
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2017 

Guaranteed Rendezvous for Cognitive Radio Networks Based on Guaranteed Rendezvous for Cognitive Radio Networks Based on 

Cycle Length Cycle Length 

Li Gou 
Michigan Technological University, lgou@mtu.edu 

Copyright 2017 Li Gou 

Recommended Citation Recommended Citation 
Gou, Li, "Guaranteed Rendezvous for Cognitive Radio Networks Based on Cycle Length", Open Access 
Master's Report, Michigan Technological University, 2017. 
https://doi.org/10.37099/mtu.dc.etdr/505 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Digital Communications and Networking Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/505
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F505&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.mtu.edu%2Fetdr%2F505&utm_medium=PDF&utm_campaign=PDFCoverPages


GUARANTEED RENDEZVOUS FOR COGNITIVE RADIO NETWORKS

BASED ON CYCLE LENGTH

By

Li Gou

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2017

© 2017 Li Gou





This report has been approved in partial fulfillment of the requirements for the Degree

of MASTER OF SCIENCE in Computer Science.

Department of Computer Science

Report Co-advisor: Dr. Min Song

Report Co-advisor: Dr. Xiaohua Xu

Committee Member: Dr. Bo Chen

Department Chair: Dr. Min Song





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 System Model and Problem Formulation . . . . . . . . . . . . . . . 7

2.1 Rendezvous Problem . . . . . . . . . . . . . . . . . . . . . . 7

2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 11

3 Cycle Length based Rendezvous Algorithm . . . . . . . . . . . . . 13

3.1 The CLR Algorithm . . . . . . . . . . . . . . . . . . . . . . 13

v



3.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 19

4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Verification on the Theoretical Results . . . . . . . . . . . . 24

4.3 The Guarantee of Rendezvous . . . . . . . . . . . . . . . . . 28

4.4 Expected Time to Rendezvous . . . . . . . . . . . . . . . . . 29

4.5 Channel Load . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



List of Figures

2.1 Illustration of the rendezvous process with available channels of nodes:

Ci = {1, 2, 3, 5, 8, 9}, Cj = {3, 4, 6, 8, 10, 12, 13}. . . . . . . . . . . . 8

2.2 Rendezvous processes on synchronous and asynchronous scenarios with

Ci = {3, 5, 6, 7, 8}, Cj = {1, 2, 3}. a) Time skew δ = 0. b) Time skew

δ = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

(a) Synchronous situation, δ = 0. . . . . . . . . . . . . . . . . . . 12

(b) Asynchronous situation. . . . . . . . . . . . . . . . . . . . . . 12

3.1 Illustration on generating the two cycle lengths and the corresponding

CH sequences of each node. (a) For node i, Ci = {1, 2, 3, 6, 8, 9}, thus

T 0
i = 7, T 1

i = 11. (b) For node j, Cj = {2, 4, 5, 7, 9, 10, 11}, thus

T 0
j = 7, T 1

j = 11. The channels in shaded slots are randomly selected

from Ci or Cj. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

(a) The two CH sequences of node i. . . . . . . . . . . . . . . . . 15

(b) The two CH sequences of node j. . . . . . . . . . . . . . . . . 15

vii



3.2 Illustration of the rendezvous process when δ = 0 and T 0
i = 3, T 1

i =

5;T 0
j = 3, T 1

j = 5. (a) When Ti 6= Tj, the rendezvous is guaranteed

within Ti ∗ Tj = 15 time slots. (b) When Ti = Tj = 3, they may not

rendezvous within Ti ∗ Tc time slots (deadlock situation). At time slot

t = T 0
max, node i with b1i = 1 changes its cycle length to Ti = T 1

i = 5,

while node j with b1j = 1 changes to Tj = T 1
j = 5. The two nodes may

still not rendezvous within this rendezvous period (T = T 0
i ∗ T

1
i = 15).

Continue checking on the second bit at t = T 0
max + T 1

max: node i with

b2i = 1 changes its cycle length to Ti = T 1
i = 5, while node j with

b2j = 0 changes to Tj = T 0
j = 3. The rendezvous between them will be

guaranteed during the following 15 time slots. . . . . . . . . . . . . 17

(a) Ti and Tj are coprime, Ti 6= Tj. . . . . . . . . . . . . . . . . . 17

(b) Ti and Tj are coprime, Ti = Tj. . . . . . . . . . . . . . . . . . 17

4.1 Theoretical and simulated MTTR when Ti and Tj are coprime under

varying time skew and different pair number of available channels of

nodes i and j. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

(a) 10 < |Ci|, |Cj| < 20 . . . . . . . . . . . . . . . . . . . . . . . . 25

(b) 20 < |Ci|, |Cj| < 30 . . . . . . . . . . . . . . . . . . . . . . . . 25

(c) 30 < |Ci|, |Cj| < 40 . . . . . . . . . . . . . . . . . . . . . . . . 25

(d) 40 < |Ci|, |Cj| < 50 . . . . . . . . . . . . . . . . . . . . . . . . 25

viii



4.2 Theoretical and simulated MTTR when Ti = Tj under varying time

skew and different pair number of available channels of nodes i and j. 26

(a) 10 < |Ci|, |Cj| < 20 . . . . . . . . . . . . . . . . . . . . . . . . 26

(b) 20 < |Ci|, |Cj| < 30 . . . . . . . . . . . . . . . . . . . . . . . . 26

(c) 30 < |Ci|, |Cj| < 40 . . . . . . . . . . . . . . . . . . . . . . . . 26

(d) 40 < |Ci|, |Cj| < 50 . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Success rate under varying overlapping ratio. . . . . . . . . . . . . . 27

(a) Ti and Tj are coprime . . . . . . . . . . . . . . . . . . . . . . 27

(b) Ti and Tj are not coprime . . . . . . . . . . . . . . . . . . . . 27

4.4 ETTR under varying overlapping ratio (CLR: solid lines; HH: dashed

lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

(a) Ti and Tj are coprime . . . . . . . . . . . . . . . . . . . . . . 29

(b) Ti and Tj are not coprime . . . . . . . . . . . . . . . . . . . . 29

4.5 Channel load distributions when Ti and Tj are coprime. . . . . . . . 32

(a) 10 < |Ci|, |Cj| < 20 . . . . . . . . . . . . . . . . . . . . . . . . 32

(b) 20 < |Ci|, |Cj| < 30 . . . . . . . . . . . . . . . . . . . . . . . . 32

(c) 30 < |Ci|, |Cj| < 40 . . . . . . . . . . . . . . . . . . . . . . . . 32

(d) 40 < |Ci|, |Cj| < 50 . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6 Channel load distributions when Ti and Tj are not coprime. . . . . 33

(a) 10 < |Ci|, |Cj| < 20 . . . . . . . . . . . . . . . . . . . . . . . . 33

(b) 20 < |Ci|, |Cj| < 30 . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



(c) 30 < |Ci|, |Cj| < 40 . . . . . . . . . . . . . . . . . . . . . . . . 33

(d) 40 < |Ci|, |Cj| < 50 . . . . . . . . . . . . . . . . . . . . . . . . 33

x



List of Tables

2.1 NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Min-max degree when Ti and Tj are coprime. . . . . . . . . . . . . . 32

4.2 Min-max degree when Ti and Tj are not coprime. . . . . . . . . . . 33

xi





Preface

This report is written based on the accepted conference paper [1]. The author of this

report Li Gou is the first author of this conference paper, and is in charge of writing

the paper, designing the algorithm, doing the analysis, and performing the simulation

study. The second author Dr. Xiaohua Xu is in charge of improving the paper writing

parts, and providing comments on Li’s algorithm. Dr. Chongqing Zhang gave Li Gou

some comments on the background setting of the rendezvous problem as well as for

the simulations. Dr. Min Song provided many suggestions during the whole process

of writing this paper, and improved the writing of the paper.

This report is written based on paper, but performs more systematic literature review,

and presents more detailed illustration on the rendezvous problem. This report also

gives more explicit solution to the rendezvous problem.

xiii





Acknowledgments

I would like to thank all those who have helped me during my master study period

as well as those who helped me with LATEX.

I appreciate Dr. Song and Dr. Xu, who helped me a lot on how to do research and

write paper. I experienced hard time to get into the right way to do research, during

which Dr. Song and Dr. Xu never forgot to encourage and help me. They guide me to

the right way to read papers, formulate problem, design algorithm, perform analysis

and improve the algorithm. Dr. Song always teaches me to be rigorous and creative

in research, and helps me a lot on how to formulate a good problem, and justifying if

a problem and the solution to the problem is good or not, how to analyze the results,

as well as how to go back to improve the algorithm. I appreciate the help Dr. Xu

gave in guiding me read and analyze newest good papers, as well as improving the

algorithm and writings. With your thorough help I can improve the performance and

efficiency of the algorithm. Thanks you very much, Dr. Song and Dr. Xu, for your

support and help during my master study period.

Thanks for parents and my lovely friends! My parents, thanks so much for your

selfless support and encouragement all the time. Thank you, all my nice friends, for

accompanying and encouraging me.

xv





List of Abbreviations

CRN Cognitive Radio Networks

CH Channel Hopping

DSA Dynamic Spectrum Access

PU Primary User

SU Secondary User

CLR Cycle Length Based Rendezvous

HH Heterogeneous Hopping

ETTR Expected Time to Rendezvous

MTTR Maximal Time to Rendezvous

ID Identifier of the radio node

xvii





Abstract

Rendezvous is a fundamental process establishing a communication link on common

channel between a pair of nodes in the cognitive radio networks. How to reach

rendezvous efficiently and effectively is still an open problem. In this work, we propose

a guaranteed cycle lengths based rendezvous (CLR) algorithm for cognitive radio

networks. When the cycle lengths of the two nodes are coprime, the rendezvous

is guaranteed in Ti ∗ Tj + δ time slots, where Ti and Tj are two prime numbers

representing the cycle length of nodes i and j respectively, and δ ∈ [0, Ti) is the time

skew under asynchronous scenario. When Ti and Tj are not coprime, i.e., Ti = Tj, the

deadlock checking and node IDs are combined to decide the time point and the way

to independently change the cycle length on each node to guarantee rendezvous. In

detail, as long as the deadlock situation is detected at t = T 0
max+ k ∗T 1

max, each node

can independently oscillate its cycle length between T 0
i and T 1

i based on the k+1-th bit

of the node ID, where k = 0, 1, · · · , ⌈logmax{IDi, IDj}⌉−1, and T 0
i , T

1
i are two prime

numbers defined for Ti. T
0
max = Ti∗Tc+Tc (Tc is some constant) and T 1

max = T 0
i ∗T

1
i +Tc

are two thresholds used for deadlock checking, which represents the length of the

maximum possible rendezvous period between the two nodes. As long as the current

checking bits between the two nodes are different, the rendezvous will be reached in

the following rendezvous period, guaranteed in T 0
max + ⌈logmax{IDi, IDj}⌉ ∗ T 1

max

time slots. The theoretical analysis also proves the guarantee of the CLR algorithm

xix



under both the two cases. We use three metrics: success rate of rendezvous, expected

time to rendezvous and channel load to conduct simulation studies. The simulation

results show that the CLR algorithm always has higher successful rendezvous rate of

100%, and stable and low expected time to rendezvous compared to the HH algorithm.

In addition, the channel loads are smoothly distributed on all channels with CLR,

while HH algorithm depends on the channels with smaller IDs.

xx



Chapter 1

Introduction

With the increase of spectrum demanding on various services and applications, the

spectrum scarcity remains a critical problem for wireless communications. Dynamic

Spectrum Access (DSA) was then proposed with cognitive radio networks (CRNs).

The DSA technique specifies a 3-tiered spectrum sharing framework [2, 3] that im-

proves the efficiency in usage of licensed spectrum. With DSA, secondary users (SUs)

can dynamically detect and access the idle licensed spectrum used by primary users

(PUs). However, the dynamics of PUs’ activities force SUs to adapt to the variations

in channel availability. Thus, finding common available channel among the SUs on

demand is the first task before communicating. The process that the SUs establish

the communication link on the common channels is called rendezvous.
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Common control channel based rendezvous schemes [4, 5, 6] use the predetermined

common control channel to coordinate the rendezvous among the nodes on demand.

In detail, all the nodes wishing to establish a communication link with the other

nodes firstly need to communicate on the common control channel to exchange the

control information and further find the common channels between them. Although

this method simplifies the rendezvous process, the heavy traffic load on the common

control channel causes network congestion and requires high overhead cost. To over-

come these issues, blind rendezvous algorithms based on channel hopping (CH) were

then proposed [7, 8, 9]. The JS rendezvous algorithms proposed in [10, 11] achieve

guaranteed rendezvous by constructing CH sequences combining periods of jump-

pattern and stay-pattern. But JS assumes that the nodes in the CRN have the same

number of available channels even under asymmetric model. The SeR algorithm pro-

posed in [12] was guaranteed in asynchronous environment by combining the parity

slots and permutations of the available channels, but it is only applicable to the sym-

metric model. In [8], the SYNC-ETCH algorithm constructing 2N − 1 different CH

sequences, with intersections on different channel over each two of the CH sequences,

was proposed for synchronous scenario, and the improved SeR algorithm (ASYNC-

ETCH) is used to address the asynchronous rendezvous problem. However, ETCH

algorithms were only for symmetric models. The probability based CH algorithm

proposed in [13] depends on the preassigned order of the node IDs in the network to

further assign roles to each node, which is not able to give the upper bound of the
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time to rendezvous (TTR). The asynchronous quorum based rendezvous algorithm

utilizing the cyclic rotation closure property of the cyclic quorum system is proposed

in [14], in which the rendezvous can only be reached on two of the available channels,

and its asynchronous Latin square based algorithm can only be applied to symmetric

model.

To address the assumption made by the asymmetric model that different radio in

the CRN has same number of different available channels, the heterogeneous model

based rendezvous algorithms [7, 15, 16] for heterogeneous CRN were proposed. In

heterogeneous model, different radio has different spectrum sensing capability. It

is clear that the heterogeneous model is more realistic than the asymmetric model,

where the available channel set between any two nodes are different in both length

and the range of the available channels. The heterogeneous hopping (HH) algorithm

in [7] assumed that the labels of the available channels of each node are consecutive,

by which the smallest channel ID was chosen as the rotation number and the channel

with the smallest ID as the parity channel. The performance of HH depends on the

channel IDs significantly. In [17], the rendezvous scheme for two-channel scenario

was firstly proposed, which is then applied to fully available spectrum scenario and

partially available spectrum scenario by using the TP and MTP respectively. But two

problems exist in this paper, firstly, the labels of the globally available channels is a

consecutive number sequence. Secondly, as observed in [15], the performance of MTP

is not highly efficient even if the spectrum is fully available. The DSCR algorithm in
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[15] is based on a set of globally labeled available channels, so the same channel label

(or index) of a channel is used between a pair of nodes. In other words, they do not

consider the oblivious setting for channel labeling. Here, the definition of oblivious

channel labeling is available in [16]. It is clear that the algorithms proposed in [17] is

also non-oblivious.

In this project, we propose an oblivious guaranteed rendezvous algorithm called cy-

cle length based rendezvous (CLR) algorithm. The CLR algorithm guarantees ren-

dezvous no matter Ti and Tj are coprime or not under heterogeneous model and asyn-

chronous scenario considering oblivious channel labeling. To guarantee rendezvous

when the cycle lengths of two nodes (Ti and Tj) are not coprime, we introduce thresh-

old Tmax based deadlock checking and node ID based cycle length change mechanisms.

The threshold Tmax is defined as the length of the maximal possible rendezvous pe-

riod of the two nodes. There are two possible values: i) T 0
max = Ti ∗ Tc for the first

deadlock checking, where Tc is the maximum possible cycle length of the nodes in the

CRN calculated by the minimum prime number no less than C (C is the maximal

channel sensing ability of all the radios in the CRN). ii) T 1
max = T 0

i ∗ T 1
i + Tc for the

future checking, where T 0
i and T 1

i are two prime numbers defined for Ti. If rendezvous

between the two nodes is not reached after hopping T 0
max time slots (first deadlock

checking), the two nodes will independently change its cycle length by checking the

first bit of its binary ID. The future deadlock checking using T 1
max will be combined

with the other bits of node IDs to conduct cycle length change. The rendezvous will

4



be reached as long as the current checking bits between the two nodes are different,

where Ti 6= Tj is met. The CLR has the following features:

1. When Ti and Tj are not coprime (Ti = Tj), it applies threshold based deadlock

checking and node ID based cycle length change to guarantee rendezvous in

T 0
max + ⌈logmax{IDi, IDj}⌉ ∗ T

1
max time slots.

2. The CLR algorithm is proved to be guaranteed under all the possible time skew

δ ∈ [0, Ti) (asynchronous system) via both theoretical analysis and simulation

study.

3. The CLR algorithm is able to run on the heterogeneous model with oblivious

channel labeling. The performance of CLR algorithm is totally independent

with the channel IDs, and channel loads are smoothly distributed on each chan-

nel.

The rest of the report is organized as follows. The system model and problem for-

mulation are provided in Chapter 2. Chapter 3 presents the details of the proposed

CLR algorithm and the theoretical analysis. The simulation results are presented in

Chapter 4. Chapter 5 reviews the existing work related to the rendezvous problem in

CRNs. We conclude our work in Chapter 6.
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Chapter 2

System Model and Problem

Formulation

In this chapter, we will firstly introduce the rendezvous problem, and then present the

system model and problem formulation. Table 2.1 summarizes the notations used.

2.1 Rendezvous Problem

In CRNs, the spectrum availability of each node is dynamic due to PUs’ prioritized

activities. Thus, the rendezvous process that the two nodes find common available

channels between them is the first critical step before the formal communications. The

7



channel hopping technique is the most commonly used method for blind rendezvous

between any two nodes in CRNs.

In channel hopping scheme, the time is slotted with the same and fixed length. Each

node independently builds a CH sequence on its available channel set by following

the corresponding CH sequence generation algorithm. When the node wants to start

a communication, it attempts rendezvous with the other node by hopping on its CH

sequence. In detail, at each time slot, the node hops on one of the channel in its CH

sequence, as long as the two nodes wish to rendezvous hop on the same channel at

the same time slot, the rendezvous between them is reached. RTS/CTS techniques

can be used to detect if the two nodes are on the same channel.

Fig. 2.1 shows an illustration on how the two nodes reach rendezvous by using channel

hopping scheme. Node i hops on the CH sequence {1, 2, 3, 5, 8, 9} round by round

until the rendezvous is reached with node j who hops on {3, 4, 6, 8, 10, 12, 13}. The

shaded slot shows nodes i and j reach rendezvous at time slot t = 11.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

 1 2 3 5 8 9 1 2 3 5 8 9 1 2 3 5 8 9 

 3 4 6 8 10 12 13 3 4 6 8 10 12 13 3 4 6 8 

  
Figure 2.1: Illustration of the rendezvous process with available channels
of nodes: Ci = {1, 2, 3, 5, 8, 9}, Cj = {3, 4, 6, 8, 10, 12, 13}.
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Table 2.1
NOTATION

Variable Description

Ci The set of available channels of node i.

ci The i-th channel in the Ci of node i.

C The maximum sensing capability of the radios in the CRN.

Tc The maximal possible cycle length of nodes in the CRN,

calculated by the minimum prime number no less than C.

Tmax The threshold for deadlock checking, defined as the

length of the maximal rendezvous period.

Bi The binary ID, binary representation of the ID of node i.

bil The l − th bit of Bi

Ti The cycle length of node i.

Si The CH sequence of node i.

S
(t)
i The channel hopped by node i at time slot t.

S
[x]
i The x-th round of the CH sequence of node i.

S
[x,y]
i The y-th channel in the x-th round of the CH sequence.

δ The time skew between CH sequences of nodes i and j.

T The length of the rendezvous round between the CH sequences of

nodes i and j.

2.2 System Model

We consider a CRN of multiple nodes. Each node has a unique ID, denoted as IDi,

for example, the MAC address of the radio can be used as its ID. The binary repre-

sentation of the IDi, called binary ID of node i, is defined as Bi = {b1i , b
2
i , · · · , b

Wi

i },

where bki ∈ {0, 1} is the k-th bit of Bi and Wi is the width or number of bits of Bi.

We assume IDi is in decimal format, so Wi = ⌈log IDi⌉. In addition, the bit sequence

9



of Bi is in the order of least significant to most significant bit. For any two nodes i

and j in the CRN, Bi 6= Bj, so there is at least one different bit in their binary IDs.

In this report, we only discuss the two-node scenario. Each node is equipped with a

single radio. Let Ci = {c0, c1, · · · , c|Ci|−1} be the set of channels available to node i,

and |Ci| is the total number of available channels. Assume that the channels available

to each node cause no interference to any PU. We consider heterogeneous model, thus

Ci and Cj can be different in both total number of available channels and range of

the available channels, and we have Ci

⋂

Cj 6= ∅. Assume that all the radios in the

CRN have the same maximal sensing capability, denoted as C, thus for any node i,

|Ci| ≤ C.

To attempt rendezvous, the radio of each node hops on one channel at each time

slot. The rendezvous is reached when the radios of the two users hop on the same

channel at the same time slot. The number of time slots required to rendezvous is

defined as Time to Rendezvous (TTR). The Maximal Time to Rendezvous (MTTR)

is the TTR in the worst case, and the Expected Time to Rendezvous (ETTR) is the

average TTR over different cases. The rendezvous period is defined as a period where

the hopping and alignment of the CH sequences of the two nodes i and j repeat. Let

the length of the rendezvous period be T . The length of rendezvous period between

nodes i and j in Fig. 2.2(a) is 15, where nodes i and j repeat the hopping and the

alignment from t = 1 to t = 15 at t = 16. The deadlock in rendezvous is defined as

10



the situation where the two nodes can not rendezvous with each other forever, and in

this report we decides deadlock situation by a certain amount of time, the threshold

Tmax, which is the length of the maximal rendezvous period.

2.3 Problem Formulation

We consider an asynchronous system in designing the algorithm. The time skew is

defined as the number of time slots the CH sequences of the two nodes misaligned,

so any time skew is possible in the asynchronous system. It should be noted that we

only consider the slot-aligned CH sequences in this report. Let δ be the time skew

between the CH sequences of the two nodes i and j, δ ≥ 0. Without loss of generality,

we assume node i always starts hopping earlier than node j if δ > 0. That is, if node

i starts hopping at time slot t, then node j starts at t + δ, and δ is in the range:

δ ∈ [0, Ti).

Let the CH sequence of node i be Si =

{S
(0)
i , S

(1)
i , · · · , S

(Ti−1)
i , S

(Ti)
i , · · · , S

(2∗Ti−1)
i , S

(2∗Ti)
i , · · · }, where S

(t)
i represents the

channel hopped at time slot t, and Ti is a prime number representing the cycle

length of the CH sequence. The cycle length Ti is defined as the minimum prime

number that is no less than |Ci|. The CH sequence can also be defined in cycles

as: Si = {S
[0]
i , S

[1]
i , S

[2]
i , . . .}, where S

[x]
i is the x-th cycle. For each cycle of the CH
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 3 6 8 5 7 3 6 8 5 7 3 6 8 5 7 

 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 

(a) Synchronous situation, δ = 0.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

 3 6 8 5 7 3 6 8 5 7 3 6 8 5 7 3 6 8 5 

     3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 

 (b) Asynchronous situation.

Figure 2.2: Rendezvous processes on synchronous and asynchronous sce-
narios with Ci = {3, 5, 6, 7, 8}, Cj = {1, 2, 3}. a) Time skew δ = 0. b) Time
skew δ = 4.

sequence, S
[x]
i = {S

[x,0]
i , S

[x,1]
i , . . . , S

[x,Ti−1]
i }, where S

[x,y]
i denotes the y-th channel at

the x-th cycle. Thus the time slot when radio i hopes on channel S
[x,y]
i is t = x∗Ti+y.

As shown in Fig. 2.2(b), the cycle length of nodes i and j are Ti = 5, Tj = 3, and

their CH sequences are S0
i = {3, 6, 8, 5, 7}, S0

j = {3, 1, 2}. The time skew between

two CH sequences can be any value between [0, 5).

The rendezvous problem of finding the time slot the rendezvous is reached between

nodes i and j can be defined as follows:

S
(t)
i = S

(t−δ)
j (2.1)

where t is the TTR for node i, and t − δ for node j. Then the maximal time slots

required for rendezvous between the two nodes can be defined as MTTR = max∀δt.

12



Chapter 3

Cycle Length based Rendezvous

Algorithm

In this chapter, we will present the cycle length based rendezvous (CLR) algorithm,

as well as the theoretical analysis on the performance of the CLR algorithm.

3.1 The CLR Algorithm

The CH sequence of the proposed CLR algorithm is constructed based on cycle length.

For each node i, we define two cycle lengths as follows: i) T 0
i , the minimum prime

number no less than |Ci| (function nextPrime(|Ci| − 1) in Algorithm 1). ii) T 1
i , the

13



smallest prime number greater than T 0
i (function nextPrime(Ti) in Algorithm 1).

During the rendezvous process, each node will oscillate its cycle length Ti between

{T 0
i , T

1
i } based on the value of each bit of its binary ID. Based on the two possible cycle

lengths, the two CH sequences for each node are constructed in cycle as following:



















S
[x0]
i = {c0, c1, · · · , c|Ci|, cz1, cz2, · · · , cz(T 0

i
−|Ci|)}

S
[x1]
i = {c0, c1, · · · , c|Ci|, cz1, cz2, · · · , cz(T 1

i
−|Ci|)}

(3.1)

where czj, j ∈ {1, 2, · · · } is an arbitrary channel in Ci. At each cycle x, the node

i will choose one of its two CH sequences based on its cycle length. If Ti = T 0
i ,

S
[x]
i = S

[x0]
i ; if Ti = T 1

i , S
[x]
i = S

[x1]
i . Fig. 3.1 shows an illustration on how to build

the CH sequences of each node based on the two cycle lengths. It is clear that, the

CH sequence generated by our algorithm is totally independent to the channel IDs

and is oblivious.

We consider two cases based on the cycle length of each node when design CLR algo-

rithm: i) Ti and Tj are coprime, i.e., Ti 6= Tj, in which the rendezvous is guaranteed at

the first rendezvous period within Ti ∗Tj + δ time slots. ii) Ti and Tj are not coprime,

i.e., Ti = Tj, where rendezvous may not be reached within the first rendezvous period.

For the second case, a threshold Tmax, which is the length of the maximum possible

rendezvous period between the two nodes wishing to rendezvous, is used to check the
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 1 2 3 6 8 9 3 

 1 2 3 6 8 9 2 6 8 3 1 

                    

 
 2 4 5 7 9 10 11 

 2 4 5 7 9 10 11 2 5 9 10 

(a) The two CH sequences of node i.
                    

 
 2 4 5 7 9 10 11 

 2 4 5 7 9 10 11 2 5 9 10 

 (b) The two CH sequences of node j.

Figure 3.1: Illustration on generating the two cycle lengths and the corre-
sponding CH sequences of each node. (a) For node i, Ci = {1, 2, 3, 6, 8, 9},
thus T 0

i = 7, T 1
i = 11. (b) For node j, Cj = {2, 4, 5, 7, 9, 10, 11}, thus

T 0
j = 7, T 1

j = 11. The channels in shaded slots are randomly selected from
Ci or Cj .

deadlock situation. We consider two cases for the definition of the threshold Tmax:

i) T 0
max = Ti ∗ Tc + Tc used at the first deadlock checking, where Tc is the maximal

possible cycle length of the nodes in the same CRN, i.e., Ti <= Tc, for any node i; ii)

T 1
max = T 0

i ∗T
1
i +Tc used for the future deadlock checking. Considering the time skew

between the two nodes, Tc is added into both the two thresholds. For the first dead-

lock checking occurs at t = T 0
max (the rendezvous between nodes i and j is not reached

after hopping T 0
max time slots), the equality between Ti and Tj will be learned by both

the two nodes attempting rendezvous. Then each node will independently update its

cycle length between T 0
i and T 1

i based on the first bit of their binary IDs Bi. For the

future deadlock checking occurs at t = T 0
max+k∗T 1

max, k = 1, 2, · · · ,max{Wi,Wj}−1,

each node will independently update its cycle length based on the other bits of their

binary IDs until rendezvous is reached.

For nodes i and j, based on the definition of the binary ID, ∃k, k ∈

15



{1, 2, · · · ,max{Wi,Wj}}, such that, bki 6= bkj . Let l ∈ {2, · · · ,max{Wi,Wj}}, the fol-

lowing two situations exist during the deadlock checking on bit bli: i) current checking

bit bli = 0, node i sets its cycle length to Ti = T 0
i ; and ii) bli = 1, node i sets its cycle

length to Ti = T 1
i . Then node i hops on the CH sequence generated by Eq. 3.1 with

the new cycle length. If the rendezvous is not reached within T 1
max = T 0

i ∗ T 1
i + Tc

time slots, deadlock situation occurs (bli = blj, Ti = Tj), node i will check the next bit

b
(l+1)
i . Otherwise, the rendezvous will be guaranteed during this rendezvous period

(bli 6= blj, Ti 6= Tj). It should be noted that if the rendezvous is not reached until all

the bits in Bj has been checked, then Bl′

j = 0 when l′ > Wj, if Wi > Wj; vice versa.

Fig. 3.2 shows the rendezvous process described above. When t < Ti ∗ Tc, node i

hops on its CH sequence with Ti = T 0
i until the rendezvous is reached (Fig. 3.2(a)),

otherwise, the deadlock situation will be encountered (first period of Fig. 3.2(b)).

When t ≥ Ti ∗ Tc, the two nodes will hop on its CH sequence with the selected cycle

length and independently conduct deadlock checking based on threshold Tmax. The

cycle length will be oscillated between T 0
i and T 1

i based on the binary ID as the

deadlock is detected. As long as the current checking bits between nodes i and j are

different, the cycle lengths between them will also be different, and the rendezvous

can be reached in the following rendezvous period, as shown in the third period of

Fig. 3.2(b).
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(b) Ti and Tj are coprime, Ti = Tj .

Figure 3.2: Illustration of the rendezvous process when δ = 0 and T 0
i =

3, T 1
i = 5;T 0

j = 3, T 1
j = 5. (a) When Ti 6= Tj , the rendezvous is guaranteed

within Ti ∗ Tj = 15 time slots. (b) When Ti = Tj = 3, they may not
rendezvous within Ti ∗ Tc time slots (deadlock situation). At time slot t =
T 0
max, node i with b1i = 1 changes its cycle length to Ti = T 1

i = 5, while
node j with b1j = 1 changes to Tj = T 1

j = 5. The two nodes may still not

rendezvous within this rendezvous period (T = T 0
i ∗ T 1

i = 15). Continue
checking on the second bit at t = T 0

max + T 1
max: node i with b2i = 1 changes

its cycle length to Ti = T 1
i = 5, while node j with b2j = 0 changes to

Tj = T 0
j = 3. The rendezvous between them will be guaranteed during the

following 15 time slots.

In Algorithm 1, the function toBinary(IDi) is used to convert the IDi to binary for-

mat. The function minPrime(·) will return the next prime number greater than the

parameter. In line 2, the two cycle lengths are initialized, and the two corresponding

CH sequences for node i are generated in line 3. The T 0
i and S

[x0]
i are initially as-

signed to node i in line 4. In line 5, the two threshold used to do deadlock checking

is defined. For the deadlock checking process from line 8 to 24, lines 9-14 are the

checking on the first bit, while lines 15-22 are the future checking on the other bits.

The rendezvous is attempted on each channel of the CH sequence in lines 25-31.
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Algorithm 1 CLR Algorithm

Input: Available channels set Ci = {c0, c1, · · · , c|Ci|−1}, the threshold Tc, node ID
IDi, time skew δ

Output: Rendezvous channel ck and the TTR t
1: Bi = toBinary(IDi);
2: T 0

i = nextPrime(|Ci| − 1); T 1
i = nextPrime(T 0

i );

3: Generate S
[x0]
i and S

[x1]
i according to Eq 3.1.

4: Ti = T 0
i ; S

[0]
i = S

[x0]
i ;

5: T 0
max = Ti ∗ Tc + δ; T 1

max = T 0
i ∗ T δ

i ;
6: t = 0, l = 1, tC = 0;
7: while true do
8: if (t ≥ T 0

max) then
9: if (t = T 0

max) then
10: l = l + 1;
11: if (bli = 1) then

12: Ti = T 1
i ; S

[0]
i = S

[x1]
i ;

13: end if
14: end if
15: if (tC ≥ T 1

max) then
16: tC = 0, l = l + 1;
17: if (bli = 1) then

18: Ti = T 1
i ; S

[0]
i = S

[x1]
i ;

19: else if (bli = 0) then

20: Ti = T 0
i ; S

[0]
i = S

[x0]
i ;

21: end if
22: end if
23: tC = tC + Ti;
24: end if
25: for t′ = 0 to Ti − 1 do
26: if (Successfully rendezvous on channel S

[0,t′]
i ) then

27: ci = S
[0,t′]
i ;

28: return ci and t
29: end if
30: t = t+ 1;
31: end for
32: end while
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3.2 Performance Analysis

Here we will analyze the performance of the CLR Algorithm by considering all the

possible time skew δ ∈ [0, Ti) between the CH sequences of nodes i and j.

Lemma 1 For nodes i and j, with δ = 0 and Ti 6= Tj, let the length of the rendezvous

period be T = Ti ∗ Tj. For any two CH sequences of nodes i and j, if no rendezvous

can be reached within T time slots, then there is no guaranteed rendezvous between

the two nodes (deadlock situation). Otherwise MTTR = T .

Proof: We prove the lemma 1 by contradiction. Assume nodes i and j rendezvous

at time slot T + k after the first rendezvous round, 0 ≤ k < T . Within a rendezvous

round (T time slots), node i hops for r = T/Ti cycles, and node j for s = T/Tj

cycles. Thus, the last hop by nodes i and j at each rendezvous round, S
(m∗r∗Ti−1)
i and

S
(m∗s∗Tj−1)
j , are always aligned with each other, where m is the number of rendezvous

rounds. So at time slot t = m ∗ r ∗ Ti = m ∗ s ∗ Tj, both nodes i and j repeat the

hopping of the former rendezvous round with same CH sequence and same alignment.

Therefore, if no rendezvous is reached in the first cycle, there is no rendezvous in future

cycles. This is a contradiction with the assumption.

Theorem 1 The rendezvous between nodes i and j is guaranteed in MTTR = T 0
i ∗

Tc + Tc + ⌈logmax{IDi, IDj}⌉ ∗ (T
0
i ∗ T 1

i + Tc) = O(Ti ∗ Tc) time slots, considering
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all the possible time skew δ ∈ [0, Tc) between their CH sequences.

Proof: There are four cases:

Case 1 Ti 6= Tj, δ = 0. This case is proved by Theorem 6 of [7], and MTTR = Ti ∗ Tj.

This report mainly focuses on the other three cases.

Case 2 Ti 6= Tj, δ > 0, where node i starts δ time slots earlier than node j. Assume

that node i starts hopping at time slot t = 0, so node j starts hopping at time slot

δ. Let S ′
i = {S

(δ)
i , S

(δ+1)
i , · · · , S

(T−1)
i , S

(0)
i , S

(1)
i , · · · , S

(δ−1)
i } be another CH sequence

for node i. It is clear that S ′
i is a clockwise rotation of the original CH sequence of

node i : Si = {S
(0)
i , S

(1)
i , · · · , S

(δ−1)
i , S

(δ)
i , S

(δ+1)
i , · · · , S

(T−1)
i }, by δ time slots. So the

rendezvous between Si and Sj with δ time skew is equivalent with the rendezvous

between S ′
i and Sj with zero time skew. Thus this case is equivalent to the case that

both nodes i and j start hopping at time slot t = 0 (δ = 0), which is exactly the case

1. So the rendezvous of this case is still guaranteed, and MTTR = Ti ∗ Tj + δ.

Case 3 Ti = Tj, δ = 0. When nodes i and j have the same cycle length, the length

of the rendezvous round is T = Ti = Tj, and there is a high probability that no

rendezvous can be reached in T time slots. Without the threshold, nodes i and j

may not rendezvous with each other forever according to Lemma 1. For the deadlock

checking process starting at t = Ti ∗ Tc, the worst case is when b1,2,··· ,Wi

i = 1 and

B1,2.··· ,Wi−1
j = 1, bWi

j = 0, where Wj = Wi − 1 (assuming Wi > Wj). In this case, the
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deadlock checking process will repeat for Wi − 1 times, and the rendezvous can only

be reached on the last bit. Based on Algorithm 1, both the deadlock checking process

on each of the Wi−1 bits and rendezvous process at the last bit requires T 0
i ∗T

1
i time

slots. Thus, MTTR = T 0
i ∗ Tc + ⌈logmax{IDi, IDj}⌉ ∗ (T

0
i ∗ T 1

i ).

Case 4 Ti = Tj, δ > 0. Based on cases 2 and 3, it’s easy to find that the rendezvous

of this case is still guaranteed, and MTTR = T 0
i ∗Tc+Tc+ ⌈logmax{IDi, IDj}⌉ ∗ (T

0
i ∗

T 1
i + Tc).
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Chapter 4

Performance Evaluation

In this section, we will verify the theoretical results in Theorem 1 by comparing with

the simulation results. For comparison purpose, the HH algorithm is also simulated.

The comparisons are conducted by the following three metrics: i) guarantee of the

rendezvous; ii) average/expected time to rendezvous (ETTR); and iii) channel load.

4.1 Simulation Setup

The simulations are implemented in MATLAB R2016a in asynchronous environments.

The asynchronous environment is guaranteed by varying the time skew between CH

sequences of nodes i and j in range [0, Ti) on all possible values. Here we assume
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Ti >= Tj. The simulations are conducted in 2-node scenario, and the available

channels of the two nodes are randomly selected from [1, 100]. The common channels

between them are also randomly selected from their available channel set.

We run simulations by varying the number of available channels of the two nodes

in the following four periods with the corresponding threshold for CLR: i) 10 − 20

period (C = 20, Tc = 23); ii) 20 − 30 period (C = 30, Tc = 31); iii) 30 − 40 period

(C = 40, Tc = 41); and iv) 40 − 50 period (C = 50, Tc = 53). For each period, we

randomly select three pairs of values as the number of available channels for nodes

i and j, as shown in Figs. 4.1 and 4.2. For each situation, the time skew between

nodes i and j is varied in range [0, Ti) and the number of common channels varied in

[1, |Cj|], and each run is repeated for 100 times. So the results in the simulations are

got by combing 100∗Ti ∗ |Cj| runs. The overlapping ratio is defined as the fraction of

common channels between nodes i and j to the total number of available channels of

node j, assuming |Ci| > |Cj|. During the simulation, we randomly generate a 8-bit

binary ID for each node at each run.

4.2 Verification on the Theoretical Results

In this part, we will verify the theoretical results concluded in Theorem 1 by compar-

ing with the simulation results in two situations when Ti and Tj are coprime (Ti 6= Tj)
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Figure 4.1: Theoretical and simulated MTTR when Ti and Tj are coprime
under varying time skew and different pair number of available channels of
nodes i and j.

or not (Ti = Tj). We study the MTTR under varying time skew and different pairs

of number of available channels of nodes i and j.

At Fig. 4.1(b), the selected three pairs of |Ci| and |Cj| correspond with the same pair

of Ti = 29 and Tj = 23. Thus, their theoretical MTTRs are totally same under all

time skew, which is consistent with Theorem 1. For the simulated MTTRs, the small
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Figure 4.2: Theoretical and simulated MTTR when Ti = Tj under varying
time skew and different pair number of available channels of nodes i and j.

differences between them are caused by difference in number of available channels

for each selected pair. Figs. 4.1(c), 4.2(b) and (c) also show the similar results. In

addition, both Figs. 4.1 and 4.2 show that the simulation results are totally consistent

with the theoretical results in Theorem 1: i) MTTR increases by cycle lengths of the

two nodes. ii) The MTTR linearly increases by the time skew when Ti 6= Tj (Fig.

4.1), while the MTTR is independent with the time skew when Ti = Tj (Fig. 4.2).
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Also, the simulated MTTRs are always smaller than the theoretical MTTR. It should

be noted that the simulated MTTR are always much smaller than the theoretical

MTTR in magnitude of ten thousand when Ti and Tj are not coprime as shown in

Fig. 4.2, thus the performance of CLR in reality is better than in theoretical.
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Figure 4.3: Success rate under varying overlapping ratio.
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4.3 The Guarantee of Rendezvous

We study the guarantee of rendezvous under the varying overlapping ratio. By ap-

plying deadlock checking bit by bit on the binary ID of each node to independently

change the cycle length, the rendezvous of CLR algorithm is guaranteed in both

the two situations, as shown in Figs. 4.3(a) and (b). While the rendezvous of HH

algorithm is not guaranteed for both the two situations.

For HH, when the number of available channels of the two nodes are large, but the

overlapping ratio is small, nodes i and j may rightly miss with each other on the

common channels at some time skew due to its interspersed CH seuqences. Thus

in Fig. 4.3(a), the rendezvous of HH in 40 − 50 period is not guaranteed when the

overlapping ratio is less than 0.3. In addition, due to the randomness in the channel

IDs, theorem 7 of [7] is not valid, for which the rendezvous can not be guaranteed.

Thus at Fig. 4.3(b), the rendezvous of HH is not guaranteed in 20 − 30, 30 − 40

and 40 − 50 periods as the overlapping ratio is less than 0.4, 0.4, 0.3, respectively.

Especially for 10 − 20 period, the randomness in the channel IDs becomes more

obvious when the number of available channels are small. Thus at Fig. 4.3(b), the

HH in 10 − 20 period is not guaranteed until the overlapping ratio is 1. Due to the

randomness in channel IDs, as the number of available channels of the two nodes

decrease, HH can not guarantee rendezvous with higher probability.
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Figure 4.4: ETTR under varying overlapping ratio (CLR: solid lines; HH:
dashed lines).

4.4 Expected Time to Rendezvous

We study the ETTR under the varying overlapping ratio. When Ti and Tj are co-

prime, the TTR between the two nodes is linear to the cycle length of their CH
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sequences. Since the cycle length of HH is three times of that of CLR, CLR always

outperforms HH significantly under all of the four periods, as shown in Fig. 4.4(a).

When Ti and Tj are not coprime, as the probability of failed rendezvous by HH is

larger than 0.05 (Fig. 4.3b), the ETTR of HH is much higher than CLR in thousands,

as shown in Fig. 4.4b in 30− 40 and 40− 50 periods at the overlapping ratio of 0.1,

and the 20− 30 period at 0.1− 0.2. Especially for the 10− 20 period, HH always has

much higher ETTR than CLR till full overlapping ratio of 1. The use of threshold to

guarantee rendezvous discounts the ETTR of CLR. Thus, when the overlapping ratio

is larger than 0.2, the ETTR of CLR is higher than that of the HH as for 20 − 30,

30 − 40 and 40 − 50 periods. But CLR has a more stable performance that always

guarantees rendezvous and has ETTR within 5000 time slots. So the trade off be-

tween the guaranteed rendezvous and the ETTR should be considered in reality, and

we can change the threshold to adjust the ETTR of CLR.

4.5 Channel Load

In CRNs, the channels available to each node are dynamically changed due to PUs’

activities. Therefore, the channel load is an important measure to evaluate rendezvous

algorithms. lc = {lc1 , lc2 , . . . , lc|Ci|} is defined as set of probabilities, where lci is

channel load of channel ci, the probability of rendezvous occurring on channel ci

considering all the 3 ∗ 100 ∗ Ti ∗ |Cj| runs on the algorithm for each period. The
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smoother the distributions of channel load over all the available channels, the better

the algorithm is. So the channel load min-max degree d is defined as follows:

d =
max{lc} −min{lc}

avg{lc}
, (4.1)

where max{lc}, min{lc} and avg{lc} represent the maximal, minimal and average chan-

nel load over all the available channels. The degree d quantifies the distance between

the maximal and minimal channel load among all the channels. Thus the smaller d

is, the better the algorithm is.

During the simulation, the channels are all randomly assigned with IDs from [1, 100].

The CH sequence generated by CLR occupies each channel with almost the same

probability without depending on the channel IDs, so the channel load is smoothly

distributed on each channel for all situations, as shown in both Figs. 4.5 and 4.6.

While the CH sequences of HH depends on channel IDs significantly by assigning the

channel with smallest ID to the parity slots. So with HH, the channel with smaller

IDs suffers from much higher channel load than other channels, as the peak channel

loads on channels with smaller IDs shown in Figs. 4.5 and 4.6. Tables 4.1 and 4.2

demonstrate comparisons of the channel load min-max degree between CLR and HH

at all the four periods in the two situations respectively. Tables 4.1 and 4.2 also verify

the results shown in Figs. 4.5 and 4.6, where the channel load min-max degrees of

CLR are always much smaller than that of HH for all situations.
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Figure 4.5: Channel load distributions when Ti and Tj are coprime.

Table 4.1
Min-max degree when Ti and Tj are coprime.

10-20 period 20-30 period 30-40 period 40-50 period

CLR HH CLR HH CLR HH CLR HH

1.84 4.71 0.89 13.79 0.94 9.28 1.35 18.24
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Figure 4.6: Channel load distributions when Ti and Tj are not coprime.

Table 4.2
Min-max degree when Ti and Tj are not coprime.

10-20 period 20-30 period 30-40 period 40-50 period

CLR HH CLRHH CLR HH CLR HH

1.17 427.3 1.61 433.2 1.59 630.7 1.35 1235.7
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Chapter 5

Related Work

The existing work on CH based rendezvous algorithm can be categorized by multiple

aspects under single radio or multiple radio scenarios as follows: symmetric/asym-

metric, synchronous/asynchronous, homogeneous/heterogeneous and oblivious/non-

oblivious.

Symmetric/asymmetric models based CH algorithms. Symmetric model assumes

that the nodes wish to rendezvous share the same set of available channel set. Such

as, the ETCH algorithm [8], the sequence based rendezvous algorithm combining with

the parity slots in [12], the prime modulation technique combining with the parity

slot proposed in SSCH algorithm [18], the symmetric model in Jump-stay rendezvous

algorithm [10], as well as the three rendezvous algorithm summarized in [19]. In the
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asymmetric model, the available channels of the two nodes can be different, but it

still assumes that the number of available channels between the two nodes are same.

Such as, the asymmetric algorithm proposed in [10], and the asymmetric model based

ring-walk channel hopping algorithm proposed in [20].

Synchronous/asynchronous models based CH algorithms. The synchronous CH

algorithms assume there exist a global clock synchronous mechanism among the nodes

with to rendezvous. Such as, the quorum based rendezvous proposed in [14], SYNC-

ETCH proposed in [8] and the probability based rendezvous algorithm proposed in

[13]. On the other way, the ASYNC-ETCH in [8], the symmetric sequence based

rendezvous algorithm [12], and the symmetric Latin-square based asynchronous al-

gorithm in [14] do not make the assumptions about the existence of the synchronous

mechanism.

Homogeneous/heterogeneous models based CH algorithms. All the algorithms in

[8, 10, 12, 14] consider the homogeneous model, that is, the nodes wish to rendezvous

with each other share the same set of available channels. While the heterogeneous

model is applicable to the situation where different node sense different set of channels.

Such as, the HH algorithm that assumes the consecutive channel labels in [7], the

unguaranteed probability based CH algorithm in [13], the MTP algorithm proposed

in [17] and the DCSR algorithm in [15].

The oblivious/non-oblivious models based CH algorithms. The oblivious channel
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labeling is defined as the case where two nodes wish to rendezvous have different

labeling policy. While the non-oblivious channel labeling assumes that the two nodes

share the same labeling policy on the global available channels, and the two nodes

share the same set of globally available channels. Both the DCSR algorithm in [15]

and the MTP algorithm with lower efficiency in [17] are achieved under the non-

oblivious model.

There are also some work that study the rendezvous problem in multi-radio CRNs.

The extended jump stay rendezvous algorithm proposed in [21] studied the multi-

radio scenario by assigning two roles to the radios of each node. While the work

in [22] studied the rendezvous problem under the multi-radio multi-hop scenario by

proposing a channel diverse routing algorithm, and addition and multiplication op-

erators based CH algorithm. For the rendezvous for the multi-hop CRNs, both the

link based rendezvous algorithm and the routing algorithm should be studied, as the

multi-hop extension of the ring-walk algorithm in [20].
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Chapter 6

Conclusion

6.1 Contributions

This report proposes a guaranteed rendezvous algorithm named cycle length based

rendezvous (CLR) algorithm. The CLR guarantees rendezvous no matter Ti and Tj

are coprime or not, where Ti and Tj are two prime numbers representing the cycle

lengths of nodes i and j, respectively. To guarantee rendezvous when Ti and Tj are not

coprime, we introduce a new strategy that each node is able to independently change

the cycle length between T 0
i and T 1

i at each slot the deadlock situation is detected.

The threshold Tmax using for deadlock checking is defined as the length of the maximal

possible rendezvous period, and is defined by two possible values T 0
max and T 1

max. The

deadlock situation detected at t = T 0
max + k ∗ T 1

max, k = 0, 1, · · · ,max{Wi,Wj} − 1
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combining with k + 1-th bit of the binary ID of each node is used to decide the

time point and the way to independently change the cycle length, where Wi and Wj

are number of bits in the binary ID of node i and j, respectively. As long as the

current checking bit of two two nodes are different, the difference of the cycle lengths

between them can be guaranteed, thus the rendezvous between the two nodes can be

guaranteed.

We have conducted both theoretical and simulation studies to evaluate the perfor-

mance of the CLR algorithm. The theoretical results show that the CLR is guaran-

teed under all the possible time skew δ between the two nodes. The simulation results

demonstrate that the CLR algorithm outperforms the well-known heterogeneous hop-

ping (HH) algorithms by the following three metrics: i) Guarantee of rendezvous, CLR

always provides guaranteed rendezvous, while HH is not able to guarantee rendezvous

in both situations when Ti and Tj are coprime or not. ii) ETTR, CLR gives much

smaller ETTR than HH when Ti and Tj are coprime. iii) Channel load, the channel

loads are smoothly distributed over all the available channels by using CLR, while

HH highly depends on the channels with smaller IDs (with peak channel loads on the

channels with smaller IDs).
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6.2 Future Work

There are two aspects for our future work based on this report. The first one is to

study the rendezvous in the multi-radio CRNs, where the bits of binary ID of each

radio node will be checked by all the radios in parallel in FIFO order. The other idea

is the study of the multi-user scenarios, where the rendezvous among multiple nodes

(more than two) will be considered. The algorithm proposed in this report actually

works for the multi-user scenario because the oblivious feature of the CLR algorithm.

But the collision on channels should be properly studied.
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