 6 8 7 0 5 3 4 9

Table i

Table j

Table h

node_index 0 1 2 3 4 …
split (x,m) (-1,-1) (-1,-1) (-1,-1) (-1,-1) …
child 1 -1 -1 -1 -1 …
parent -1 -1 -1 -1 -1 …

threadID T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
L_R_mark(x) 0 0 0 0 0 1 1 1 1 1
L_counter(x) 0 0 0 0 0 0 1 2 3 4
temp_index(x) 5 6 7 8 8 10 10 10 10 10
L_R_map(x) 5 6 7 8 9 0 1 2 3 4
sorted_index(x) 6 7 2 8 1 9 4 5 3 0

Table g

Compute mapping to left/right children across 
the split dimension (x) by scan in the y-
dimension, and Re-sort points in y-dimension 
for left/right children

Compute new owners using the first dimensions

Compute mapping to left/right children across 
the split dimension (x) by scan in the x-
dimension, and Re-sort points in x-dimension 
for left/right children

Data Flow
Data Flow

X dimension

Common 

Y dimension

owner

node_index 0 1 2 3 4 …
split (y,m') (-1,-1) (-1,-1) (-1,-1) (-1,-1) …
child 1 -1 -1 -1 -1 …
parent -1 -1 -1 -1 -1 …

Table d’

Assume select x dimension 

Figure 4.3: Array based KD-tree construction on the GPU
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0 0 1 1 0 1 0 1 1 0L_R_mark(y)

0 0 0 1 2 2 3 3 4 5L_counter(y)

5 6 7 7 7 8 8 9 9 9temp_index(y)

5 6 0 1 7 2 8 3 4 9L_R_map(y)

exclusive scan

0 5 2 1 3 6 4 8 7 9index(y)

2 1 6 8 7 0 5 3 4 9sorted_L_R_index(y)

left_number    = L_R_mark[n-1] + L_counter[n-1] 
                           = L_R_mark[9] + L_counter[9] = 0 + 5 = 5 
temp_index[i]  = L_number + i – L_counter[i]
                           = 5 + i – L_counter[i]

L_R_map[i] = L_R_mark[i] ?  L_counter[i]: temp_index[i]

scatter

1

2

3

4

Figure 4.4: Operations in table g and table h in Figure 4.3

AABB of the root node is formed by recording the minimum and maximum values in

the sorted arrays in two dimensions from table b. These extreme values defining the

AABB are stored in table c. Through the AABB in table c, the split value in the x

dimension is easily computed as (p[9].x+ p[1].x)/2). The initial computation for the

AABB is shown in lines 34 to 36 of Algorithm 3.

Next, the node split is launched through the function NODE-SPLITS (line 39 in Al-

gorithm 3). The details of function NODE-SPLITS are shown in Algorithm 4. In this

algorithm all node splits are performed through multiple iterations of the while loop.

NODE-SPLITS in Algorithm 4 begins with some parameter initialization (lines 4 to 8).

Notable is the pre-allocation of tree nodes (line 6). Prior to the split, a check is made
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to see if there are nodes at the current level of tree that deserve split, and if enough

pre-allocated nodes are available for the pending splits (lines 12 to 39 in Algorithm

4). The results are updated in table d. Note that the function atomicAdd returns

value of its first argument before the update.

Next step (lines 42 to 51 in Algorithm 4) determines the split dimensions for the nodes

at the current level of the tree that undergo split (x dimension for node 0; the only

node in the first iteration) and their corresponding mean values in their respective

dimensions. In the first iteration, the left child of current node (root) is recorded as

1, with the right child having an implied value of 2. The parent node is fixed as −1.

Further, the index for the parent of the current node’s children is updated to 0. The

entries for other nodes are initialized to −1. Table d only shows the columns for the

first five nodes that have been pre-allocated.

After the split, information for nodes at the current level of the tree is updated,

and some bookkeeping checks are performed on the CPU to prepare for the point

distribution. First, a check is made to see if there are any nodes left to be split.

If no node needs splitting, the algorithm will break out of the while loop and the

KD-tree construction ends (lines 55 to 58). Next, another check is made to see if

enough nodes have been pre-allocated, and the size will be doubled if more allocation

is required(lines 62 to 67).

After computing the split dimension and value, assignment of points in a node to
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the descendant nodes is carried out (lines 70 to 95). Table e presents the assignment

of workload to each thread in the first iteration. Each thread processes a group of

two points (K points in general), from each of the sorted lists in x and y dimensions

in table b. For each point in both lists, a check is made to resolve the left or right

descendant in the split dimension. Assignments of points to descendant nodes are

shown in table f , where each node is identified by its owner and a marker. As an

example, the first element in owner array in dimension x is 1, indicating point 9

encountered in the x-sorted list belongs to node 1, along with the split dimension x.

The L R mark for the first element is similarly set to 0 indicating ownership of the

left partition node (node 1).

Next step is the distribution of points to the descendant nodes and sorting of points

along all dimensions for each pair of descendant nodes (lines 100 to 108 in Algorithm

4). Three Thrust library functions; exclusive scan, transform and scatters per-

form these tasks. Table g presents the partitioning and sequencing subsequent to the

split in dimension x. The first and second halves of sorted index(x) are the sorted

sub-sequences in the x dimension for the left and right children after the split. Note

that the left and right children and owners have been switched; a fallout from the use

of Thrust library functions. The variable count index assigns a count index to each

point in the sorted sub-sequences.

Steps in table h are identical to those in table g, and demonstrate the process of
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re-sorting the sub-sequences in the left and right split nodes along the non-split di-

mension y without two explicit sorts. This is achieved through an exclusive scan of

row L R mark(y) in table h and recording the results in L counter(y). The last ele-

ment in L counter corresponds to the number of points in the left child (5 = 4 + 1).

Rows temp index(y) and L R map(y) in table h provide a mapping mechanism for

the sort in the y dimension into the two sub-sequences. The details of the mapping

through the scan and scatter operations in Thrust is shown in Figure 4.4. The last

row in table h lists the indices of sorted lists in the left and right nodes in the y di-

mension subsequent to the split. Steps associating with tables g or h are repeated for

each non-split dimension. Next, using the L R mark(y) and sorted index(y) saved

in the previous split iteration, new sorted index(y) are computed as shown in table

i (lines 109 to 110).

The computations of the AABB for the left and right children of current node are

shown in tables j to k. The first row in table j keeps record of unique nodes that have

been split so far in the current round. The second row maintains the record of the

starting count index in each sequence after the split. The last row keeps the record of

the number of nodes generated in this iteration. This part of algorithm is performed

through the Thrust function unique by key copy (lines 114 to 117). Information in

table j, the updated stored index(x) in table g, and updated stored index(y) in table

i are used to compute the AABBs of left and right children. Since the nodes have

already been sorted in each dimension, we can calculate the bounding box through
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the first and last elements in each dimension, in each of the left and right children

nodes, through a launch of a kernel (lines 121 to 137).

The procedure detailed in tables a to k corresponds to the first split iteration. If

any node requires further split, additional iterations are performed through steps in

tables d to k. In this example, the node splits terminate at the sixth iteration.

4.4.2 Parallel P -BANNS on the KD-tree

This section explores the hybrid linear, nonlinear, highly parallel BANNS on the KD-

tree in this work. We combine the benefits of the BANNS [117], priority queue [107]

and brute force search [54] to develop a very fast algorithm with little compromise

on the quality of results. For P -BANNS to work, each query point uses the DFS

to traverse down the tree until it reaches a leaf node. Once there, the search is

made for P nearest neighbor point candidates in the leaf node. Some or all of the P

nearest points, however, may reside outside of this leaf node. We, therefore, need to

backtrack the tree to search for the other possible candidate points in the neighboring

nodes. One possible approach is to invoke multiple P -BANNS queries in parallel in

an uncoordinated manner [4] [91]. However, path divergences, uncoalesced memory

accesses, and uneven numbers of backtracks among the parallel execution threads

severely compromises the performance. We partially alleviate the uneven workloads
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by letting the threads working on the P -BANNS queries to follow divergent paths to

reach the leaf nodes. However, the threads that reach at the same leaf node coordinate

to perform time-consuming P -BANNS queries. Figure 4.5 depicts the major steps of

the process as described below.

† In Step 1 in Figure 4.5 P -BANNS queries are placed in the leaf nodes’ buffers.

As soon the buffers are full or all the query points have been scattered into

buffers, the distance computation for finding the P nearest neighbors begins.

The scattering of query points to the buffers is handled through a CUDA kernel,

with each thread responsible for the traversal of a single query point from set Q

to a leaf node. As a thread descends towards a leaf node, at each intermediate

node, the priority queue is updated with the node index and the distance be-

tween the query point and the AABB of the child node which is not branched

to.

† Once a buffer in a leaf node is full or all the involved query points have been

inserted into buffer, a second CUDA kernel is launched to compute the node-

local P nearest neighbors for these query points (Step 2 in Figure 4.5). To

compute the P shortest distances we employ a sliding window. In the same step,

the entries in the priority queue whose distance are greater than the current P th

shortest distance will be removed.

† In Step 3 in Figure 4.5, threads perform status check. If the priority queue

108



Scatter to Buckets

Local Best Candidates Search

Back Tracking Q
uery Points Pool

1

2

3

0

Figure 4.5: Major steps for P -BANNS on the KD-tree

for a query point has become empty, or the number of backtracks has reached

its upper bound before reaching the root node, we will terminate the search

procedure for this query point. Otherwise, it will be inserted into the backtrack

pool for further search in the next iteration.

† As the number of backtracks of the query point from the leaf nodes drops

below a threshold we terminate the process. The residual P -BANNS queries are

performed through a parallel brute force search CUDA kernel [54]. Since each

backtrack iteration requires the launch of two time-consuming CUDA kernels,

it is more efficient to do the search for these remaining query points employing

the parallel brute force.

The distance from the query point to the AABB of a node is computed as follows.
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Figure 4.7: Sliding window for distance computing

During KD-tree construction, the minimum and maximum values at each dimension

are recorded as part of the AABB array. For a given query point, if its projection

along a dimension remains outside the minimum and maximum limits of the given the
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AABB in that dimension, the orthogonal distance between the query point and the

AABB at that dimension is recorded as partial distance between the query point and

the AABB. The squared distance from the query point to the AABB is accumulation

of partial squares of orthogonal distances in all dimensions. Figure 4.6 depicts three

different scenarios in a two dimensional space.

Unlike the work in [117], the use of sliding window in Step 2 of Figure 4.5 for the

computation of the P nearest neighbor distances ensures that all global memory

accesses are coalesced. Figure 4.7 depicts the working of the threads in the sliding

window where each thread access one pair of query point and leaf node to compute

the distance between them. After a sequence of slides, the node-local P shortest

distances for all the query points stored in the node buffer are computed. In the

depiction of Figure 4.7 with a leaf node with eight points, ten query points in its

associated buffer, and assignment of eight threads for the work, the process takes 10

slides of the window.

Algorithm 5 presents the implementation details, where the recursion in the tradi-

tional DFS is converted to an iterative while loop that works better on the GPU. The

backtracks are implemented through iterative exchange of three pointers (leftchild,

bestchild and otherchild), and the priority queue. The work is spread across three

kernels. In the first kernel, the concurrent threads following divergent paths steer
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the query points into the leaf node buffers (one query point per thread). The sec-

ond kernel associates a thread block to one leaf node and uses the sliding window to

compute the distances for the P nearest neighbors local to the node. The update of

priority queue is also performed by this kernel. When the number of residual query

points, left over from the backtrack iterations, falls below a threshold, the third kernel

performs a brute force parallel P -BANNS.

4.5 Performance Optimizations

Performance of KD-tree construction and the BANNS algorithms on the GPU are

influenced by several factors, including the global memory access coalescing, shared

memory bank conflicts, branch divergences, local and global synchronization overhead

and the organization of thread blocks [119].

First, as mentioned before, the KD-tree is constructed using the linear SOA. The

GPU SPMT architecture can process vectors more efficiently than the nonlinear data

structure such as a tree. Second, to ensure that global memory accesses on the

GPU are coalesced, i.e. threads accesses to memory are combined into a single

transaction, into an aligned and contiguous block of global memory, we perform a

preprocessing, prior to copying the input data from the CPU host to the GPU device.

We restructure data employing the SOA instead of the AOS in the representation
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Algorithm 5 P -BANNS on the KD-tree

1: Input: node data structure (parent, child, splits), aabbMin,
2: aabbMax, query points, P
3: Output: results data structure
4: procedure P -NNS-POINTS
5: Allocate device memory and copy M query points to the GPU;
6: Allocation device memory for each leaf node buffer to cache
7: query points according query point data size;
8:
9: //initialization for each query point
10: backtrack ← false;
11: currentnode← 0;
12: create a priority queue Qp;
13: query pool empty ← false;
14:
15: while (!query pool empty) do
16: [GPU Kernel:Scatter Query Points into Leaf Buffers]
17: leftchild← child[currentnode];
18: if leftchild == −1 then
19: bestchild← leftchild;
20: otherchild← leftchild;
21: //check candidate node in left or right child node
22: split← splits[currentnode];
23: delta← query[i].[split.dim val]− split.split val;
24: if delta < 0 then
25: otherchild++;
26: else
27: bestchild++;
28: end if
29:
30: //compute distance from query point to AABB
31: dAABB ← compute the distance from query point to
32: bounding box AABB of otherchild;
33: enqueue(Qp)← (otherchild, dAABB);
34: //prepare for the next search iteration
35: currentnode← bestchild;
36: else
37: insert the query point index in the buffer associated with
38: this leaf node;
39: end if
40:
41: [CPU Coordinate:Boundary Computing]
42: Check the status of each query point in the query pool. If
43: the priority queue with it is empty or the next search target
44: is root, remove this points in the pool; then, compute the
45: index boundary of rest query points in the buffer and train
46: points in leaf nodes; finally, copy these information to GPU.
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Algorithm 5 P -BANNS on the KD-tree(Continued)

47: [GPU Kernel:Local Candidates Search by Sliding Window]
48: //Apply Sliding Window Technology to compute local NN.
49: if train point > query point then
50: Query points slide on train points, update the NN for each
51: query point;
52: else
53: Train points slide on query points, update the NN for each
54: query point;
55: end if
56:
57: //extract node with mindist from Qp

58: (currentnode,mindist) ← dequeue(Qp);
59: //examine candidate sub-tree in next iteration
60: if (mindist ≤ restults[i].index[P − 1]) then
61: backtrack ← false;
62: end if
63:
64: [GPU Kernel:Residual Query Points Brute Force Search]
65: if num res query point > res threshold then
66: all the residual query points will scan all the train points
67: in brute force method;
68: query pool empty ← true;
69: end if
70: end while
71: end procedure

of data structures. Third, breaking of Algorithm 5 into three kernels allows us to

implement the most time-consuming part of the algorithm as linear vectors, resulting

in very high performance. Forth, in the design of this work, the read-only data

are placed in the texture and surface memories to boost the performance of reading

accesses. The texture and surface memories reside on the device and are cached in

the texture cache, and therefore, presents a better alternative to accessing the global

memory. Fifth, to improve the performance, we try to reduce the branch conditions

in loops algorithms. We achieve this by loop unrolling through the use of #pragma

unroll directive in CUDA. Loop unrolling, of course, results in register pressure,

which is alleviated through increase in the size of the L1 cache. There are multiple
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large for loops in the parallel algorithms that are candidates for loop unrolling.

4.6 Experiments and Results

In this section, we provide experimental performance validations of the GPU accel-

erated parallel KD-tree construction and the P -BANNS algorithms1. We adopted

real-world image descriptor datasets with a wide range of sizes and dimensions from

Winder and Brown dataset [120] [121], as well as datasets from high-dimensional

SHOT feature descriptors, extracted from typical point clouds [55]. We performed

multiple sets of experiments to evaluate the performance of the parallel KD-tree con-

struction and the P -BANNS in this work. We also explored the major P -BANNS

performance impact factors, such as the size for reference (S) and query (Q) datasets,

dimensionality, tree height, the number of backtracks, and the number P in the P -

BANNS.

1The experimental platform contains a 4-core, 3.2 GHz Intel i7− 970 processor, with Ubuntu 12.04
OS, with 1.14 GHz, GeForce GTX 680 GPU with 4 GB RAM with 7 Streaming multiprocessors
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4.6.1 Evaluation on Real-world Image Descriptors

In these experiments, we have used the library of real-world images to sample image

descriptors of different dimensionality from Trevi Fountain image patches [120]. We

have employed the approach in [120] [121] to generate real-world image descriptors

with varying dimensions. Moreover, the query sets are the same as the reference sets

that were used for the construction of the KD-tree (S = Q). This is justified as in

the image descriptor matching, every point descriptor has to be matched. To make

sure the search accuracy is beyond 90%, we have adjusted the number of backtracking

steps according to the size and dimensionality of the dataset and the number of query

points involved.

4.6.1.1 Performance Comparison with Related Works

Table 4.1 provides a brief comparison of this work with the some related works in

higher dimensions. The speedup factors(SKD−tree) is with respect to the construction

runtime using the PCL library [55]. SNNS kdtree and SNNS BF are the speedups of

parallel algorithm on GPU/cluster over the sequential counter part on the CPU, and

over the serial brute force linear search on the CPU, respectively. We adopted the

sequential linear brute force the NNS algorithm in the PCL as the common benchmark
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reference for a fair speedup comparison between various schemes. ANNS represents

the accuracy of the P -BANNS.

As shown, the algorithms presented in this work provide the highest performance

for the large dataset having a high dimensionality of up to 512, for both KD-tree

construction and P -ANNS. We also achieve an accuracy of more than 90% for P -

ANNS similar to works in [64] and [118]. Comparing SNNS kdtree and SNNS BF of this

work, it can be seen that the parallel-by-design P -ANNS algorithm has no efficient

counterpart serial implementation on the CPU.

4.6.1.2 Comparison Between the Serial and Parallel Algorithms

Next, we compare the performance of parallel P -BANNS with respect to its serial

counterpart. We generated seven target N -point sets S, with N = 2560, 5120, 10240,

20480, 40960, 81920, and 100900 to cover a wide range of KD-tree sizes. The max-

imum dataset size of the real-world image in this work is up to 100900 descriptors.

We chose a high dimension case of K = 512. Table 4.2 presents the results. Pa-

rameters Tckdt/Tgkdt represent runtimes for serial and parallel KD-tree construction

on CPU/GPU. Parameters Tcnns/Tgnns represent runtimes for serial and parallel P -

ANNS on the CPU/GPU. Parameter Skdt/Snns denotes speedup factor of parallel

algorithm on the GPU over serial counterpart on the CPU for the KD-tree construc-

tion. As seen the speedup of parallel KD-tree construction and the P -BANNS on the
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KD-tree can reach up to 14.4 and 128.5, respectively.

Table 4.2
High-dimensional (d = 512) KD-tree and the P -BANNS runtimes (in ms)

and speedups

dataset CPU GPU Speedup
size Tckdt Tcnns Tgkdt Tgnns Skdt Snns

2560 87 13047 92 898 0.9 14.5
5120 185 45642 109 1066 1.7 42.8
10240 350 152025 120 2796 2.9 54.4
20480 843 478258 136 7982 6.2 59.9
40960 1731 1486132 188 22793 9.2 65.2
81920 3884 5590777 299 57521 13.0 97.2
100900 4612 10991734 321 85539 14.4 128.5

4.6.2 Speedup and Accuracy Impact Factors

The runtimes of the construction of KD-tree and the P -BANNS, and accuracy of the

P -BANNS are impacted by multiple factors including dimensionality, dataset size,

tree height, the number of backtrack iterations and nearest neighbors for a single

query point(P ). Next, we study the impact of these factors.

4.6.2.1 Effect of the Dataset Size and the Dimensionality

Figure 4.8 plots the runtimes of the construction of KD-tree versus the number of

points for several dimensions K for the parallel construction algorithm in this work.

The plots demonstrate the power of the MPA where the massive parallelism works
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Figure 4.8: Runtime of parallel KD-tree construction versus the number
of points in set S for various dimensions

best for large datasets when thread operations are coordinated (i.e. sort, scatter,

etc); a 40-fold increase in the data size results in a only 3-fold increase in the runtime.

Further, a closer observation of Figure 4.8 reveals that for a given number of reference

points the runtime slowly increases with the dimensionK (especially for smaller values

of K). This is due to optimization steps in Section 4.5; the loop unrolling, using the

SOA, and efficient use of the L1 cache.

Figure 4.9 plots the runtimes of the P -BANNS versus the number of points for several

dimensions K using the parallel algorithm. The rate of increase in the runtime in the

case of P -BANNS is much higher than the KD-tree construction in Figure 4.8. The
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Figure 4.9: Runtime of parallel P -BANNS (P = 4) versus the number of
points in set S for various dimensions

reason for this is the GPU architecture is ill-suited for nonlinear tree operations.

4.6.2.2 Effect of the KD-tree Height

Plots in Figure 4.10 present the effect of the KD-tree height on the runtime of the

parallel P -BANNS for the 256-dimensional KD-tree. As seen, for the number of query

points less than 20000, the optimum KD-tree height lies between 6 to 8. The optimum

height ranges from 10 to 12 for the number of query points between 40960 to 100900.

With a smaller tree height, the P -BANNS is more a linear-like search, resulting in an
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Figure 4.10: Runtime of parallel P -BANNS (P = 4) versus the tree height
for a 256-dimensional KD-tree, for several dataset sizes S.

increase in the runtime. On the other hand, a large tree height yields higher number

of backtracks, degrading the runtime performance. So, in the experiments of this

work, the tree heights were chosen in accordance with the image descriptor datasets

dimensions and sizes.

4.6.2.3 Effect of the Number of Backtracks

As discussed, an increase in the number backtracks yields a higher search accuracy,

as more nodes are inspected. Plots in Figure 4.11 present the effect of the number of
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backtracks on the runtime of the parallel P -BANNS for the dataset size of 81920 with

maximum leaf size of 64, for dimension choices of 4, 16, 64 and 256. The runtimes

saturate after a certain number of the backtracks, depending on the dimension of the

descriptor in the dataset. For 4, 16, 64 and 256-dimensional KD-tree, the saturation

points are around 50, 200, 1500, and 2000, respectively. In the experiments of this

work, with the optimum tree height (Figure 4.10), to achieve an accuracy of more than

90% for P -BANNS, the number of backtracks was chosen based on the dimensionality

of the descriptor.

Next, we study the relation between the required search accuracy and the corre-

sponding minimum number of backtracks. Plots in Figure 4.12 present the minimum

number of required backtracks for search accuracy levels of 50%, 60%, 70%, 80% and

90%, for dataset size of 81920, for dimensions 4, 16, 64, 256 and 512. As expected

for the higher dimensions the rate of increase in a number of backtracks with the

accuracy is significantly higher.

4.6.2.4 Effect of the Number of Nearest Neighbors of Single Query Point

(P )

In all experiments so far, a value of P = 4 has been assumed. To study the effect

of number of nearest neighbor points, we evaluated the runtime performance of the

P -BANNS in a range of P values for several 256-dimensional datasets. From the

123



1.E+02

1.E+03

1.E+04

1.E+05

2 0 4 0 8 0 1 6 0 3 2 0 6 4 0 1 2 8 0 2 5 6 0 5 1 2 0

PA
RA

LL
EL

 N
NS

 W
IT

H 
KD

-T
RE

E 
O

N 
GP

U 
RU

NT
IM

E 
 (M

S)

THE NUMBER OF BACKTRACKING

DIM=4 DIM=16

DIM=64 DIM=256

Figure 4.11: Runtime of parallel P -BANNS (P = 4) versus the number of
backtracks for different dimensions with dataset S = 81920

plots in Figure 4.13 the runtime of the algorithm first increases linearly with P , and

tends to saturate beyond a certain point. This is due to the effectiveness of sliding

window for P -BANNS on KD-tree for larger values of P .

4.6.3 Evaluation of the Sliding Windows

Next, we evaluate the speed performance improvement of the sliding windows for

P -BANNS on the KD-tree, with priority queue on the GPU. For evaluation we used

the datasets of dimensions 256 and 512, with the number of the points ranging from
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2560 to 100900. The runtimes of parallel P -BANNS (P = 4) with and without sliding

window are presented in Table 4.3. Compared with the parallel P -BANNS on the

GPU without the sliding window, the novel parallel P -BANNS on the GPU in this

work can improve the runtime performance by up to 40% while maintaining the same

accuracy.

125



0.E+00

1.E+04

2.E+04

3.E+04

4.E+04

5.E+04

6.E+04

7.E+04

8.E+04

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

PA
RA

LL
EL

 N
NS

 W
IT

H 
KD

-T
RE

E 
O

N 
GP

U 
RU

NT
IM

E 
(M

S)

THE  NUMBER OF NEAREST NEIGHBOUR NUMBER  (P)

N=2560 N=5120 N=10240 N=20480 N=40960 N=81920 N=100900
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256-dimensional KD-tree with for several datasets S.

Table 4.3
Sliding window runtime performance (P = 4) evaluation

dataset W/O SW (ms) W/ SW (ms) Improvement
size d=256 d=512 d=256 d=512 d=256 d=512

2560 453 998 421 898 7.6% 11.1%
5120 641 1224 576 1066 11.3% 14.8%
10240 2061 3545 1829 2796 12.7% 26.8%
20480 3771 10449 3096 7982 21.8% 30.9%
40960 14747 30359 11353 22793 29.9% 33.2%
81920 29472 78586 22540 57521 30.8% 36.6%
100900 75376 120107 56298 85539 33.9% 40.4%
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4.6.4 Experiments on the SHOT Matching

To verify the performance of the massively parallel high-dimensional KD-tree con-

struction and the P -BANNS in this work, on another real-world application, we

conducted a series of matching experiments on nine real point cloud datasets [55].

The sets chosen include six 3D point cloud models and three scenes, commonly used

in computer graphics and computer vision. The sets are shown in Table 4.4. All mod-

els and scenes are available online for download [55]. For each point cloud dataset,

we first sampled out the key points and then computed SHOT local descriptors for

each key point. The SHOT as a novel 3D object local descriptor can achieve a good

balance between descriptiveness and robustness. The dimensionality of the regular

SHOT descriptor is 320 [59] [60]. Next, we constructed a KD-tree with those 320-

dimensional descriptors and then search for P = 4 nearest neighbors for each key

point on the KD-tree. In other words, the query descriptor sets are the same as the

descriptor set for the KD-tree construction (Q = S). The results are presented in

Table 4.4, where the parameter Nkey denotes the number of key points. Further,

parameters Tccnst and Tgcnst denote runtimes of serial KD-tree construction on the

CPU and its parallel counterpart on the GPU. Similarly, Tcsrch and Tgsrch denote the

runtimes of serial P -BANNS on the CPU and parallel equivalent on the GPU. Pa-

rameters Scnst depicts the speedup of the parallel KD-tree construction on the GPU

over the serial counterpart on the CPU. Also, Ssrch demonstrates the speedup of the
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parallel P -BANNS on the GPU over the serial equivalent on the CPU. As seen, the

maximum speedup of KD-tree construction on the GPU reaches to 11. The speedup

of P -BANNS reaches to 138.

Table 4.4
Matching runtime (in seconds) and speedup of the parallel over serial

algorithms

Model/Scene Dataset Nkey Tccnst Tcsrch Tgcnst Tgsrch Scnst Ssrch

Milk Box Model 13704 584 197327 223 8343 2.62 23.65
Office Chair Model 18715 753 410336 254 17267 2.96 23.76
Stanford Bunny Model 20446 781 461359 263 26351 2.96 17.51
Chicken Model 85693 3218 5987176 336 47021 9.58 127.33
Stanford Dragon Model 80047 3115 4791935 328 42317 9.50 113.24
Happy Buddha Model 99614 3914 8891631 351 74331 11.15 119.62

Office Scene 89031 3602 7294792 343 53332 10.50 136.78
Table Scene 66053 2329 1931697 311 31358 7.49 61.60
Five people Scene 91143 3869 8272439 345 59913 11.21 138.07

4.7 Conclusion

This chapter presented the design of high performance parallel construction of KD-

tree, and the BANNS on the GPU for high-dimensional image descriptor matching.

The proposed algorithms are of comparable quality to the traditional sequential coun-

terparts on the CPU, while achieving high speedup performance in a wide range of

dimensions. The massively parallel algorithms presented in this chapter were tested

on real-world image descriptors with varying dimensionality, as well as classical point
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cloud descriptors in real applications. The speedups of KD-tree construction and the

BANNS reach up to 17 and 163 with real-world image descriptors with varying dimen-

sionality. For the real application with SHOT descriptor dataset, the corresponding

speedups raise up to 11 and 138. The implementations in this work will benefit real-

time 3D image registration in low-dimensional spaces, and image descriptor matching

employing high-dimensional KD-tree.
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Chapter 5

Parallel and Distributed BANNS

on the Forest of Randomized

KD-trees

Image descriptor matching plays a significant role in object recognition and surface

registration. However, the computational cost is extremely high due to the data

processing in high dimensional space. To address the computational challenges of

real-time processing, we present parallel and distributed algorithms for randomized

KD-tree forest construction and the BANNS on a cluster equipped with the MPA de-

vices of the GPU in this chapter. To utilize the GPU cluster platform more fully, we
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design distributed randomized KD-tree forest for the BANNS to alleviate the back-

tracking cost on single KD-tree. Additionally, the algorithms are also studied for the

performance impact factors to obtain the optimal runtime configurations for various

datasets. When applied to high-dimensional real-world image descriptor datasets, the

proposed KD-tree forest tree construction and the BANNS algorithms on GPU clus-

ter are of a comparable matching quality to the coarse grain parallel counterparts on

the CPU cluster with the MPI, while outperforming counterparts by speedup factors

of up to 2.5 and 61.7, respectively. Moreover, we verify the features of the parallel

algorithms on typical 3D image matching scenarios. With the classical local image

descriptor SHOT datasets, the parallel KD-tree construction and image descriptor

matching can achieve up to 2.4 and 62-fold speedups, respectively.

5.1 Introduction

Searching for the image point descriptors that are similar to the query descriptor, is

one of the core techniques in object recognition and surface registration. To increase

the feature descriptiveness, the image descriptors, typically, require high dimension-

ality [58] [59] [60] [3] [61] [62] [63] [64]. However, feature matching in high dimensions

demands extremely high computational workload.

There has been a large body of research work in image descriptor matching, exploring
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the efficient indexing and search algorithms for the NNS that find the closest point

descriptors to a specified number of query point descriptors. A brute force NNS

compares a query point to all the N points in the reference set and results in the time

complexity of O(N2) [54]. However, the NNS can be made to perform more efficiently

by using the spatial data structures, such as R-tree, B-tree, quad-tree, BSP tree, K-

Means tree and KD-tree. These data structures subdivide the space containing all

the points into smaller spatial regions, where a hierarchy is imposed on each smaller

region in a recursive fashion. The NNS on this hierarchical spatial data structure is

generally more efficient since it can prune a large portion of target dataset. For a

good coverage of spatial data structures, the readers can refer to [127].

In this work, we focus on the KD-tree and its variation, generalized binary tree,

first introduced in [90], and its several subsequent improvements that use a balanced

KD-tree with a priority queue to avoid unproductive search paths [107]. However,

when working with high-dimensional image descriptors, there is no known exact NNS

algorithm that has acceptable speed performance. To overcome the speed bottleneck,

practical applications employ the ANNS algorithms to locate more than 90% percent

of the correct neighbors. To improve the performance of the NNS, both in terms of

accuracy and speed of search, the regular priority search in a single KD-tree can be

extended to the forest of multiple randomized KD-trees [91]. By creating multiple

randomized KD-trees from the same dataset and concurrently searching among these

trees, the NNS performance can be improved significantly.
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The current trends favor flexibility of heterogeneous computing model that combines

multi-core CPU and many-core GPU. As a typical MPA complement to the CPU,

the GPU is finding its way beyond graphical processing into general purpose com-

puting. The CUDA and OpenCL standards exemplify these features [102] [103]. The

GPU has been widely employed for fast and real-time implementation of 3D image

processing algorithms [3], [104], [105], [106], [2], [4]. The inherent massive-parallelism

in the construction of forest of randomized KD-trees and the NNS algorithms can

be exploited for implementation on any computing platform that supports fine-grain

parallelism.

In this chapter, we propose a multi-stage massively parallel construction of the forest

of randomized KD-tree and parallel and distributed BANNS algorithms for high-

dimensional image descriptor matching on a computing cluster via a hierarchy of

grain-parallelism through the MPI on a cluster, multi-threading on a multi-core CPU,

and massively parallelism on the GPU. The chapter is organized as follows. Section

5.2 presents the background on the NNS and the forest of KD-trees. Section 5.3 briefly

outlines the related works. Section 1.1.2.3 presents the design and implementation

details of the massively parallel algorithms on the GPU cluster. Section 5.5 explains

the performance optimizations and considerations. Section 5.6 describes and discusses

the experimental results. Section 5.7 concludes this chapter.
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5.2 Background

5.2.1 NNS on the Forest of Randomized KD-trees

The forest of KD-tree consists of multiple KD-trees generated from the same datasets.

The trees in the forest are built in a similar manner as the typical KD-tree in [89]. The

difference is that the typical KD-tree algorithm splits data along a dimension with the

highest variance, while in the randomized KD-tree the split is chosen randomly from

the fixed number of dimensions with the highest variance. When query point is close

to one of the split hyperplane, its nearest neighbor typically lies with equal probability

on either side of the hyperplane. Search in multiple trees in the forest increases the

probability of finding the nearest neighbor. Later in the next section, through an

example, we will show the value of employing several coordinating randomized KD-

trees.

Figure 5.1 illustrates the construction of the two randomized KD-tree trees in a

ten-points and two-dimensional space. Along the x dimension, the points sorted by

ascending order is {9, 4, 5, 3, 0, 6, 7, 2, 8, 1}. Similarly, the sorted list of points along

the y dimension is {0, 5, 2, 1, 3, 6, 4, 8, 7, 9}. In this example, the leaf node size is set

to be 2. The split dimension is randomly selected between x and y. Figure 5.1 shows
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Figure 5.1: Construction of the forest of randomized KD-trees

the advantage of using a KD-tree forest. In Figure 5.1(I) the nearest neighbor is

across the decision boundary from the query point, and the NNS needs to backtrack

to a neighboring leaf node to do a further search. With the limit on the number

of backtracks, the ANNS may miss this nearest neighbor altogether. However, the

nearest neighbor in Figure 5.1(II) belongs to the same leaf node, and no backtrack is

needed.

5.3 Related Work

There has been a great deal of work on employing parallel architectures to accelerate

the KD-tree construction and the NNS. The works so far can be classified into two

search categories: linear and non-linear techniques. Linear search algorithms use
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brute force approach in which the distances between the query point in Q and the

target points in S are computed in parallel. Then, the NNS is followed by a parallel

scan reduction to find the minimal distance between the query point and the neighbor

points. The parallel implementations of these linear search algorithms on the GPU

are straightforward. The expected time complexity of these parallel algorithm is

O(N2/p), where p is the number of parallel cores. The work in [109] applied a

parallel linear search method to the problem of photon mapping to locate the nearest

photons in the grid and compute an estimate of the radiance at any surface location

in the scene. In [110], points were stored as textures on the GPU, and three program

fragments were used to compute Manhattan distances and perform reductions to find

the minimum distance. The work in [111] implemented a bucket sort on the GPU

to partition 3D points into cells. A parallel brute force technique was used to search

in the cubic cell neighborhood for all the query points. It must be noted that all

these referred parallel implementation and optimization algorithms for the NNS are

for points in 3D space for applications in graphics. These techniques are not easily

adaptable for the implementation of high-dimensional KD-tree construction and the

NNS on the MPA such as the GPU. The implementation in [115] extended the brute

force linear NNS to higher dimensions of up to 96 using CUDA. It first employs a sort

and then applies a binary search to locate the p nearest points. This work reports a

speedup of up to 400 compared with the equivalent serial brute force linear NNS on

the CPU. The dimensionality limit of 96 is far short of what is needed for matching
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high-dimensional descriptors such as the SIFT and the SHOT in [58] [128].

Non-linear search techniques use data structures like the KD-tree to reduce the search

complexity by pruning the target dataset. However, as mentioned before, neither of

the KD-tree construction nor the NNS can be easily parallelized due to non-linear

and recursive nature of operations that can not be implemented on the GPU directly.

There have been some recent attempts towards the implementation of the KD-tree

construction and the NNS on the GPU. The work in [116] builds a 3D KD-tree on

the CPU with the linked list first, and then transfers the constructed tree to the

GPU for accelerating NNS with parallel streaming processors. It targets parallel ray-

tracing on the GPU hardware and reports a speedup factor of eight over the recursive

serial implementation on the CPU. The work in [105] adopts a similar method for 3D

registration problem. It constructs a 3D array based the KD-tree on the CPU first,

and then migrates it to the GPU for the NNS. Moreover, it uses small fixed length

priority queue to reduce the backtracking, thereby, producing approximate query

results. In this implementation, the 3D registration with 68, 229 points on the GPU

is 88 times faster than the serial counterpart on the CPU. The problem with work in

[105] is that each leaf node contains only one point. This design results in increased

probability of backtracking and speed performance loss. Further, this work only uses a

single-element priority queue, an approximation that did not significantly deteriorate

the quality of 3D registration. However, this limitation significantly reduces the

quality of search if the search is extended to high-dimensional problems.
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A parallel implementation of 3D KD-tree construction on the GPU in the BFS scheme

was introduced in [56], and applied to ray-tracer using the dynamic scenes. The input

is limited to geometric primitives in a mesh where triangles instead of general point

as the object of interest. The work proposed a strategy for fine-grained parallelism in

the partitioning of large nodes at upper tree levels. The approximate splitting metric

used for partitioning combines empty space and median splitting using either the

SAH or the VVH. The SAH based KD-tree accelerates ray-tracing, while the VVH

KD-tree accelerates the NNS. The VVH based NNS was iterated using a range region

search and by increasing the fixed radius of the search region on each iteration. The

speedup of this parallel KD-tree construction is about 9 to 13 with respect to the

serial counterpart on the CPU in some classic mesh datasets. The optimizations for

the parallel KD-tree construction like heuristic partitions in [56], however, are not

suitable to be extended to high-dimensional spaces. Extension to higher dimensions

creates a highly uneven workload among the threads. Unfortunately, none of the

published work on the parallelization of KD-tree goes beyond 3D applications such

as photon mapping, ray-tracing and registration.

In order to scale to very large datasets, the work in [64] employed computer cluster

and performed the ANNS on the forest of KD-trees using the MPI. The work out-

performs most other ones in high-dimensional image matching. Further, the work in

[4] presented two parallel algorithms for the construction of KD-tree and the NNS on

the single MPA device. The work in [6] on the other hand proposed a parallel ANNS
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algorithm on a single MPA.

Building upon the work so far, we propose a massively parallel forest of KD-tree con-

struction and the BANNS algorithms for high-dimensional image descriptor matching

on the GPU cluster. In the parallel algorithm of this work, all stages of the construc-

tion of the forest of KD-tree and the BANNS employ both the coarse-grain and

fine-grain parallelism for high dimensionality. Additionally, the BANNS is scalable,

in the scene that the target searchable points are randomly sampled and scattered to

different cluster nodes and the GPU devices on each node. It should be noted that

the random sampling divides the N data points equally across the GPU devices. To

order to mitigate the synchronization cost between cluster nodes and GPU devices,

the search only synchronizes the global results only after L backtracking iterations,

instead of each iteration.

For a balanced thread workload, in high-dimensional space, we only use mean of the

points in the chosen dimension in the KD-tree construction. Further, points in S are

all located in the leaf nodes. Internal nodes only include the splitting information.

In this work, we employ a hybrid technique which combines the both non-linear and

linear search features. we limit the leaf node size to more than 64 for high-dimensional

spaces. This has the advantage of increasing the probability of locating the nearest

neighbor in the first candidate node, through a linear search in the leaf nodes. It has

also the advantage of reducing the backtracking. Moreover, in the BANNS search,
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we limit the size of priority queue to no more than 40, still a relatively large number.

These steps lead to an efficient implementation of BANNS on the MPA architecture

of the GPU. Further, we use the AABB, instead of cell boundaries, to compute the

distance between the query point and the target node, which is much simpler to test

the boundaries during the NNS. We have applied the implementation in this work to

320-dimensional descriptor SHOT matching for 3D object recognition. Overall, the

approach in this work allows for massive parallelization, where the workloads across

the threads have a good balance.

5.4 Massively Parallel Implementations on the

GPU Cluster

This section describes a scalable massively parallel technique to construct a forest of

KD-tree from N points in set S, and perform a BANNS for all the M query points

in the query set Q. We exploit the hierarchical structure of the cluster of GPUs

with streaming multiprocessor (Figure 5.2) to achieve high speedup. To facilitate

the development of the construction of the forest of the KD-trees with minimal pro-

gramming effort, we use basic general parallel algorithms and data structures from

the Thrust library [129]. For a common comparison benchmark, we used the serial
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5.4.1 Construction of Forest of Randomized KD-trees

To do a fast construct of the forest of randomized KD-trees, we do a coarse-grain

parallel distribution of the workload among the cluster nodes, and then perform a fine-

grain parallelism on each node using the MPA fabric of GPUs. Prior to constructing

the randomized KD-tree forest, the search target dataset is first randomly sampled

and scattered to each node on the cluster first using the MPI, (step 1 in Figure 5.2).

On each node, using the multi-core pthread, the dataset that has been scattered to a

node is further randomly scattered and copied from that node to two corresponding

GPUs. Therefore, a single randomized KD-tree is created on each GPU (step 2 in

Figure 5.2).
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For a single KD-tree construction on each GPU device, we extend the earlier work

in [4] by randomly choosing the cut from one of the F dimensions with the highest

variance.

In this work, we have set F = 5, as it performs well across the dataset we tested

in the experiments. With this choice of F we build a forest of 16 randomized KD-

trees to the maximum number of the GPU devices in the IVS cluster. We employ

the BFS to fully exploit the fine-grained parallelism of the GPU and its streaming

multiprocessor architecture in all stages of the KD-tree construction. At each BFS

step in the parallel implementation in this work, every KD-tree node with the same

tree distance from the root spawns a new CUDA thread, with the number of threads

doubling from the preceding step. Following the conventional KD-tree construction,

the algorithm in this work can be described in the following major steps.

† index all the K–dimensional subset of S of N ′ = N/16 points.

† sort points in each dimension, and store the results in the index array of the

respective dimension.

† compute the AABB of each intermediate node, its split dimension and value

based on the AABB.

† split nodes iteratively in each level of the tree.
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Algorithm 6 Construction of the Forest of Randomized KD-trees

1: Input: k dimensional points (descriptor)
2: Output: KD-trees on Each GPU device
3: procedure KD-TREE-FOREST Construction
4: MPI Init();
5: MPI Scatter(k dimensional points) to each node;
6:
7: //on each node two pthreads invoke two randomized KD-Tree
8: scatter the searchable points on this node into two subsets, invoke pthread create()
9: to create two pthreads on two CPU cores; each pthread launches one randomized
10: KD-tree construction algorithm on one of the two GPU devices attached to a node;
11:
12: //Single randomized KD-tree construction with single pthread
13: N ′ ← number of points;
14: M ′ ← N ′/number of points in one leaf;
15: for all m pre-allocated nodes do
16: allocate global memory for the children/parent/current nodes array;
17: allocate global memory for the split array ;
18: allocate global memory for the AABB array;
19: end for
20:
21: for all N ′ points ∈ S′ do
22: allocate global memory for all points index array;
23: allocate global memory for all owners index array;
24: end for
25:
26: for all N ′ point in each of the K dimensions do
27: allocate global memory for points array;
28: allocate global memory for points index array;
29: allocate global memory for owner nodes array;
30: allocate global memory for left and right marks array;
31: end for
32:
33: //point preprocessing
34: assign indices (0 to N ′ − 1) to N ′ points;
35: for each of the K dimensions do
36: assign indices (0 to N ′ − 1) to N ′ points in index array;
37: sort N points along the dimension and update index array;
38: end for
39:
40: //prepare for the split at root node
41: compute AABB for root node according to the minimal and
42: maximal value at each dimension;
43:
44: //split nodes of KD-tree
45: NODE-SPLITS;
46:
47: //Sync pthreads in single node
48: two pthreads are synchronized through pthread join().
49:
50: MPI Finalize();
51: end procedure
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The details of the construction of the forest of KD-trees are shown in Algorithms 6

and 7. For single tree construction, before launching the GPU kernel, we allocate

global memory on the GPU for the needed data structures on each of the cluster

nodes and each point within a node. For each tree node, we define the node data

structure with struct and union. Prior to splitting a node, we store indices of the

leftmost and rightmost points in the sub-array for the current node in the Split

structure. After the split, we also store the split dimension and its value.

To avoid using the AOS that have inefficient uncoalesced global memory accesses on

the GPU [119], we allocate the following arrays on the GPU global memory; the array

of points, the arrays of dimensional values (one array per dimension), the array of

pre-allocated parent nodes, children nodes, the array of owners and split node indices,

the array of bounding boxes for all nodes, left and right binary marks for all points,

and so on. To benefit from the coalesced global memory accesses we performed the

preprocessing through the SOA that significantly improves the efficiency of accessing

arrays of set S, temporary points, children nodes, parent nodes, and left and right

binary marks. To compute the AABB for each node’s cell, we first sort all points

along all dimensions. Sorts are performed by multiple GPU kernel launches (one

launch per dimension). After the sorts, the maximum and minimum values in each

dimension are stored in the AABB array.

The split operation on the GPU is also implemented with parallel reduction kernels.
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One CUDA thread works on one node split. The number of nodes involved in the

split doubles with each iteration. There are two major steps in each split iteration.

The first step as shown in Algorithm 7 (lines 4 to 67) computes the indices of the

parent and children of the split node, as well as the split value and dimension. In the

event of a node undergoing a split, its associated thread first checks to see if enough

memory space has been allocated for the addition of new nodes. If the number of

points in the current node falls below the threshold of the number of points in a

leaf node, no further split will be undertaken and the node will be marked as a leaf

node. Otherwise, the left and right split nodes indices for the current split node i are

computed as (2i + 1) and (2i + 2). The Split information of current split node is

also updated with the new split value and dimension. After the split, all the CUDA

threads are synchronized to ensure completion of all split operations at a given level

from the root of the tree. Finally, at the end of this step, a check is made to see if any

node remains that requires split in this iteration. If no nodes are left the loop breaks

out and the procedure terminates. Otherwise, we will prepare for the next split.

The second major step of single KD-tree construction as shown in Algorithm 7 (lines

69 to 139) focuses on the re-distribution of points to the children nodes once all

the split related information for children and parent nodes are computed out. The

algorithm launches N CUDA threads to process N ′ groups of K-dimensional points.

Each group contains K points with each point from a sorted list of N values in

ascending order in one dimension. Each thread projects the dimensional values in
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Algorithm 7 Node split

1: Input: indices of points in all K dimensions
2: Output: parent node, child nodes, split info update
3: procedure NODES-SPLIT
4: //Initialization for first split
5: node count ← 1;
6: M ′ ← N ′/node size;
7: out space ← false;
8: last node count ← 1;
9:
10: while true do
11: //launch (last node count) threads for this kernel
12: [GPU Kernel]split check
13: split enable ← false;
14: shared new nodes to add;
15: shared allocated enough;
16: if (threadIdx == 0) then
17: new nodes to add ← 0;
18: end if
19: synchronization;
20:
21: //check if any node in this round undergoes split, and
22: //and if so, compute its children node numbers
23: if (child[threadIdx] == −1) and ((splits[threadIdx].right
24: −splits[threadIdx].left) > node size) then
25: split enable ← true;
26: atomicAdd(new nodes to add, 2);
27: end if
28: synchronization;
29:
30: //check the total number of nodes split sofar and
31: //check if enough number of nodes are pre-allocated
32: if (threadIdx == 0) then
33: atomicAdd(node count, new nodes to add);
34: allocated enough ← (node count < M ′);
35: if (!allocated enough) then
36: atomicAdd(node count,−new nodes to add);
37: end if
38: end if
39: synchronization;
40:
41: //split current node and update split/child/parent info
42: if (split enable) and (allocated enough) then
43: left ← 2 ∗ threadIdx+ 1
44: splits[threadIdx].split dim ← randomly select one
45: of the top five dimensions with maximal span;
46: splits[threadIdx].split value ←
47: compute the split value with mean;
48: child[threadIdx] ← left;
49: parent[left] ← threadIdx;
50: parent[left+ 1] ← threadIdx;
51: end if
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each group to the split dimension. Each point in each group is placed in one of the

children nodes on the left or right through a comparison of the projected value with

the split value. The results are stored in the left and right marks, and the owner

arrays for each node. Next, the points in the newly created node are sorted in all

dimensions through three Thrust library functions working on the left and right mark

flags; exclusive scan, transform and scatter. These operations are performed on

all the K dimensions for all points in the dataset S. The sorted lists in each node are

used to compute the AABB of the left and right children for the next iteration of the

split.

With reference to Figure 5.1, Figure 5.3 shows the first iteration of node split. As

seen, points are sequenced from 0 to (N ′ − 1), with N ′ = 10. At the start, points

in set S are assigned three sequences as shown in table a. The sorting operations in

the ascending order in the x and y dimensions, as shown in table b, are performed

through two GPU kernels. So, two sequences in x and y dimensions are, respectively,

computed as {9, 4, 5, 3, 0, 6, 7, 2, 8, 1} and {0, 5, 2, 1, 3, 6, 4, 8, 7, 9}. This corresponds

to preparation for node split in Algorithm 6 (lines 27 to 32). After sorting the points

in two-dimensional sequences, the AABB of the root node is formed by recording the

minimum and maximum values in the sorted arrays in two dimensions from table b.

These extreme values defining the AABB are stored in table c. Through the AABB

in table c, the split value in the x dimension is easily computed as (p[9].x+p[1].x)/2).

The initial computation for the AABB is shown in lines 34 to 36 of Algorithm ??.
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point_index 0 1 2 3 4 5 6 7 8 9
index(x) 0 1 2 3 4 5 6 7 8 9
index(y) 0 1 2 3 4 5 6 7 8 9

point_index 0 1 2 3 4 5 6 7 8 9
sorted_index(x) 9 4 5 3 0 6 7 2 8 1
sorted_index(y) 0 5 2 1 3 6 4 8 7 9

dimension x y
aabbMin[0] p[9].x p[0].y
aabbMax[0] p[1].x p[9].y

threadID T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
sorted_index(x) 9 4 5 3 0 6 7 2 8 1
sorted_index(y) 0 5 2 1 3 6 4 8 7 9

Sort points in each 
dimension respectively

Compute axis aligned 
bounding box (AABB)

Compute the top Nd split 
dimensions and randomly 
select one of them

Group sorted points from each 
dimension for split processing

threadID T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
owner 1 1 1 1 1 2 2 2 2 2
L_R_mark(x) 0 0 0 0 0 1 1 1 1 1
L_R_mark(y) 0 0 1 1 0 1 0 1 1 0

Resolve node ownership after the 
split for each point by scan 
through each of the sorted lists 

Table a

Table b

Table c

Table d

Table e

Table f

threadID T0 T1
node 2 1
min_index 0 5
max_index 4 9
aabbMin_x p[6].x p[9].x
aabbMin_y p[2].y p[0].y
aabbMax_x p[1].x p[0].x
aabbMax_y p[7].y p[9].y

unique_labels 2 1 …
unique_count_index 0 5
number_of_labels 2

Identify nodes that require split 

Compute the AABB for each 
new nodeTable k

threadID T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
owner 2 2 2 2 2 1 1 1 1 1
count_index 0 1 2 3 4 5 6 7 8 9

threadID T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
L_R_mark(y) 0 0 1 1 0 1 0 1 1 0
L_counter(y) 0 0 0 1 2 2 3 3 4 5
temp_index(y) 5 6 7 7 7 8 8 9 9 9
L_R_map(y) 5 6 0 1 7 2 8 3 4 9
sorted_index(y) 2 1 6 8 7 0 5 3 4 9

Table i

Table j

Table h

node_index 0 1 2 3 4 …
split (x,m) (-1,-1) (-1,-1) (-1,-1) (-1,-1) …
child 1 -1 -1 -1 -1 …
parent -1 -1 -1 -1 -1 …

threadID T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
L_R_mark(x) 0 0 0 0 0 1 1 1 1 1
L_counter(x) 0 0 0 0 0 0 1 2 3 4
temp_index(x) 5 6 7 8 8 10 10 10 10 10
L_R_map(x) 5 6 7 8 9 0 1 2 3 4
sorted_index(x) 6 7 2 8 1 9 4 5 3 0

Table g

Compute mapping to left/right children across 
the split dimension (x) by scan in the y-
dimension, and Re-sort points in y-dimension 
for left/right children

Compute new owners using the first dimensions

Compute mapping to left/right children across 
the split dimension (x) by scan in the x-
dimension, and Re-sort points in x-dimension 
for left/right children

Data Flow
Data Flow

X dimension

Common 

Y dimension

owner

node_index 0 1 2 3 4 …
split (y,m') (-1,-1) (-1,-1) (-1,-1) (-1,-1) …
child 1 -1 -1 -1 -1 …
parent -1 -1 -1 -1 -1 …

Table d’

Assume select x dimension 

Figure 5.3: Construction of the array based forest of randomized KD-trees
on the GPU
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0 0 1 1 0 1 0 1 1 0L_R_mark(y)

0 0 0 1 2 2 3 3 4 5L_counter(y)

5 6 7 7 7 8 8 9 9 9temp_index(y)

5 6 0 1 7 2 8 3 4 9L_R_map(y)

exclusive scan

0 5 2 1 3 6 4 8 7 9index(y)

2 1 6 8 7 0 5 3 4 9sorted_L_R_index(y)

left_number    = L_R_mark[n-1] + L_counter[n-1] 
                           = L_R_mark[9] + L_counter[9] = 0 + 5 = 5 
temp_index[i]  = L_number + i – L_counter[i]
                           = 5 + i – L_counter[i]

L_R_map[i] = L_R_mark[i] ?  L_counter[i]: temp_index[i]

scatter

1

2

3

4

Figure 5.4: Operations in table g and table h in Figure 5.3

Next, the node split is launched through the function NODE-SPLITS (line 39 in Al-

gorithm 6). The details of function NODE-SPLITS are shown in Algorithm 7. In this

algorithm, all node splits are performed through multiple iterations of the while loop.

NODE-SPLITS in Algorithm 7 begins with some parameter initialization (lines 4 to 8).

Notable is the pre-allocation of tree nodes (line 6). Prior to the split, a check is made

to see if there are nodes at the current level of tree that deserve split, and if enough

pre-allocated nodes are available for the pending splits (lines 12 to 39 in Algorithm

7). The results are updated in table d. Note that the function atomicAdd returns

value of its first argument before the update.

Next step (lines 42 to 51 in Algorithm 7) determines the split dimensions for the nodes

at the current level of the tree that undergo split (x dimension for node 0; the only
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node in the first iteration) and their corresponding mean values in their respective

dimensions. In the first iteration, the left child of current node (root) is recorded as

1, with the right child having an implied value of 2. The parent node is fixed as −1.

Further, the index for the parent of the current node’s children is updated to 0. The

entries for other nodes are initialized to −1. Table d only shows the columns for the

first five nodes that have been pre-allocated.

After the split, information for nodes at the current level of the tree is updated,

and some bookkeeping checks are performed on the CPU to prepare for the point

distribution. First, a check is made to see if there are any nodes left to be split.

If no node needs splitting, the algorithm will break out of the while loop and the

KD-tree construction ends (lines 55 to 58). Next, another check is made to see if

enough nodes have been pre-allocated, and the size will be doubled if more allocation

is required(lines 62 to 67).

After computing the split dimension and value, assignment of points in a node to

the descendant nodes is carried out (lines 70 to 95). Table e presents the assignment

of workload to each thread in the first iteration. Each thread processes a group of

two points (K points in general), from each of the sorted lists in x and y dimensions

in table b. For each point in both lists, a check is made to resolve the left or right

descendant in the split dimension. Assignments of points to descendant nodes are

shown in table f , where each node is identified by its owner and a marker. As an
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example, the first element in owner array in dimension x is 1, indicating point 9

encountered in the x-sorted list belongs to node 1, along with the split dimension x.

The L R mark for the first element is similarly set to 0 indicating ownership of the

left partition node (node 1).

Next step is the distribution of points to the descendant nodes and sorting of points

along all dimensions for each pair of descendant nodes (lines 100 to 108 in Algorithm

7). Three Thrust library functions; exclusive scan, transform and scatters per-

form these tasks. Table g presents the partitioning and sequencing subsequent to the

split in dimension x. The first and second halves of sorted index(x) are the sorted

sub-sequences in the x dimension for the left and right children after the split. Note

that the left and right children and owners have been switched; a fallout from the use

of Thrust library functions. The variable count index assigns a count index to each

point in the sorted sub-sequences.

Steps in table h are identical to those in table g, and demonstrate the process of

re-sorting the sub-sequences in the left and right split nodes along the non-split di-

mension y without two explicit sorts. This is achieved through an exclusive scan of

row L R mark(y) in table h and recording the results in L counter(y). The last ele-

ment in L counter corresponds to the number of points in the left child (5 = 4 + 1).

Rows temp index(y) and L R map(y) in table h provide a mapping mechanism for

the sort in the y dimension into the two sub-sequences. The details of the mapping
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through the scan and scatter operations in Thrust is shown in Figure 5.4. The last

row in table h lists the indices of sorted lists in the left and right nodes in the y di-

mension subsequent to the split. Steps associating with tables g or h are repeated for

each non-split dimension. Next, using the L R mark(y) and sorted index(y) saved

in the previous split iteration, new sorted index(y) are computed as shown in table

i (lines 109 to 110).

The computations of the AABB for the left and right children of current node are

shown in tables j to k. The first row in table j keeps record of unique nodes that have

been split so far in the current round. The second row maintains the record of the

starting count index in each sequence after the split. The last row keeps the record of

the number of nodes generated in this iteration. This part of algorithm is performed

through the Thrust function unique by key copy (lines 114 to 117). Information in

table j, the updated stored index(x) in table g, and updated stored index(y) in table

i are used to compute the AABBs of left and right children. Since the nodes have

already been sorted in each dimension, we can calculate the bounding box through

the first and last elements in each dimension, in each of the left and right children

nodes, through a launch of a kernel (lines 121 to 137).

The procedure detailed in tables a to k corresponds to the first split iteration. If

any node requires a further split, additional iterations are performed through steps

in tables d to k. In this example, the node splits terminate at the sixth iteration.
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The constructions of the forest of KD-trees on the GPU devices are brought to a

completion through the synchronization of pthreads.

5.4.2 BANNS on the Forest of Randomized KD-trees

In this section, we explore a massively parallel P -BANNS on the GPU cluster.

5.4.2.1 Nodes Distribution

Compared with the parallel ANNS on a single KD-tree [4], in this work, before launch-

ing the nearest neighbor querying on each GPU device, the query dataset is broadcast

to each cluster nodes and then transferred to each GPU device. Next, the fine-grain

parallel search is launched on the GPU device for the assigned query points. After

L = 5 iterations of search (i.e. 5 backtracks), the local search results on each single

tree is transferred to host node. On the host, the intermediate global best candidates

for each query point is computed and broadcast to each node and their corresponding

GPU devices. The global best candidates are used on each GPU device to update the

local search priority queue, and then perform a further search on the local KD-tree.

Once all the queries on each node are completed, the MPI is employed to collect

the query results for the points from each node to the frontend node to perform a

reduction and output the final results.
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5.4.2.2 BANNS Queries

The BANNS for each query point is performed on the randomized KD-tree in L

iterations of search independently. After each L iterations, we perform a synchro-

nization among the nodes and the GPU devices to prune the local priority queues.

Even though synchronization incurs a significant penalty, it results in pruning a large

number of unproductive searches that are enqueued on the priority queue.

On single randomized KD-tree, since the ANNS for the query points are independent

of each other, we perform parallel searches by launching one GPU thread for each

query. Additionally, for the ANNS on each GPU device, we design BANNS using

a novel sliding window to improve the speed performance of the query. Each query

point uses the DFS to traverse down the tree until it reaches a leaf node. Once there,

the P nearest neighbor point candidates will be selected in the leaf node. Some or all

of the P nearest points, however, may reside outside of this leaf node. We, therefore,

need to backtrack the tree to search for the other possible candidate points in the

neighboring nodes. One possible approach is to invoke multiple ANNS queries in

parallel in an uncoordinated manner [4]. However, uncoalesced memory accesses and

uneven numbers and path divergences in the backtracks among the parallel execution

threads severely compromise the performance. We partially alleviate the uneven

workloads by letting the threads working on the ANNS queries to follow divergent
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paths to reach the leaf nodes. We partially alleviate the uneven workloads by letting

the threads working on the ANNS queries to follow divergent paths to reach the leaf

nodes while progressing through the same sequence of program instructions.

The major procedure for this algorithm is shown in Figure 5.5. In Step 1, the query

dataset is broadcast from the cluster frontend to each node through MPI broadcast

interface. In Step 2, we launch two pthread to copy the query dataset from the CPU

to the two GPU devices (GPU-0 and GPU-1) on each cluster node. In Step 3, each

pthread creates a CUDA kernel to perform the BANNS for query points transferred to

its corresponding GPU device. One CUDA thread performs the BANNS for a single

query point. In Step 4, one backtrack is performed to do a further search on another

leaf node. In Step 5, once L iterations of backtracking are performed on each single

tree. Next, the query results including the indices and distances of query points to

neighbor candidates are copied back to CPU. In step 6, on the root node, we launch

the MPI reduction interface to collect the best candidates with minimum distance

to query points. Next, global reduction results are broadcast to each node which

is similar step 1 to step 3. On each node and device, the local priority queues are

updated with the global results, and the further L iterations search will be performed

until the best P nearest neighbors for query points are obtained.

For a single query on a single randomized KD-tree in L backtrack iterations of search,

Figure 5.6 depicts the major steps of the BANNS as described below.
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Figure 5.5: BANNS procedure on the GPU cluster

† In Step 1 in Figure 5.6 the BANNS query points are placed in the buffer of leaf

nodes. As soon the buffers are full or all the query points have been scattered

into buffers, the distance computation for finding the P nearest neighbors be-

gins. The scattering of query points to the buffers is handled through a CUDA

kernel, with each thread responsible for the traversal of a single query point

from set Q to a leaf node. As a thread descends towards a leaf node, at each

intermediate node, the priority queue is updated with the node index and the

distance between the query point and the AABB of the child node which it is

not branched to.

† Once a buffer in a leaf node is full or all the involved query points have been

inserted into buffer, a second CUDA kernel is launched to compute the node-

local P nearest neighbors for these query points (Step 2 in Figure 5.6). To

compute the P shortest distances, we employ a sliding window. In the same

step, the entries in the priority queue whose distance is greater than the current
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Figure 5.6: Major steps for the BANNS on single KD-tree

P th shortest distance will be removed.

† In Step 3 in Figure 5.6, threads perform the status check. If the priority queue

for a query point has become empty, or the number of backtracks has reached

its upper bound before reaching the root node, we will terminate the search

procedure for this query point. Otherwise, it will be inserted into the backtrack

pool for further search in the next iteration.

† As the number of the backtrack of the query points from the leaf nodes drops

below a threshold we terminate the process. The residual BANNS queries are

performed through a parallel brute force search CUDA kernel [54]. Since each

backtrack iteration requires launches of two time-consuming CUDA kernels, it

is more compute efficient to do the search for these remaining query points

employing the parallel brute force.
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Figure 5.7: Sliding window for distance computing

Unlike the work in [117], the use of sliding window in Step 2 of Figure 5.6 for the

computation of the P nearest neighbor distances ensures that all global memory

accesses are coalesced. Figure 5.7 depicts the working of the threads in the sliding

window where each thread access one pair of query point and leaf node to compute the

distance between them. After a sequence of slides the node-local P shortest distances

for all the query points stored in the node buffer are computed. In the depiction

of Figure 5.7 with a leaf node with eight points, ten query points in its associated

buffer, and assignment of eight threads for the work, the process takes 10 slides of

the window.
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Algorithm 8 presents the implementation details, where the recursion in the tradi-

tional DFS is converted to an iterative while loop that works better on the GPU. The

backtracks are implemented through iterative exchange of three pointers (leftchild,

bestchild and otherchild), and the priority queue. The work is spread across three

kernels. In the first kernel, the concurrent threads following divergent paths steer

the query points into the leaf node buffers (one query point per thread). The sec-

ond kernel associates a thread block to one leaf node and uses the sliding window to

compute the distances for the P nearest neighbors local to the node. The update of

priority queue is also performed by this kernel. When the number of residual query

points, left over from the backtrack iterations, falls below a threshold, the third kernel

performs a brute force parallel BANNS.
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Algorithm 7 Node split(Continued)

52: [CPU coordinate]while loop termination and node
53: reallocation.
54: //no node deserving split, break out while loop
55: if ((last node count == node count) and
56: (allocated enough)) then
57: break;
58: end if
59: last node count ← node count;
60:
61: //resize pre-allocated node size
62: if (!allocated enough) then
63: double pre-allocated node size;
64: update new nodes’ split/child/parent info;
65: M ← 2 ∗M ;
66: continue;
67: end if
68: //launch N ′ threads for this kernel, one thread
69: //works for one column of dimensional values;
70: [GPU Kernel]L R mark
71: owner ← owner[threadIdx];
72: leftchild ← child[owner];
73:
74: //leaf node does not deserve split
75: if (leftchild == -1) then
76: return;
77: end if
78: //compute split dimension and split value
79: split dim ← splits[owner].dim;
80: split value ← splits[owner].value;
81:
82: //projection of points at each dimension to split dimension
83: for j = 0 to K − 1 do
84: project[j] ← [projection]
85: (split dim, point array[j, threadIdx]);
86: end for
87: //update owner and left/right marks at each dimension.
88: for i = 0 to K − 1 do
89: L R mark[i, threadIdx]
90: ← (project[i] > split value);
91: end for
92: owner[threadIdx]
93: ← leftchild + L R mark[0, threadIdx];
94: synchronization;
95:

161



Algorithm 7 Node split(Continued)

96: //launch n threads in the following three Thrust kernels,
97: //to sort points in each leaf node.
98: [GPU Kernels]distribute points to children nodes
99: for i = 0 to K − 1 do
100: L R temp[i, threadIdx] ← [exclusive scan]
101: (L R mark[i, threadIdx];)
102: L R map[i, threadIdx] ← [transform]
103: (L R temp[i, threadIdx]);
104: sorted index[i, threadIdx] ← [scatters]
105: (L R map[i, threadIdx], sorted index[i, threadIdx]);
106: end for
107: owner[threadIdx] ← [scatters]
108: (L R mark[0, threadIdx], owner[threadIdx]);
109:
110: //launch N ′ threads in the following Thrust kernels, to
111: //compute unique labels and count.
112: [GPU Kernel]point unique ownership label
113: number of labels ← [unique by key copy]
114: (owner, count index, unique labels,
115: unique count index);
116:
117: //launch number of labels number of threads to compute
118: //AABB for children nodes after the split.
119: [GPU Kernel]compute AABB for children nodes
120: //gather split info for current children nodes
121: index ← unique lables[threadIdx];
122: left ← unique count index[threadIdx];
123: splits[index].left ← left;
124: if (threadIdx < (number of labels− 1)) then
125: right ← unique count index[threadIdx+ 1];
126: else
127: right ← N ′;
128: end if
129: splits[index].right ← right
130:
131: //compute AABB info for current children nodes
132: for k = 0 to K − 1 do
133: update AABB[k] of current node according to left and
134: right indices;
135: end for
136: end while
137: end procedure
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Algorithm 8 BANNS on the Forest of Randomized KD-trees

1: Input: cell data structure (parent, child, splits), aabbMin, aabbMax,
2: query, p, bt sh, L
3: Output: results data structure
4: procedure BANNS
5: MPI Init();
6: MPI Broadcast(query points dataset);
7: while (!result flag) do
8: //each pthread perform search on one randomized KD-Tree
9: create two pthreads on two cores through pthread create(), each
10: pthread thread invokes BANNS on one randomized KD-tree on
11: one of the two GPU devices attached to a node, with half of the
12: query points assigned to this computing node.
13:
14: // Tasks for each pthread
15: allocate memory and copy V query points to GPU;
16: backtrack ← false;
17: currentnode← 0;
18: bk num← 0;
19: create a priority queue Qp;
20: query pool empty ← false;
21:
22: while ((!query pool empty) ‖ (bk num < L)) do
23: [GPU Kernel:Scatter Query Points into Leaf Buffers]
24: leftchild← child[currentnode];
25: if leftchild == −1 then
26: bestchild← leftchild;
27: otherchild← leftchild;
28: //check candidate node in left or right child node
29: split← splits[currentnode];
30: delta← query[i].[split.dim val]− split.split val;
31: if delta < 0 then
32: otherchild++;
33: else
34: bestchild++;
35: end if
36:
37: //compute distance from query point to AABB
38: dAABB ← compute the distance from query point to
39: bounding box AABB of otherchild;
40: enqueue(Qp)← (otherchild, dAABB);
41: //prepare for the next search iteration
42: currentnode← bestchild;
43: else
44: insert the query point index in the buffer associated with
45: this leaf node;
46: end if
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Algorithm 8 BANNS on the Forest of Randomized KD-trees (Continued)

47: [CPU Coordinate:Boundary Computing]
48: Check the status of each query point in the query pool. If
49: the priority queue with it is empty or the next search target
50: is root, remove this points in the pool; then, compute the
51: index boundary of rest query points in the buffer and train
52: points in leaf nodes; finally, copy these information to GPU.
53:
54: [GPU Kernel:Local Candidates Search by Sliding Window]
55: //Apply Sliding Window Technology to compute local NN.
56: if train point > query point then
57: Query points slide on train points, update the
58: NN for each query point;
59: else
60: Train points slide on query points, update the
61: NN for each query point;
62: end if
63:
64: //extract node with mindist from Qp

65: (currentnode,mindist) ← dequeue(Qp);
66: //examine candidate sub-tree in next iteration
67: if (mindist ≤ restults[i].index[P − 1]) then
68: backtrack ← false;
69: end if
70:
71: [GPU Kernel:Residual Query Points Brute Force Search]
72: if num res query point > res threshold then
73: all the residual query points will scan all the train points
74: in brute force method;
75: query pool empty ← true;
76: end if
77: end while
78: MPI Reduction(query results);
79: end while
80: MPI Finalize();
81: end procedure
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5.5 Performance Optimization

Performance of construction of forest of KD-trees and the BANNS algorithms on

the GPU cluster are influenced by several factors, including the global memory ac-

cess coalescing, shared memory bank conflicts, branch divergences, local and global

synchronization overhead and the organization of thread blocks [119].

First, as mentioned before, the single KD-tree is constructed using linear SOA. The

GPU SPMT architecture can process vectors more efficiently than the nonlinear data

structure such as tree. Second, to ensure that global memory accesses on the GPU

are coalesced, i.e. threads accesses to memory are combined into a single transaction,

into an aligned and contiguous block of global memory, we perform a preprocess-

ing, prior to copying the input data from the CPU host to the GPU device. We

restructure data employing the SOA instead of the AOS in the representation of data

structures. Third, breaking of Algorithm 8 into three kernels allows us to implement

the most time-consuming part of the algorithm as linear vectors, resulting in very

high performance. Forth, in the design of this work, the read-only data are placed

in the texture and surface memories to boost the performance of reading accesses.

The texture and surface memories reside on the device and are cached in the texture

cache, and therefore, presents a better alternative to accessing the global memory.

Fifth, to improve the performance, we try to reduce the branch conditions in loops
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algorithms. We achieve this by loop unrolling through the use of #pragma unroll

directive in CUDA. Loop unrolling, of course, results in register pressure, which is

alleviated through increase in the size of L1 cache. There are multiple large for loops

in the parallel algorithms that are candidates for loop unrolling.

The performance benefit of randomized KD-tree forest comes in two way. First divid-

ing the N searchable data points across 16 GPU devices, results in single KD-trees

whose heights are smaller, and therefore, lower number of backtracks. Further, the

global synchronization among the individual KD-trees in the forest reduces the num-

ber of backtracks number. This due to the fact that the local priority queues are

updated with the global results where unproductive target cells will are pruned.

5.6 Experiments and Results

In this section, we provide experimental performance validations of the GPU cluster

accelerated parallel forest of KD-trees construction and the BANNS algorithms1.

We adopted real-world image descriptor datasets with a wide range of sizes and

dimensions from Winder and Brown dataset [120] [121], as well as datasets from

high-dimensional SHOT feature descriptors, extracted from typical point clouds [55].

1Michigan Tech IVS Computing Cluster consists of eight nodes, with each node equipped with a
4-core CPU and two GPUs. Each CPU is a 4-core, 3.2 GHz Intel i7− 970 processor, with Ubuntu
12.04 OS, with 1.14 GHz, and the GPU device is GeForce GTX 680 GPU with 4 GB RAM with 7
Streaming multiprocessors

166



We performed multiple sets of experiments to evaluate the performance of the parallel

construction of the forest of KD-trees and the BANNS. We also explored the major

performance impact factors of the BANNS, such as the size of the reference (S) and

query (Q) datasets, dimensionality, tree height, the number of backtracks, and the

number of nearest neighbor of single query point (P ).

Table 5.1
Comparison with the related works

Work KD-tree NNS Dim
(d)

Query
Size (Q)

P-NNS
(P )

Target
Applica-
tions

Skdtree SNNS kdtree SNNS BF ANNS

[115] – linear,
GPU

96 38400 20 entropy, KL
divergence

– 137 35 exact

[118] – linear,
GPU

78 100k 1 machine
learning

– – 21 ∼ 90%

[117] CPU nonlinear,
GPU

12 10M 10 machine
learning

– 89 – exact

[64] CPU nonlinear,
CPU
cluster

128 100k 1 image
descriptors

– – 10 >90%

Work GPU hybrid, 96 38400 20 image 8 84 93

on GPU 96 100900 4 descriptors 12 133 136

Single 128 100900 4 16 138 86 >90%

GPU 256 100900 4 17 163 95

512 100900 4 14 128 118

This GPU hybrid, 96 38400 20 image 35 97 104

Work GPU 96 100900 4 descriptors 28 629 643

cluster 128 100900 4 28 1117 716 >90%

256 100900 4 36 1344 781

512 100900 4 30 953 876

5.6.1 Evaluation on Real-world Image Descriptors

In these experiments, we have used the library of real-world images to sample image

descriptors of different dimensionality from Trevi Fountain image patches [120]2. We

2The data is taken from Photo Tourism reconstructions from Trevi Fountain (Rome). Each dataset
consists of a series of corresponding patches, obtained by projecting 3D points from Photo Tourism
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have employed the approach in [120] [121] to generate real-world image descriptors

with varying dimensions. Moreover, the query sets are the same as the reference sets

that were used for the construction of the KD-tree forest (S = Q). This is justified as

in the image descriptor matching, every point descriptor has to be matched. To make

sure the search accuracy is beyond 90%, we have adjusted the number of backtracking

steps according to the size and dimensionality of the dataset and the number of query

points involved.

5.6.1.1 Performance Comparison with Related Works

Table 5.1 provides a brief comparison of this work with the related works in higher

dimensions. The speedup factors (Skdtree) is with respect to the construction runtime

using the PCL library [55]. SNNS kdtree and SNNS BF are the speedups of parallel

algorithm on the GPU cluster over the sequential counter part on CPU, and over the

serial brute force linear search on the CPU, respectively. We adopted the sequential

linear brute force NNS algorithm in the PCL as the common benchmark reference for

a fair speedup comparison between various schemes. AANNS represents the accuracy

of the ANNS.

As shown, the algorithms presented in this work provide the highest performance for

reconstructions back into the original images. The Trevi Fountain image patch suites includes up
to 100900 key point descriptors. http://phototour.cs.washington.edu/patches/
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the large datasets having high dimensionality of up to 512, for both the construction

of the forest of KD-trees and the BANNS. We also achieve an accuracy of more

than 90% for the BANNS similar to works in [64] and [118]. Additionally, Table 5.1

presents the results for the proposed technique when only one KD-Tree is employed

and the workload is assigned to a single node with a single GPU. Implementation in a

single GPU results in a factor of 4 to 8 slower speedups for SNNS kdtree and SNNS BF ,

respectively.

5.6.1.2 Comparison Between the Parallel Algorithms on the GPU and

CPU Clusters

Next, we compare the performance of parallel construction of the forest of KD-trees

and the BANNS on the GPU cluster with respect to their counterparts on the CPU

cluster. We generated seven target N -point sets S, with N = 2560, 5120, 10240,

20480, 40960, 81920, and 100900 to cover a wide range of KD-tree sizes. The max-

imum dataset size of the real-world image is up to 100900 descriptors. We chose

a high-dimensional case of K = 512. Table 5.2 presents the results. Parameters

Tcrkdt/Tgrkdt represent runtimes for parallel randomized KD-tree forest construction

on the CPU/GPU cluster. Parameters Tcbanns/Tgbanns represent runtimes for parallel

BANNS on the CPU/GPU cluster. Parameter Srkdt/Sbanns denotes speedup factor of

parallel algorithm on the GPU cluster over counterparts on the CPU cluster for the
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construction of the randomized forest of KD-trees/the BANNS. As seen the speedup

of parallel construction of the forest of KD-trees and the BANNS on the GPU cluster

can reach up to 2.5 and 61.7, respectively.

Table 5.2
Construction of the forest of KD-trees and the BANNS runtimes (in ms)

and speedups in high-dimensional (d = 512) space

size of CPU GPU Speedup
dataset Tcrkdt Tcbanns Tgrkdt Tgbanns Srkdt Sbanns

2560 14 1773 65 3146 0.2 0.6
5120 23 5696 69 4434 0.3 1.3
10240 38 17431 75 5279 0.5 3.3
20480 82 48437 89 5911 0.9 8.2
40960 166 122174 101 7423 1.6 16.5
81920 347 381206 145 9964 2.4 38.3
100900 383 711219 154 11532 2.5 61.7

5.6.2 Speedup and Accuracy Impact Factors

In this subsection, we study the speedup and accuracy impact factors to the con-

struction of forest of KD-trees and the BANNS.

5.6.2.1 Effect of the Dataset Size and the Dimensionality

Figure 5.8 plots the runtimes of the forest of KD-trees construction versus the number

of points for several dimensions K for the parallel construction algorithm. The plots

demonstrate the power of the MPA where the massive parallelism works best for
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Figure 5.8: Runtime of parallel forest of KD-trees construction versus the
number of points in set S for various dimensionality

large datasets when thread operations are coordinated (i.e. sort, scatter, etc); a

40-fold increase in the data size results in only 2-fold increase in the runtime. Further,

a closer observation of Figure 5.8 reveals that for a given number of reference points

the runtime slowly increases with the dimension K (specially for smaller values of

K). This is due to optimization steps in Section 5.5; the loop unrolling, the use of

SOA, and efficient use of L1 cache.

Figure 5.9 plots the runtimes of the BANNS versus the number of points for several

dimensions K using the parallel algorithm. The rate of increase in the runtime in

the case of the BANNS is much higher than that of the construction of the forest of

KD-trees in Figure 5.8. The reason for this is the GPU architecture is ill-suited for

nonlinear tree operations.
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Figure 5.9: Runtime of parallel P -BANNS (P = 4) versus the number of
points in set S for various dimensionality

5.6.2.2 Effect of the KD-tree Height

Plots in Figure 5.10 present the effect of the KD-tree height on the runtime of the

parallel BANNS for the 256-dimensional KD-tree forest. As seen, for the number of

query points less than 20, 000, the optimum KD-tree height lies between 3 to 5. The

optimum height ranges from 6 to 8 for the number of query points between 40, 960 to

100, 900. With a smaller tree height, the BANNS is more a linear-like search, resulting

in an increase in the runtime. On the other hand, a large tree height yields higher

number of backtracks, degrading the runtime performance. So, in the experiments

of this work, the tree heights were chosen in accordance with the image descriptor

datasets dimensionality and sizes. Due to the effectiveness of global synchronization
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Figure 5.10: Runtime of parallel P -BANNS (P = 4) versus the tree height
for a 256-dimensional forest of KD-tree for various dataset sizes S.

on the pruning of the priority queue of the BANNS, the height of the KD-tree has a

lesser impact on the performance than on single KD-tree.

5.6.2.3 Effect of the Number of Backtracks

As discussed, an increase in the number backtracks yields a higher search accuracy,

as more nodes are inspected. Plots in Figure 5.11 present the effect of the number of

backtracks on the runtime of the parallel BANNS for the dataset size of 81, 920 with

maximum leaf size of 64, for dimension choices of 4, 16, 64 and 256. The runtimes

saturate after a certain number of the backtracks, depending on the dimension of

the descriptor in the dataset. For 4, 16, 64 and 256-dimensional KD-tree forest, the
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saturation points are around 50, 160, 280, and 400, respectively. In the experiments,

with the optimum tree height (Figure 5.10), to achieve an accuracy of more than

90% for the BANNS, the number of backtracks was chosen based on the dimension-

ality of the descriptor. The number of backtracks in this design is much lower than

that on a single KD-tree, since a large number of backtracks are pruned during the

synchronization among multiple KD-trees.

Next, we study the relation between the required search accuracy and the corre-

sponding minimum number of backtracks. Plots in Figure 5.12 present the minimum

number of required backtracks for search accuracy levels of 50%, 60%, 70%, 80% and

90%, for dataset size of 81920, for dimensions 4, 16, 64, 256 and 512. As expected for

the higher dimensions the rate of increase in number of backtracks with the accuracy

is significantly higher.

5.6.2.4 Effect of the Number of Nearest Neighbors of Single Query Point

(P )

In all experiments so far, a value of P = 4 has been assumed. To study the effect

of number of nearest neighbor points, we evaluated the runtime performance of the

P -BANNS in a range of P values for several 256-dimensional datasets. From the

plots in Figure 5.13 the runtime of the algorithm first increases linearly with P , and

tends to saturate beyond a certain point. This is due to the effectiveness of sliding
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Figure 5.11: Runtime of parallel P -BANNS (P = 4) versus the number of
backtracks for different dimensionality with dataset size S = 81920

Figure 5.12: Minimum number of backtracks versus the accuracy for five
different dimensionality for dataset size of S = 81920 and P = 4
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Figure 5.13: Runtime of the parallel P -BANNS versus the value of P for
a 256-dimensional KD-tree with several datasets S.

window for P -BANNS on the forest of KD-tree for larger values of P .

5.6.2.5 Effect of Global Synchronization to the Number of Backtracks

To study the impact of global synchronization to the number of backtracks in the

forest of KD-trees, we design two sets of experiments. In the first experiment set

each single KD-tree is constructed with the whole searchable dataset containing N

points. We perform M = N queries on each single KD-tree. In the second experiment

set, each single KD-tree is constructed with the N/16 searchable points. We again

perform M = N queries on each single KD-tree. In each experiment, we execute two

tests, one with and one without the global synchronization enabled. In each test,
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we set N to 81920, with two different irrationalities (d = 256 and d = 512). Table

5.3 present the results of the experiments. When the size of each KD-tree is set to

N/16, the number of backtracks is reduced by 46% and 51%, respectively, for 256

and 512-dimensional datasets when the synchronization across the KD-trees in the

forest is enabled. For KD-tree size of N the corresponding reductions in the number

of backtracks are 74% and 76%, respectively, for 256 and 512-dimensional datasets.

Table 5.3
Effect of global synchronization (N = 81920) on the forest of KD-tree

Test Test Scenario Backtrack Num
Case Tree Size Query Size Global Sync d=256 d=512

I N/16 N without 435 595
II N/16 N with 235 290

III N N without 1400 1700
IV N N with 365 410

5.6.3 Evaluation of the Sliding Windows

Next, we evaluate the speed performance improvement of the sliding windows for

BANNS on buffered KD-tree forest, with priority queue on GPU. For evaluation we

used the datasets of dimensions 256 and 512, with the number of the points ranging

from 2, 560 to 100, 900. The runtimes of the parallel BANNS (P = 4) with and with-

out sliding window are presented in Table 5.4. Compared with the parallel BANNS

on the GPU cluster without the sliding window, the novel parallel BANNS on the

GPU cluster can improve the runtime performance by up to 38% while maintaining
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the same accuracy.

Table 5.4
Sliding window runtime performance (P = 4) evaluation

dataset W/O SW (ms) W/ SW (ms) Improvement
size d=256 d=512 d=256 d=512 d=256 d=512

2560 1841 3317 1779 3146 3.5% 5.4%
5120 2463 4899 2268 4434 8.6% 10.5%
10240 3234 6035 2875 5279 12.5% 14.3%
20480 4412 6989 3856 5911 14.4% 18.2%
40960 5409 8995 4597 7423 17.7% 21.2%
81920 6682 12982 5651 9964 18.2% 30.3%
100900 8354 15993 6846 11532 22.0% 38.7%

5.6.4 Experiments on the SHOT Matching

To verify the performance of the massively parallel high-dimensional construction

of the forest of the KD-trees and the BANNS, on another real world application,

we conducted a series of matching experiments on nine real point cloud datasets

[55]. The sets chosen include six 3D point cloud models and three scenes, commonly

used in computer graphics and computer vision. The sets are shown in Table 5.5. All

models and scenes are available online for download [55]. For each point cloud dataset,

we first sampled out the key points and then computed SHOT local descriptors for

each key point. The SHOT as a novel 3D object local descriptor can achieve a good

balance between descriptiveness and robustness. The dimensionality of regular SHOT
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descriptor is 320 [59] [60]. Next, we constructed a forest of KD-trees with those 320-

dimensional descriptors and then search for P = 4 nearest neighbors for each key

point on the KD-tree. In other words, the query descriptor sets are the same as the

descriptor set for the KD-tree construction (Q = S). The results are presented in

Table 5.5, where the parameter Nkey denotes the number of key points. Further,

parameters Tccnst and Tgcnst denote runtimes of the parallel construction of the forest

of KD-trees on the CPU cluster and its parallel counterpart on the GPU cluster.

Similarly, Tcsrch and Tgsrch denote the runtimes of the parallel BANNS on the CPU

cluster and parallel equivalent on GPU cluster. Parameters Scnst depicts the speedup

of the parallel construction of the forest of KD-trees on the GPU cluster over the

parallel counterpart on the CPU cluster. Also, Ssrch demonstrates the speedup of the

parallel BANNS on the GPU cluster over the parallel equivalent on the CPU cluster.

As seen, the maximum speedup of the parallel construction of the forest of KD-trees

on the GPU cluster reaches to 2.4. The speedup of the BANNS reaches to 62.

5.7 Conclusion

This chapter presented the design of high performance parallel construction of the ran-

domized forest of KD-trees and the BANNS on the GPU cluster for high-dimensional
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Table 5.5
Matching runtime (in ms) and speedup of the parallel algorithm over the

serial algorithm

Model/Scene Dataset Nkey Tccnst Tcsrch Tgcnst Tgsrch Scnst Ssrch

Milk Box Model 13704 53 22146 74 5133 0.72 4.31
Office Chair Model 18715 81 41793 83 6042 0.98 6.92
Stanford Bunny Model 20446 89 43428 98 5927 0.91 7.33
Chicken Model 85693 368 523147 153 10132 2.41 51.63
Stanford Dragon Model 80047 312 440045 136 9863 2.29 44.62
Happy Buddha Model 99614 413 703953 174 12345 2.37 57.02

Office Scene 89031 387 597681 158 10571 2.45 56.54
Table Scene 66053 247 180179 125 8019 1.98 22.47
Five people Scene 91143 394 682391 165 10984 2.39 62.13

image descriptor matching. The proposed algorithms are of comparable quality to

the traditional sequential counterparts on CPU, while achieve high speedup perfor-

mance in a wide range of dimensions. The massively parallel algorithms presented

in this chapter were tested on real-world image descriptors, with varying dimension-

ality, as well as classical point cloud descriptors in real applications. The speedups

of the construction of the forest of KD-trees and the BANNS reach up to 2.5 and

61.7 respectively with real-world image descriptors with varying dimensionality. For

the real application with SHOT descriptor dataset, the corresponding speedups raise

up to 2.4 and 62. The implementations in this work will benefit real-time 3D im-

age registration in low-dimensional spaces, and image descriptor matching employing

high-dimensional forest of KD-trees.
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Chapter 6

Conclusion

In this chapter, we summarize the major contributions of the designed algorithms,

discuss the constrains and limitations of this work, and present some suggestions for

the future work.

6.1 Completed Work

This dissertation presented a set of highly efficient algorithms for 3D object recogni-

tion on heterogeneous parallel computing platforms. To reduce descriptor computing,

indexing and matching runtime while maintaining comparable quality, the problem

is tackled in a novel mix of parallel and distributed computing arrangement. A set
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of heterogeneous parallel and distributed algorithms on the MPA and cluster are

designed and developed in this work.

1. We investigated the development of suitable massively parallel algorithms on the

GPU for computation of high density and large-scale 3D object local descriptors.

We designed two alternative parallel algorithms (G-SHOT); one exact, and one

approximate, on the GPU to speed up the original serial SHOT. Experimental

results show both algorithms exhibit outstanding speed performance.

2. We presented a massively parallel ANNS on the KD-tree on the modern MPA.

The proposed algorithm is of comparable quality to the traditional sequential

counterpart on the CPU. Moreover, it achieves a high speedup factor when ap-

plied to high-dimensional real-world image descriptor datasets. The algorithm

is also studied for factors that impact its performance to obtain the optimal

runtime configurations for various datasets. The implementation in this work

will potentially benefit real-time image descriptor matching in high dimensions.

3. We presented a parallel KD-tree construction for image descriptor indexing and

a parallel BANNS on the MPA. To improve the runtime performance of the

BANNS, we propose an efficient sliding window for a parallel BANNS on the

KD-tree to mitigate the high cost of global memory access. When applied to

high-dimensional real-world image descriptor datasets, the proposed KD-tree

construction is of comparable quality to the traditional sequential counterpart
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on the CPU while outperforming its serial counterpart on the CPU by a signif-

icant speedup factor.

4. We presented parallel and distributed algorithms for the construction of the

forest of randomized KD-trees and the BANNS on a cluster equipped with the

MPA devices of the GPU. In order to utilize the GPU cluster platform more

fully, we designed a distributed randomized KD-tree forest for the BANNS to

alleviate the backtracking cost on a single KD-tree. Additionally, the algorithms

are studied for the performance impact factors to obtain the optimal runtime

configurations for various datasets.

6.2 Constraints and Limitations

Even though a set of high efficient parallel and distributed algorithms are explored

in this works, there are some constraints and limitations in the algorithms and the

heterogeneous computing platforms. In this section, we will discuss the SM occupancy

of the GPU, memory utilization on the GPU and the communication cost of parallel

machines on the cluster.
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6.2.1 SM Occupancy

SM Occupancy is defined as the ratio of active warps on an SM to the maximum num-

ber of active warps supported by the SM. Low occupancy results in poor instruction

issue efficiency, because there are not enough eligible warps to hide latency between

dependent instructions. Ideally, we like the number of active SM warps to be equal

to the maximum number defined by CUDA compute capability. However, due to

hardware resource limitation (shared memory, and register) and the organization of

thread blocks (number of threads per block), it cannot reach its peak value. When

occupancy is at a sufficient level to hide latency, increasing it further may degrade

performance due to the reduction in per thread available resource.

6.2.1.1 SM Occupancy of Parallel Descriptor Computing

The SM occupancies of the two parallel G-SHOT descriptors on GPU are 33% and

42% respectively. These relative lower occupancies are due to intrinsic complexity

of the workload for each single thread on SM and SM hardware limitation. The

maximum register per thread is 48 on GTX 470 with compute capability 2.0. The

the LRF and descriptor computing kernels involve a large number of register which

triggers the register spilling observed in our profiling results. The major complexity
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of these two kernels come from the EVD computing and SHOT computing complexity

for each thread on a wrap. To reduce the register spilling, we can enlarge the cache

at the expense of reducing the size of share memory. In this case, only increasing the

number of single processor (SP) in SM cannot increase the speedup. Enlarging the

maximum number of concurrent blocks per SM and the maximum number of register

per thread can, however, help with the speedup.

6.2.1.2 SM Occupancy of Parallel KD-Tree Construction

There are two major categories of CUDA kernels for the parallel KD-tree construction

on the GPU. The kernels in the first category perform expansion or reduction. The

number of threads doubles or halvers with each iteration. In this category, the SM

occupancy is higher (above 60%) when the number of the invoked thread is more

than hundreds. In the second category the number of thread remains unchanged

with the iterations. In this category, the SM occupancy is higher (above 55%). On

the whole, the occupancies of kernels in these two categories are high. However, from

our observation, the speedup of the parallel KD-tree construction is not remarkable.

There are a few major limitations leading to the lower speedup will be discussed in

6.2.4.
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6.2.1.3 SM Occupancy of the Parallel ANNS

The SM occupancy of the ANNS is 44% in the experiment with 100900 256-

dimensional descriptors. The maximum register per thread is 64 on the GTX 680

GPU, the platform used for matching test and data profiling. The higher occupancy

for the ANNS with respect to parallel SHOT descriptor is due to two factors. First,

the available register per thread on GTX 680 is higher than that of the GTX 570.

Second, the workload and its complexity per thread of the ANNS is lower than that

of the parallel SHOT descriptor.

6.2.1.4 SM Occupancy of the Parallel BANNS

As for the SM occupancy of the BANNS, with lower tree height and less branches in

the BANNS, the SM occupancy of forward search kernel is 49%. The SM occupancy

of the local NNS search kernel and the brute force search kernel are 58% and 64%

respectively. The SM occupancies of the BANNS kernels are higher than that of

the regular ANNS because the BANNS parallel algorithms break the word load of

single thread in the ANNS into thread stages with three different kernels. Even

thought the occupancies are improved, more synchronization and kernel launch cost

are introduced.
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6.2.2 Memory Utilization

The memory utilization is high in the design of descriptor computing, indexing and

matching. The high memory consumption stems from three factors. First, the original

input datasets are with large data size and high dimensionality. Also, due to big

data size, the shared memory on the single SM is not large enough to hold the

intermediate and temporal variables used in the algorithm. So, we need to use the

global memory for these variables. Moreover, to improve the speed performance of

the parallel algorithms, we sacrifice the space complexity for time complexity in the

design. However, the standard memory configuration range from 2 GB to 4 GB.

The GTX 570 and GTX 680 are with 2 GB and 4 GB DDR5 memory respectively

in our experiment. In the descriptor computing and matching stages studied in this

work, the parallel KD-tree construction on the GPU consumes the maximum global

memory, which can exceed the maximum global memory size. For this reason, the

dimensionality upper bound is set to 512 in our experiment for all the test cases.

6.2.3 Communication Cost

The parallel and distributed BANNS algorithms on the GPU cluster involves the

inter-GPUs communications. There are two general cases of the communications.
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One is the communication among GPUs within single cluster node via peer-to-peer

(P2P) or shared host memory. The other is the communication among GPUs across

the cluster nodes via host-side message passing such as the MPI. The MPI related

communications in this algorithm including the launching of MPI, broadcasting of

data, scattering of data, and synchronization which result in large communication

overhead. There are 16 GPUs on the cluster we used. Ideally, the speedup bene-

fitting from the cluster can be 16 if there is no communication cost. However, we

achieve speedup of about 8 with respect to the parallel BANNS on single GPU, in the

experiment with 1009000 256-dimensional descriptors. We only utilized about 50%

of the cluster computing capability due to communication cost and memory transfer

cost.

6.2.4 Other Constraints

There are still other factors restricting the speed performance of the parallel algo-

rithms we studied in the work, such as the branch conditions, kernel launch cost and

synchronization cost on the GPU.

From our observation, even though the occupancy of the KD-tree construction kernels

are hight, but the speedup of the parallel KD-tree construction is not remarkable.
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There are a few major limitations leading to the lower speedup. First, the KD-

tree construction works in the BFS fashion. In this scenario, when the number of

involved threads shrinks to a lower number, the kernels work with low efficiency.

Second, a lot of coordinations are need on the host (the CPU). Thirds, the number

of kernel launches is extremely high. The cost to launch kernel is expensive, since it

involve global synchronization among all the threads. The frequent kernel launches

will limit the speedup improvement irrespective of the number of the SPs in the SM

architecture.

Moreover, the parallel NNS and it variants in this work involve branching during

the forward traversal. Even though we design quite a few strategies to mitigate the

impact of branch divergency on the GPU, it still can not be avoided completely.

Branch divergence reduce the parallel performance due to lower utilization of the

execution units, since the branches will sequentialized during the execution. The

branch conditions the algorithm threshold the further performance improvement.

6.3 Future Work

Heterogeneous computing architecture with higher number of cores and more friendly

developing ecosystem are likely to remain as the dominant computing platform in

the future. However, there are still some challenges and constraints to develop high
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efficient and scalable parallel algorithms for the point cloud base 3D object recognition

algorithm. A few possible future research directions regarding high efficient 3D object

recognition are proposed in this subsection.

6.3.1 Data Compression

As we see in the preceding session, memory consumption is one of the key constraints

to the scalability of the parallel algorithms. Recently, there have been a few attempts

at compacting 2D image descriptors to allow for faster matching while retaining out-

standing recognition precision. These proposed techniques relies on quantization

[130], [131] and dimensionality reduction [132], [133]. Inspired by these proposals,

the 3D image descriptor data set can be quantized or compressed to reduce the mem-

ory consumption in the future work. For the SHOT descriptor, we use double data

type with 64 bits to store the values for each of the 320 dimensions. There are ten

bins in one of the 32 divisions in the sphere of each key point. The value of each bin,

the cosine of key point normal and the LRF, ranges from −1 to 1. So, we can only

use 4 bits to quantize each bin value. In this way, the memory size can be reduce by

93.75%. For the synthetic descriptor with varying dimensionality, we use float data

type with 32 bits for each dimension. Since the value of each dimension data ranges

from 0 to 255. We only need 8 bits to quantize each bin value. In this way, the

memory size can be reduce by 75%.

190



6.3.2 Binarization and Hashing

Data compression can mitigate the memory problem, but it will introduce the ex-

tra padding and extracting operations during the computing. The works in [134]

[135] [136] [137] [138] took advantage of the binary code and hashing for the high

dimensional descriptors construction and matching. The binarization is performed

by multiplying the regular high dimensional descriptors by a projection matrix, map-

ping the original data into binary string. Each bit of the binary descriptor is used

to represent the feature of descriptor, and the distance of two descriptors are mea-

sured through Hamming metric. The index construction and matching are performed

through hash table construction and hash searching respectively. Both of them can

be performed efficiently since the time complexity is reduced greatly with hash table.

The challenges lie on the regular descriptor projection approaches and hashing func-

tions selection. Improper projection and hashing leads to low matching precision.

Enlightened by these proposals the challenges in this work, in the future, we can

further explore effective binary representation of the SHOT descriptor on the GPU

without descriptiveness loss. Also, instead of using with the Euclidean metric, Han-

ming distance can be used to compute the similarity of two descriptors. Moreover,

for the descriptor indexing and matching, we can use hash table in place of the space

partition like KD-tree. Since the single NNS on the hash table can also be processed

independently in the batch query, we can further explore the high efficient parallel

191



hash table based NNS on the GPU.
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[28] T. Schlömer, B. Poppinga, N. Henze, and S. Boll, “Gesture recognition with a

wii controller,” in Proceedings of the 2nd international conference on Tangible

and embedded interaction, pp. 11–14, ACM, 2008.

[29] L. A. Alexandre, “3d descriptors for object and category recognition: a com-

parative evaluation,” in Workshop on Color-Depth Camera Fusion in Robotics

197



at the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), Vilamoura, Portugal, vol. 1, p. 7, 2012.

[30] S. Salti, F. Tombari, R. Spezialetti, and L. Di Stefano, “Learning a descriptor-

specific 3d keypoint detector,” in Proceedings of the IEEE International Con-

ference on Computer Vision, pp. 2318–2326, 2015.

[31] S. Filipe and L. A. Alexandre, “A comparative evaluation of 3d keypoint detec-

tors in a rgb-d object dataset,” in Computer Vision Theory and Applications

(VISAPP), 2014 International Conference on, vol. 1, pp. 476–483, IEEE, 2014.

[32] S. Filipe and L. A. Alexandre, “A comparative evaluation of 3d keypoint detec-

tors,” in 9th Conference on Telecommunications, Conftele, pp. 145–148, 2013.

[33] F. Tombari, S. Salti, and L. Di Stefano, “Performance evaluation of 3d keypoint

detectors,” International Journal of Computer Vision, vol. 102, no. 1-3, pp. 198–

220, 2013.

[34] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, J. Wan, and J. Zhang, “Performance

evaluation of 3d local feature descriptors,” in Asian Conference on Computer

Vision, pp. 178–194, Springer, 2014.

[35] A. Zeng, S. Song, M. Niessner, M. Fisher, J. Xiao, and T. Funkhouser,

“3dmatch: Learning local geometric descriptors from rgb-d reconstructions,”

arXiv preprint arXiv:1603.08182, 2016.

198



[36] D. Gragnaniello, G. Poggi, C. Sansone, and L. Verdoliva, “An investigation

of local descriptors for biometric spoofing detection,” IEEE transactions on

information forensics and security, vol. 10, no. 4, pp. 849–863, 2015.

[37] S. Berretti, N. Werghi, A. Del Bimbo, and P. Pala, “Matching 3d face scans

using interest points and local histogram descriptors,” Computers & Graphics,

vol. 37, no. 5, pp. 509–525, 2013.

[38] F. Tombari, S. Salti, and L. D. Stefano, “Unique signatures of histograms for lo-

cal surface description,” in European Conference on Computer Vision (ECCV),

(Hersonissos, Greece), September 5-11 2010.

[39] Y. Ke and R. Sukthankar, “Pca-sift: A more distinctive representation for local

image descriptors,” in Computer Vision and Pattern Recognition, 2004. CVPR

2004. Proceedings of the 2004 IEEE Computer Society Conference on, vol. 2,

p. II, IEEE, 2004.

[40] Y. Guo, F. A. Sohel, M. Bennamoun, M. Lu, and J. Wan, “Trisi: A distinctive

local surface descriptor for 3d modeling and object recognition.,” in GRAPP/I-

VAPP, pp. 86–93, 2013.

[41] F. Stein and G. MEDIONI, “Structual indexing: Efficient 3d object recogni-

tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,, vol. 5,

pp. 1645 –1650, July 1992.

199



[42] C. Chua and R. Jarvis, “Point signatures: A new representation for 3d object

recognition,” International Journal of Computer Vision, vol. 25, pp. 63–85,

October 1997.

[43] Y. Sun and M. Abidi, “Surface matching by 3d points fingerprint.,” in IEEE

International Conference on Computer Vision (ICCV), vol. 2, pp. 263–268,

2001.

[44] J. Novatnack and K. Nishino, “Scale-dependent/invariant local 3d shape de-

scriptors for fully automatic registration of multiple sets of range images,” in

European Conference on Computer Vision (ECCV), p. Part III, 2008.

[45] A. Johnson and M. Hebert, “Using spin images for effcient object recognition in

cluttered 3d scenes,” in IEEE Transactions on Pattern Analysis and Machine

Intelligence, pp. 433–449, 1999.

[46] H. Chen and B. Bhanu, “3d free-form object recognition in range images using

local surface patches,” in Pattern Recognition Letters 28, pp. 1252–1262, 2007.

[47] J. Koenderink and A. Doorn, “Surface shape and curvature scales.,” in Image

Vision Computing 8, pp. 557–565, 1992.

[48] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik, “Recognizing objects

in range data using regional point descriptors,” in European Conference on

Computer Vision (EEVC), 2004.

200



[49] Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3d object recogni-

tion.,” in IEEE 12th International Conference on Computer Vision Workshops

(ICCV Workshops), 2009.

[50] F. Tombari, S. Salti, and L. D. Stefano, “A combined texture-shape descriptor

for enhanced 3d feature matching,” in IEEE International Conference on Image

Processing (ICIP), (Brussels, Belgium), September 11-14 2011.

[51] T. Brox and J. Malik, “Large displacement optical flow: descriptor matching

in variational motion estimation,” IEEE transactions on pattern analysis and

machine intelligence, vol. 33, no. 3, pp. 500–513, 2011.

[52] F. Bellavia, D. Tegolo, and C. Valenti, “Keypoint descriptor matching with

context-based orientation estimation,” Image and Vision Computing, vol. 32,

no. 9, pp. 559–567, 2014.

[53] E. Shechtman and M. Irani, “Matching local self-similarities across images and

videos,” in Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE

Conference on, pp. 1–8, IEEE, 2007.

[54] N. S. Altman, “An introduction to kernel and nearest neighbors nonparametric

regression,” The American Statistician, vol. 46, pp. 175–185, August 1992.

[55] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in

IEEE International Conference on Robotics and Automation (ICRA), (Shang-

hai, China), May 9-13 2011.

201



[56] K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time kd-tree construction on

graphics hardware,” ACM Transactions on Graphics, pp. 126–137, 2008.

[57] J. Kim, W. Jeong, and B. Nam, “Exploiting massive parallelism for indexing

multi-dimensional datasets on the GPU,” IEEE Transactions on Parallel and

Distributed Systems, vol. 26, pp. 2258–2271, August 2015.

[58] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-

national journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[59] F. Tombari, S. Salti, and L. D. Stefano, “Unique signatures of histograms for

local surface description,” in 11th European Conference on Computer Vision

(ECCV), (Hersonissos, Greece), September 5-11 2010.

[60] F. Tombari, S. Salti, and L. D. Stefano, “A combined texture-shape descriptor

for enhanced 3D feature matching,” in IEEE International Conference on Image

Processing (ICIP), (Brussels, Belgium), pp. 809–812, September 2011.

[61] J. Sivic and A. Zisserman, “Video google: a text retrieval approach to object

matching in videos,” in The Ninth IEEE International Conference on Computer

Vision, (Nice, France), pp. 1470–1477, October 2003.

[62] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A

large-scale hierarchical image database,” in IEEE Computer Vision and Pattern

Recognition (CVPR), (Miami, FL), pp. 248 – 255, June 2009.

202



[63] L.-J. Li, H. Su, Y. Lim, and L. Fei-Fei, “Object bank: An object-level im-

age representation for high-level visual recognition,” International Journal of

Computer Vision (IJCV), vol. 107, pp. 20–39, September 2014.

[64] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for high dimen-

sional data,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 36, pp. 2227–2240, November 2014.

[65] R. Horaud and T. Skordas, “Stereo correspondence through feature grouping

and maximal cliques,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 11, no. 11, pp. 1168–1180, 1989.

[66] F. Schaffalitzky and A. Zisserman, “Geometric grouping of repeated elements

within images,” Shape, contour and grouping in computer vision, pp. 81–81,

1999.

[67] V. M. Govindu, “A tensor decomposition for geometric grouping and segmenta-

tion,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, vol. 1, pp. 1150–1157, IEEE, 2005.

[68] J.-C. Bazin, H. Li, I. S. Kweon, C. Demonceaux, P. Vasseur, and K. Ikeuchi,

“A branch-and-bound approach to correspondence and grouping problems,”

IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 7,

pp. 1565–1576, 2013.

203



[69] A. Aldoma, Z.-C. Marton, F. Tombari, W. Wohlkinger, C. Potthast, B. Zeisl,

R. B. Rusu, S. Gedikli, and M. Vincze, “Tutorial: Point cloud library: Three-

dimensional object recognition and 6 dof pose estimation,” IEEE Robotics &

Automation Magazine, vol. 19, no. 3, pp. 80–91, 2012.

[70] K.-J. Yoon and I. S. Kweon, “Adaptive support-weight approach for correspon-

dence search,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 28, no. 4, pp. 650–656, 2006.

[71] F. Schaffalitzky and A. Zisserman, “Geometric grouping of repeated elements

within images,” Shape, contour and grouping in computer vision, pp. 81–81,

1999.

[72] R. M. Haralick, “Computer vision theory: The lack thereof,” Computer Vision,

Graphics, and Image Processing, vol. 36, no. 2-3, pp. 372–386, 1986.

[73] A. Aldoma, F. Tombari, L. Di Stefano, and M. Vincze, “A global hypotheses

verification method for 3d object recognition,” Computer Vision–ECCV 2012,

pp. 511–524, 2012.

[74] A. Aldoma, F. Tombari, J. Prankl, A. Richtsfeld, L. Di Stefano, and M. Vincze,

“Multimodal cue integration through hypotheses verification for rgb-d object

recognition and 6dof pose estimation,” in Robotics and Automation (ICRA),

2013 IEEE International Conference on, pp. 2104–2111, IEEE, 2013.

204



[75] S. Choi, T. Kim, andW. Yu, “Performance evaluation of ransac family,” Journal

of Computer Vision, vol. 24, no. 3, pp. 271–300, 1997.

[76] G. D. Sullivan, K. D. Baker, A. D. Worrall, C. Attwood, and P. Remagnino,

“Model-based vehicle detection and classification using orthographic approxi-

mations,” Image and vision computing, vol. 15, no. 8, pp. 649–54, 1997.

[77] O. Chum and J. Matas, “Matching with prosac-progressive sample consensus,”

in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Com-

puter Society Conference on, vol. 1, pp. 220–226, IEEE, 2005.

[78] A. A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C.-L. Wang, “Hetero-

geneous computing: Challenges and opportunities,” Computer, vol. 26, no. 6,

pp. 18–27, 1993.

[79] Q. Wu, Y. Ha, A. Kumar, S. Luo, A. Li, and S. Mohamed, “A heterogeneous

platform with gpu and fpga for power efficient high performance computing,” in

Integrated Circuits (ISIC), 2014 14th International Symposium on, pp. 220–223,

IEEE, 2014.

[80] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous computing

techniques,” ACM Computing Surveys (CSUR), vol. 47, no. 4, p. 69, 2015.

[81] L. Hu, S. Nooshabadi, and T. Mladenov, “Implementation and evaluation of

raptor code on gpu,” in Consumer Electronics (ISCE), 2012 IEEE 16th Inter-

national Symposium on, pp. 1–6, IEEE, 2012.

205



[82] L. Hu, S. Nooshabadi, and T. Mladenov, “Forward error correction with rap-

torq code on gpu,” in Circuits and Systems (ISCAS), 2013 IEEE International

Symposium on, pp. 281–284, IEEE, 2013.

[83] L. Hu, S. Nooshabadi, and T. Mladenov, “Forward error correction with raptor

gf (2) and gf (256) codes on gpu,” IEEE Transactions on Consumer Electronics,

vol. 59, no. 1, pp. 273–280, 2013.

[84] M. J. Schulte, M. Ignatowski, G. H. Loh, B. M. Beckmann, W. C. Brant-

ley, S. Gurumurthi, N. Jayasena, I. Paul, S. K. Reinhardt, and G. Rodgers,

“Achieving exascale capabilities through heterogeneous computing,” IEEE Mi-

cro, vol. 35, no. 4, pp. 26–36, 2015.

[85] D. R. Kaeli, P. Mistry, D. Schaa, and D. P. Zhang, Heterogeneous Computing

with OpenCL 2.0. Morgan Kaufmann, 2015.

[86] J. Waltz, “Performance of a three-dimensional unstructured mesh compressible

flow solver on nvidia fermi-class graphics processing unit hardware,” Interna-

tional Journal for Numerical Methods in Fluids, vol. 72, no. 2, pp. 259–268,

2013.

[87] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt,

and V. J. Reddi, “Gpuwattch: enabling energy optimizations in gpgpus,” in

ACM SIGARCH Computer Architecture News, vol. 41, pp. 487–498, ACM,

2013.

206



[88] J. Lai and A. Seznec, “Performance upper bound analysis and optimization

of sgemm on fermi and kepler gpus,” in Code Generation and Optimization

(CGO), 2013 IEEE/ACM International Symposium on, pp. 1–10, IEEE, 2013.

[89] J. S. Beis and D. G. Lowe, “Shape indexing using approximate nearest-

neighbour search in high-dimensional spaces,” in IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), (Puerto Rico), pp. 1000–1006,

June 1997.

[90] J. L. Bentley, “Multidimensional binary search trees used for associative search-

ing,” Communications of the ACM, vol. 18, pp. 509–517, Sept. 1975.

[91] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image descriptor

matching,” in Computer Vision and Pattern Recognition, 2008. CVPR 2008.

IEEE Conference on, pp. 1–8, IEEE, 2008.

[92] M. J. Harris, G. Coombe, T. Scheuermann, and A. Lastra, “Physically-based

visual simulation on graphics hardware,” in Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware, pp. 109–118,

Eurographics Association, 2002.

[93] J. Fung and S. Mann, “Openvidia: parallel gpu computer vision,” in Proceedings

of the 13th annual ACM international conference on Multimedia, pp. 849–852,

ACM, 2005.

207



[94] Y. Kitaaki, H. Okuda, H. Kage, and K. Sumi, “High speed 3-d registration

using gpu,” in SICE Annual Conference, 2008, pp. 3055–3059, IEEE, 2008.
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and T. J. Purcell, “A survey of general-purpose computation on graphics hard-

ware,” in Computer graphics forum, vol. 26, pp. 80–113, Wiley Online Library,

2007.

216



[153] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An op-

timal algorithm for approximate nearest neighbor searching fixed dimensions,”

Journal of the ACM (JACM), vol. 45, no. 6, pp. 891–923, 1998.

[154] J. S. Beis and D. G. Lowe, “Shape indexing using approximate nearest-neighbor

search in high dimensional spaces,” in CVPR, pp. 1000–1006, 1997.

[155] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image descriptor

matching,” in CVPR, 2008.

[156] K. Fukunaga and P. Narendra, “A branch and bound algorithm for computing

k-nearest neighbors.,” in IEEE Transaction on Copmuter, pp. 750–753, 1975.

[157] S. Brin, “Near neighbor search in large metric space.,” in VLDB, pp. 574–784,

1995.

[158] T. Liu, A. W. Moore, K. Yang, and A. G. Gray, “An investigation of practical

approximate nearest neighbor algorithms,” in Advances in neural information

processing systems, pp. 825–832, 2005.

[159] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary tree,” in

CVPR, pp. 2161–2168, 2006.

[160] M. K. Leibe, B. and B. Schiele, “Efcient clustering and matching for object

class recognition,” in BMVC, 2006.

217



[161] K. Mikolajczyk and J. Matas, “Improving descriptors for fast tree matching by

optimal linear projection,” in ICCV, pp. 1–8, 2007.

[162] A. E. Johnson and M. Hebert, “Surface matching for object recognition in

complex 3-d scenes,” in Image and Vision Computing, 1998.

[163] H. Chen and B. Bhanu, “3d free-form object recognition in range images us-

ing local surface patches,” in International Conference on Pattern Recognition

(ICPR), 2004.

[164] B. Horn, “Closed-form solution of absolute orientation using unit quaternions.,”

in Journal of Optical Society of America., pp. 629–642, 1987.

[165] P. Besl and N. McKay, “A method for registration of 3d shapes,” in IEEE

Transaction of Pattern Analysis and Machine Intelligence, pp. 239–256, 1992.

[166] Z. Zhang, “Iterative point matching for registration of free-form curves and

surfaces,” in International Journal of Computer Vision (IJCV), pp. 119–152,

1994.

[167] P. M. Vaidya, “An o(n log n) algorithm for the all-nearest neighbors problem,”

Discrete and Computational Geometry, vol. 4, pp. 101–115, 1989.

[168] B. Bustos, O. Deussen, S. Hiller, and D. Keim, “A graphics hardware acceler-

ated algorithm for nearest neighbor search,” in Proceedings of the 6th Interna-

tional Conference on Computational Science, pp. 196–199, 2006.

218



[169] H. W. Jensen, ed., Realistic image synthesis using photon mapping. A K Peter-

s/CRC Press, 2001.

[170] NVIDIA, “Fermi compute architecture white paper v1.1,”

(http://www.nvidia.com/), 2009.

[171] J. Kim, W. Jeong, and B. Nam, “Parallel multi-dimensional range query pro-

cessing with R-trees on GPU,” Journal of Parallel and Distributed Computing

(JPDC), vol. 73, pp. 1195–1207, August 2013.

[172] H. W. Jensen, ed., Realistic image synthesis using photon mapping. Natick,

MA: A K Peters/CRC Press, 2001.

[173] Y. Manolopoulos, A. Nanopoulos, and Y. Theodoridis, eds., R-Trees: Theory

and Applications. London, UK.: Springer, 2006.

219





Appendix A

Letters of Permission

221



Figure A.1: Permission letter form ISCE 2012

222



Figure A.2: Permission letter form ISCAS 2013

223



Figure A.3: Permission letter form TCE 2013

224



Figure A.4: Permission letter form ICCE 2015

225



Figure A.5: Permission letter form JVCI 2015

226



Figure A.6: Permission letter form ISCAS 2015

227



Figure A.7: Permission letter form ISCAS 2016

228



Figure A.8: Permission letter form JVCI 2017

229


	MASSIVELY PARALLEL ALGORITHMS FOR POINT CLOUD BASED OBJECT RECOGNITION ON HETEROGENEOUS ARCHITECTURE
	Recommended Citation

	linjia_hu_phd_disseration_v8.pdf

