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Abstract

The Miss Ratio Curve (MRC) is an important metric and effective tool for caching sys-
tem performance prediction and optimization. Since the Least Recently Used (LRU)
replacement policy is the de facto policy for many existing caching systems, most pre-
vious studies on efficient MRC construction are predominantly focused on the LRU
replacement policy. Recently, the random sampling-based replacement mechanism,
as opposed to replacement relying on the rigid LRU data structure, gains more pop-
ularity due to its lightweight and flexibility. To approximate LRU, at replacement
times, the system randomly selects K objects and replaces the least recently used
object among the sample. Redis implements this approximated LRU policy. We ob-
serve that there can exist a significant miss ratio gap between exact LRU and random
sampling-based LRU under different sampling size K; therefore existing LRU MRC
construction techniques cannot be directly applied to random sampling based LRU
cache without loss of accuracy.

In this thesis, we present a new probabilistic stack algorithm named KRR which
can be used to accurately model random sampling based-LRU cache with arbitrary
sampling size K. We propose two efficient stack update algorithms which reduce the
expected running time of KRR from O(N ∗M) to O(N ∗ log2M) and O(N ∗ logM),
respectively, where N is the workload length and M is the number of distinct objects.
Our implementation generates accurate miss ratio curves for both fixed and variable
block size cache. Furthermore, we adopt spatial sampling which further reduces the
running time of KRR by several orders of magnitude, and thus enables practical, low
overhead online application of KRR.

xiii





Chapter 1

Introduction

Cache has always been one of the most critical layers in the memory hierarchy. Mod-
ern high-performance systems rely on caching to reduce data transfer latency and
achieve high throughput. For large-scale web services, key-value caches like Redis
and Memcached [13, 16] are crucial for ensuring low-latency service when serving
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Figure 1.1: MRCs of MSR Web with K-LRU
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enormous workloads. Cache design has been studied for decades. One vital compo-
nent in cache design is the cache replacement policy. There are many existing ad-
vanced replacement policies such as ARC [15], MultiQueue [33] and CACHEUS [21].
Although these algorithms work well for most workloads, they all have similar down-
sides. First, these advance algorithms require additional sorted data structures to
maintain objects’ relative ordering. As a result, the cache must spend extra time and
space in maintaining the ordering of cached objects. Second, these data structures
are often very rigid in nature, in other words, once the replacement rule is fixed, it is
hard to reconfigure the replacement rules dynamically due to the nature of the data
structures.

To avoid expensive ordering data structures, many existing schemes have adopted the
idea of random sampling: On eviction, cache randomly selects a small number of items
and then evicts item with the lowest priority. Ideally, the evicted item from a set of
relatively small random sampled items could closely approximate the lowest priority
in the whole cache [8]. The commercial in-memory cache, Redis, implements both of
its LRU and LFU replacement schemes based on such random sampling approach [13],
and they have demonstrated that with a relatively small sampling size (10), random
sampling-based LRU closely approximates true LRU. For simplicity, we use K-LRU
to denote random sampling-based LRU policy, where K represents cache’s eviction
sampling size. Two recent function-based cache replacement schemes, Hyperbolic
caching for Redis [8] and LHD for Memcached [3], also rely on the random sampling
technique to relax the expensive overhead related to maintaining all object’s ranking.
By removing the rigid ordering data structure, a random sampling caching scheme also
provides great flexibility. First, one can dynamically change cache’s priority function
online to adapt change in workload patterns. Second, one can dynamically configure
the sampling size of random sampling. Wang et al. show that different sampling
sizes impose a large impact on cache’s miss ratio (Figure 1.1) [25]. By dynamically
configuring the sampling size of random sampling-based LRU, they proposed DLRU
which can always outperform fixed sampling size cache. Motivated by the impact of
eviction sampling size on cache’s miss ratio, this thesis aims at accurately modeling
cache under K-LRU policy for arbitrary sampling size K.

A Miss Ratio Curve (Figure 1.1), or MRC, is a function mapping from cache
sizes to miss ratios. It is an extremely useful tool for cache memory manage-
ment [10, 11, 24, 26]. Unfortunately, as of today, most studies on efficient MRC
construction are focused on the rigid data structure-based LRU cache [6, 9, 11, 24, 27].
Their approaches are derived from Mattson et al’s LRU stack algorithm which can
construct an MRC through one pass of accesses [14]. Years of efforts have improved
the asymptotic complexity of the LRU stack algorithm from O(NM) to O(N) where
N is the trace length and M is the number of distinct objects. However, the linear
time MRC algorithms can lose accuracy. In this paper, we focus on modeling K-LRU.
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As shown in Figure 1.1, with random sampling-based LRU (K-LRU) cache, different
sampling sizes could have a huge impact on cache’s miss ratio. Existing LRU MRC
construction techniques are no longer suitable for a cache with the K-LRU policy.
We propose a new efficient stack algorithm, which can be used to construct K-LRU
MRC with arbitrary K. Here we summarize our major contributions as following:

1. To correctly model the behavior of K-LRU cache, we present a new probabilistic
stack algorithm, KRR, which statistically approximates the K-LRU policy with
arbitrary K. When K is relatively large, KRR closely approximates the LRU
policy. When K = 1, KRR degenerates to Mattson’s RR stack algorithm,
a stack algorithm which is statistically equivalent to the random replacement
policy.

2. We propose two efficient stack update mechanisms which reduce KRR’s ex-
pected running time from O(NM) to O(Nlog2M) and O(NlogM), respec-
tively. Together with the spatial sampling technique proposed by Waldspurger
et al. [24], we further reduce the time overhead to an extremely small magnitude
which makes it practical for constructing a K-LRU MRC online.

3. We evaluate the accuracy of KRR stack algorithm using MSR, YCSB, Twitter
workloads [1, 2, 30]. By comparing with existing MRC techniques, we show
that KRR yields a highly accurate MRC for K-LRU cache with low space and
time overhead.

3





Chapter 2

Background

In this chapter, we first briefly describe the evolution of MRC construction techniques.
Then, we will show details about the first single-pass MRC construction algorithm,
namely Mattson’s generic stack algorithm and introduce necessary notations that will
be used in later chapters along the way. Next, we address motivation and challenges
on K-LRU stack distance analysis. Lastly, we describe the spatial sampling technique
adopted from SHARDS [24].

2.1 Miss Ratio Curve

A Miss Ratio Curve relates miss ratio to cache size. Given the MRC of a workload,
one can immediately know the miss ratio for any cache allocation. The MRC is thus a
very useful tool for cache memory management, ranging from hardware caches, Java
heap management, to in-memory key-value stores, to name a few [10, 20, 28, 31].
In early 1970s, Mattson et al. [14] introduced a generalized stack algorithm that
models a general class of replacement policies that satisfy the inclusion property (see
Section 2.2). The algorithm models the cache as a stack, and the stack location i
(stack top location = 1), where the referenced object resides, is called the object’s
stack distance (to the stack top). Under the stack model, an MRC can be calculated
based on stack distance distribution: the miss ratio of a cache size c is the probability
of stack distance greater than c. Since then, a rich set of of studies have been focused
on developing an efficient stack distance model for the LRU policy. Olken et al. [17]
reduced the algorithm complexity down to O(NlogM) by replacing the linear stack
structure with the balanced search tree, and till today, O(NlogM) remains to be the

5
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1: procedure StackUpdate(St−1, φ)
2: . S: Ordered Stack
3: . φ: stack distance of referenced item
4: yt(1)← St−1(1)
5: St(1)← St−1(φ)
6: for i← 2...φ− 1 do
7: St(i)← maxPriority (yt(i− 1), St−1(i))
8: yt(i)← minPriority (yt(i− 1), St−1(i))
9: end for

10: St(φ)← yt(φ− 1)
11: end procedure

Figure 2.1: Mattson Stack Update Process [14]

lower bound for generating exact MRCs on an LRU cache. To further reduce the
running time, much of the attention has been shifted to stack distance approximation
techniques [11, 24, 26] which further reduce the time complexity to super linear or
linear with sacrifices in a slight loss of accuracy.
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2.2 Mattson’s Stack Algorithm

Here we briefly describe the general stack algorithm proposed by Mattson et al. In
general, a replacement algorithm is called a stack algorithm if such replacement al-
gorithm satisfies the inclusion property, that is, Bt(C) ⊂ Bt(C + 1), where Bt(C) is
a set of distinct objects in a cache of arbitrary size C at given time t. The inclusion
property of stack algorithm makes it possible to generate an MRC in just one pass of
the trace which motivates an efficient stack model for the K-LRU replacement policy.
Under the general stack model, all previously referenced objects have an associated
priority. Depending on the replacement policy, the object’s priority can change over
time. At any given time, all referenced object’s priorities form a total ordered set.
Mattson et al. show that in order to preserve the inclusion property, the stack St at
time t must be maintained according to following constraints:

St(1) = xt (2.1a)

St(i) = maxPriority (yt(i− 1), st−1(i)) for 2 ≤ i < φ (2.1b)

St(φ) = yt(φ− 1) (2.1c)

St(j) = St−1(j) for φ < j ≤ γt−1 (2.1d)

where:

xt : object referenced at time t

St(i) : object at ith stack position at time t.

yt(i) : the lowest priority object in cache of capacity i at time t.

γt : total distinct referenced objects at time t

φ : xt’s stack distance1, if xt never referenced, φ = γt

The maxPriority() function in stack maintenance procedure above is a function
comparing priority of yt(i − 1) and st−1(i). Intuitively, the lower priority object
determined by maxPriority() function is the evicted object in cache of size i. For
simplicity, one can think that the only difference among stack algorithms is their
maxPriority() function. Figure 2.1 illustrates a general stack update process, which
typically takes linear time, on average, with respect to the stack size. Given an
access stream, X = x1, x2, ..., xt, one can obtain a stack distance histogram (SDH)

1stack distance = sd(St(i)) = i

7



by processing the access stream via the corresponding stack algorithm. For an LRU
stack, the stack update process is particularly trivial; Since objects’ priority ordering
is equivalent to stack ordering in the LRU stack, then, on a stack update, all objects
from stack position 1 to φ − 1 are push down by one position, or equivalently it
takes O(1) to move the referenced object to stack top when the stack is organized
as a doubly-linked list. However, finding the stack distance of an object still takes
expected linear time with respect to the stack size. Mattson’s LRU stack algorithm
is thus O(NM).

2.3 Motivation and Challenges

As demonstrated by Figure 1.1, the cache can have a very different miss ratio under
K-LRU when K varies. It is desirable to have an efficient model to construct an
MRC for K-LRU. Current stack distance approximation techniques such as AET,
Counterstack, and SHARDS2 only model stack distance distribution for caches under
the exact LRU policy. They clearly are not the best choice for a K-LRU cache.
To tackle this problem, we propose a new MRC construction method that models
K-LRU’s miss ratio under arbitrary K and cache size.

A stack model is attractive in that it can generate an MRC in one pass. However,
there are two main challenges to develop a stack algorithm for K-LRU. First, the stack
algorithm must satisfy the inclusion property. It’s easy to check that probabilistic re-
placement strategies like K-LRU does not satisfy the inclusion property. This makes
it impossible to directly perform stack distance analysis on the K-LRU policy. To
circumvent it, we defined a new stack algorithm, KRR, which statistically approxi-
mates the K-LRU policy. In this way, predicting K-LRU’s miss ratio is equivalent to
predicting KRR’s miss ratio. Second, the original stack algorithm has a linear stack
search/update time cost, which is impractical for online usage. To overcome such
high cost, we introduce a new stack update procedure in Section 4.3.2 for KRR which
only requires O(logM) time overhead per stack update.

The original stack model was designed to model a class of replacement algorithms
under the assumption that the size of objects is fixed. This assumption works for
hardware cache where the size of a cache block is fixed. However, this assumption does
not always hold for software cache. Recent studies [5, 30] show that the size of objects
in the in-memory cache can be very diverse, and the size distribution of workloads is

2The SHARDS here is specifically refer to spatially scaled down version of LRU balanced tree, not
the spatial sampling method.
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usually not static over time. Moreover, Pan et al. demonstrate that miss ratio curves
constructed under uniform size assumption can significantly deviate from the true
miss ratio curve when the workloads follow non-uniform size distribution [18]. Thus,
our last challenge is to extend the KRR stack algorithm to handle workloads with
variable object sizes. To handle variable object sizes, we must change the granularity
of stack distance from object to byte. In Section 4.4.1, we show that the cumulative
size distribution along the stack can be captured by adding a simple mechanism on
top of the KRR stack which allows us to accurately approximate stack distance in
byte-level granularity.

2.4 Spatial Sampling

For any stack algorithms, an MRC can be calculated from the generated stack distance
histogram. The problem is that it is very expensive, in both space and time, to
obtain the actual SDH for a long trace because the asymptotic space/time cost of the
stack algorithm is correlated with the number of unique references in the workload,
which can be very large. Due to the large overhead, it is impractical to directly use
stack algorithm online. In order to make it suitable for online usage, we adopt the
uniformly random spatial sampling technique described in SHARDS [24]. Instead of
feeding entire reference streams to the stack model, spatial sampling technique uses
the sampling condition hash(L) mod P < T , with referenced key L, modulus P and
threshold T, to collect only a subset of references. Ideally, the effective sampling rate
is R = T/P . As shown by Waldspurger et al., for majority of workloads tested, the
sampled subset has very high statistical similarity compared to the original workload,
even with R = 0.001. By combining such spatial sampling technique together with
our fast stack update algorithm (Section 4.3), we show that our algorithm can be
efficient enough for online MRC prediction.

9





Chapter 3

Random Sampling Based
Replacement and K-LRU

In this chapter, we continue to set up some notations and formalize more details
about the K-LRU policy.

An object x’s recency r can be defined as r(x) = 1
time since last referenced

. Under the LRU
policy, all objects are ranked according to their recency and the least recently used
object will be remove from cache on eviction. The cache with capacity C can be
described as a total ordered set {xd : 1 ≤ d ≤ C} where x1 is the object with highest
ranking, that is, the object most unlikely to be evicted. We define ρt,C(r) : r → d
as the mapping function that maps object’s recency r to object’s relative priority
ranking d in cache of size C at time t.

There are two versions of random sampling-based cache. On eviction, when sampling
K objects from the cache, sampling can be done with or without “placing back” the
sampled objects. With placing back, a sampled object can be sampled again, although
the probability is small given a small K and a large C. Existing implementation as
used in Redis adopts placing-back sampling [13]. For consistency, in the remaining
sections, we assume K-LRU is implemented using “placing back” sampling. However,
our proposed solution can be similarly applied to the K-LRU sampling policy without
placing back through a few tweaks.

Proposition 1. In a random sampling-based (with placing back) cache with cache
size C and sampling size K, the eviction probability, QC,K(x == xd), of the object xd
with ranking d is:

QC,K(x == xd) =
dK − (d− 1)K

CK
(3.1)

11



Proof. For simplicity, assume that, on an eviction from a cache of size C, the objects’
ranks are from 1 to C. Now K-LRU eviction is equivalent to randomly selecting
K integers from the set {1...C} and choose the largest value, d, from the selected
integers. With placing back, d can appear 1 to K times. If d appears i times, there
are

(
K
i

)
ways to choose d. For d is the largest integer among the selected K integers,

the remaining K− i integers must be smaller than d. There are only (d− 1)K−i ways
to select the remaining integers. Together, there are

∑K
i=1

(
K
i

)
(d− 1)K−i ways where

d is the largest among selected k integers. Next, simplifying the expression, we get

dK − (d− 1)K . Hence, QC,K(x == xd) = dK−(d−1)K

CK .

Proposition 2. In a random sampling-based (without placing back) cache with cache
size C and sampling size K, the eviction probability, QC,K(x == xd), of the object xd
with ranking d is:

QC,K(x == xd) =

{
0 if d < K
K(d−1)!(C−K)!

(d−K)!C!
otherwise

(3.2)

Proof. Without placing back, obviously the objects with rank smaller than K will
never be evicted. Then given an object with rank d, where K ≤ d ≤ C, the eviction
probability of such object is equivalent to the probability of select remaining K − 1
objects such that the rank of these objects is strictly less than d. There are

(
d−1
K−1

)
ways to select these K−1 objects, and

(
C
K

)
ways to select K objects out of C objects.

Hence, the probability QC,K(x == xd) =
( d−1
K−1)
(C
K)

= K(d−1)!(C−K)!
(d−K)!C!

One can check that under relative small K and large cache size, these two versions
yield approximately the same eviction probability. From Proposition 1, we see that
an object with low ranking (larger d) has a higher chance of been evicted in random
sampling based cache.

Now, we formulate K-LRU as a probabilistic policy:

Definition 1. Replacement policy K-LRU is a probabilistic policy such that, on cache
eviction, the eviction probability of the object with recency r is QC,K(x == xρ(r)).

12



Chapter 4

The KRR Stack Algorithm

In this chapter we extend original stack processing techniques to handle the non-
stack algorithm K-LRU. To address the first challenge where K-LRU is not a stack
algorithm, we define a new stack algorithm called KRR. We show that, under a
coarse-grained assumption on object’s recency, K-LRU and KRR behave statistically
the same. Next, to overcome the linear overhead on a stack update, we introduce
two new fast stack update approaches that reduce update complexity from linear to
O(log2M) and O(logM), respectively. To handle variable object sizes, we describe a
simple mechanism on top of the KRR stack which captures byte-level size cumulative
distribution along the stack while maintains the overall asymptotic complexity of the
original KRR stack algorithm. Lastly, the last section of this chapter sets out few
implementation details.

4.1 KRR Modeling

Intuitively, to construct a new stack algorithm that is statistically equivalent to K-
LRU, the new stack algorithm must ensure the eviction probability in Definition
1. That is, the eviction probability of the object with recency r under such stack
algorithm must be equal to QC,K(x == ρ(r)). Unfortunately, there are two problems
associated with maintaining the eviction probability QC,K(x == ρ(r)). First, to
obtain object st(i)’s priority ranking ρ(r), one must know the total number of objects
that appear before st(i) on the stack and have higher recency than st(i). This appears
to be a very costly task as an intuitive scan of stack for recency ranking would take
time in O(MlogM) per update. We would like to avoid it for efficiency purpose.
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K-LRU

1 2 3 4 5 6 7 8 9 10 11

Rank:   1          2          3           4          5          6          7           8          9         10        11

1 2 3 4 5 6 7 8 10 11

Rank:   1          2          3           4          5          6          7           8          9         10        11

New

Evict!

KRR

1 3 2 5 6 4 8 7 10 11

Rank:   1          2          3           4          5          6          7           8          9         10        11

New

Evict!

9

9

Item 9 selected for eviction
Each item labeled with relative recency.

Figure 4.1: Eviction comparison between K-LRU and KRR. The red edge

represents movement of objects’ ranks. The blue oval groups a coarse-grained ordering of objects’

recency.

Second, since object st(i)’s eviction probability is associated with its relative recency
in a cache with size i, the eviction probability is not fixed with respect to its stack
position. This is also problematic, as we will see in Section 4.3, an unpredictable
eviction probability for a given stack position will make it especially challenging to
perform fast stack updates. With the above problems, it is difficult to construct
a stack algorithm that is both updates efficient and statistically equivalent to K-
LRU. Thus, we proposed an alternative stack algorithm, KRR, which is not perfectly
equivalent to but closely approximates the K-LRU policy.

The KRR algorithm is motivated by one simple observation. As illustrated by Fig-
ure 2.1, the general stack update is one-way downward shifts of a subset of the stack.
The most recently referenced object is always pushed to the top of the stack and then
monotonically move downwards. Therefore, the object that appears at the lower
stack position is more likely to be less recently referenced than objects that appear
above it. In particular, the LRU stack is an extreme case, where all items’ recency
ordering perfectly matches the stack ordering. In the case of K-LRU, as K increases,
the likelihood of the lower stack position object has lower recency increases. Based
on such observation, we propose KRR based on an approximation on object st(i)’s
recency:

Assumption 1.
st(i) is the least recently used among {st(j) | 1 ≤ j ≤ i}, or equivalently,
ρt,i(r(st(i))) = i.

Base on above assumption, we now start constructing KRR’s maxPriority function.
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The maxPriority function takes two inputs st−1(i) and yt(i−1) then returns the one
with higher priority. In other words, object st(i) will be replaced by yt(i−1) if st−1(i) is
evicted from cache of size i at time t. Under Assumption 1 where the object at the ith
stack position has relative ranking i in cache of size i, the probability of st−1(i) being

evicted can be calculated, according to Equation 3.2, as Qi,K(x == xi) = iK−(i−1)K

iK
.

Equivalently, the probability of st−1(i) staying in cache at time t can be simplified to(
i−1
i

)K
. Then, the maxPriority function for KRR can be formally described as:

maxPriority(yt(i− 1),st−1(i)) =

{
st−1(i) random(0, 1) <

(
i−1
i

)k
yt(i− 1) otherwise

(4.1)

With maxPriority function defined, one can trivially simulate the KRR replacement
scheme using Mattson’s linear stack update procedure described in Section 2.2.

Under the KRR stack algorithm, as K increases, the probability of st−1(i) stay in its
position decreases. With a large enough K, every st−1(i) will be replaced by yt(i− 1)
which behaves exactly like the LRU stack. When K=1, we see that the KRR stack
degenerates to Mattson’s RR algorithm [14], which has a stay probability of i−1

i
for

object st−1(i). We coined the name ”KRR” because this stack algorithm can be
considered as an extension of Mattson’s RR stack algorithm.

Figure 4.1 illustrates the difference between the KRR and K-LRU replacement al-
gorithms on cache eviction. Both KRR and K-LRU maintain object’s ranking, the
difference is that K-LRU cache maintains object’s ranking implicitly through object’s
recency, where the more recent object ranks higher and less recent one ranks lower;
On the other hand, the KRR replacement policy maintains object’s ranking explicitly
through stack update procedure under maxPrioty function described above, or we say
object’s ranking at time t under KRR is exactly object’s stack position at time t.

4.2 Correctness

In order to better understand how well KRR approximates K-LRU, we first focus
on the eviction probability of an arbitrary object st(i) in the KRR cache of size C,
ΦC,K(st(i)). According to the KRR algorithm, an object on stack position i, denoted
as st(i), will be evicted from cache of size C, if and only if, objects yt+1(i − 1) and
st(i+ 1), st(i+ 2), ..., st(C) all have higher priority than st(i). Mattson et al verified
that eviction probability of an arbitrary object under RR is equivalent to random
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eviction, that is ΦC,1(st(i)) = 1
C

. Using same approach we show that:

ΦC,K(st(i)) =

(
iK − (i− 1)K

iK

)
∗
(

i

i+ 1

)K
∗
(
i+ 1

i+ 2

)k
∗ ...

(
C − 1

C

)K
=
iK − (i− 1)K

CK
(4.2)

Based on Definition 1 and ΦC,K(st(i)), we see that KRR and K-LRU cache yield ex-
actly the same eviction probability for an arbitrary object if Assumption 1 holds true.
Hence, the accuracy of using the KRR algorithm to approximate K-LRU depends on
effectiveness of Assumption 1.

The K-LRU cache ranks objects according to their recency, thus, when the new object
enters the cache, all other objects down shift their ranking by one, their relative
ranking to one another remains same. Unlike K-LRU, KRR performs one way shifts
of object’s rank only on a subset of objects as illustrated by Figure 4.1. Although, less
recent objects are still likely to be rank lower in KRR cache, due to these probabilistic
shifts, objects’ ranking in KRR cache does not fully resembles recency ordering as
the K-LRU cache does. Since KRR only orders objects according to their recency at
a coarse granularity level, a more recently used object could have a higher chance of
being evicted compared to a less recently used object. However, in our evaluation, we
observe that using KRR’s stack ordering to approximate K-LRU’s recency ordering
is sufficient to yield a very accurate MRC for most cases. The error magnifies only
under an occasional circumstance, such as repeatedly access objects with same recency
order, i.e. loop pattern. To further reduce the error, we make a simple modification
on the KRR algorithm. In general, the K-LRU cache is more likely to evict less
recently used objects compare to the KRR cache, because unlike KRR, K-LRU cache
ranks objects strictly by their recency. To fix that, we can increase the K in the KRR
algorithm, that is, for a K-LRU with sampling size K, we choose a value K ′ for the
corresponding KRR, such that K ′ > K. By using a larger value K ′, we increase the
eviction probability of object with low rank. This effectively offsets KRR’s tendency
of evicting more recently used objects. In our evaluation, we find that K ′ ≈ K1.4

yields a very accurate approximation for K-LRU.

4.3 Fast Stack Update

As described in Section 2.2, the naive stack algorithm requires O(M) update time for
every access. In Figure 2.1, a downshift object would need to be compared to and
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swap with the objects from the stack top to the recently hit location based on the
maxPriority function in Equation 4.1. Clearly, O(M) per update is prohibitive for
online processing. To overcome the expensive update overhead, we propose two effi-
cient stack update mechanisms, which reduce the overhead from O(M) to O(log2M)
and O(logM), respectively.

First, we notice that the probability that maxPriority function returns st−1(i) in-
creases as we scan down the stack in Figure 2.1. This suggests that, for every stack
update, the object in st(i) remains the same as in st−1(i) for most stack positions,
only a small portion of st−1(i)’s are replaced by yt(i− 1)’s. For convenience, we now
call the stack position i, where st−1(i) have lower priority than yt(i − 1) as a swap
position.

Corollary 1. Let βswap denote total number of swap positions per stack update, then
the expectation E(βswap) is:

E(βswap) = O(KlogM)

Proof. The probability for the ith stack position to be a swap position is 1−
(
i−1
i

)K
,

then the expectation E(βswap) can be calculated as:

E(βswap) =

φ−1∑
x=1

(
1−

(
x− 1

x

)K)
, 1 ≤ φ ≤M

≤
∫ φ

1

(
1−

(
x− 1

x

)K)
dx

= x

∣∣∣∣φ
1

−
∫ φ

1

(x− 1)K

xK
dx

= x

∣∣∣∣φ
1

−
∫ φ

1

∑K
i=0

(
K
i

)
xK−i(−1)i

xK
dx

= x

∣∣∣∣φ
1

−
(∫ φ

1

(
K
0

)
xK(−1)0

xK
dx+

∫ φ

1

(
K
1

)
xK−1(−1)1

xK
dx

+

∫ φ

1

(
K
2

)
xK−2(−1)2

xK
dx + ...

)
= x

∣∣∣∣φ
1

− x

∣∣∣∣φ
1

+ Kln(x)

∣∣∣∣φ
1

−
(∫ φ

1

(
k
2

)
xk−2(−1)2

xk
dx

+

∫ φ

1

(
k
3

)
xk−3(−1)3

xk
dx ...

)
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= Kln(x)

∣∣∣∣φ
1

−

(∫ φ

1

(
k
2

)
xk−2(−1)2

xk
dx +

∫ φ

1

(
k
3

)
xk−3(−1)3

xk
dx ...

)
= O(KlogM)

Based on Corollary 1, with a small constant K, the expected number of swap positions
per update is bound by O(logM). Naturally, if all swap positions can be identified
prior to the stack update, then update process can be done by simply performing
one-way shifts on swap positions from stack top to φ, which would be considerably
faster than linearly scanning through entire stack.

4.3.1 Approach I: Top Down Stack Update

1 −
2

9

௞
2

9

௞

42 93 85 6 7

Interval 1 Interval 2

*Interval 1: [start, mid -1]
*Interval 2: [mid, end]
*Grey area indicates at least one 
swap in the interval.

2…9

2…5 6…9

2…3 4…5 6…7 8…9

2 3 4 5 6 7 8 9

42 93 85 6 71 … …10 ϒ௧

(a) Identify Swap Positions

(b) Shift corresponding objects

1:

2: 3:

4: 5: 6: 7:

Comment:

Node# :

Figure 4.2: Top Down Stack Update Illustration

As mentioned above, fast stack update can be achieved through efficiently simulating
all swap positions from stack top to φ. Instead of performing random draws on
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every position to determine whether it is a swap position, we can recursively divide
the problem into smaller sub-problems. First, based on the stack update procedure
(Equation 2.1), st−1(1) and st−1(φ) are always swap position, then the task becomes
to identify all remaining swap positions between 2 and φ − 1. If there are swap
positions between 2 and φ − 1, then we have three different cases: (1) All swap
positions are in the interval

(
2, dφ−1

2
e
)
. (2) All swap positions are in the interval(

dφ−1
2
e+ 1, φ− 1

)
. (3) Both intervals contains swap positions. In Section 4.1, we

specify that the probability that st−1(i) remains in same stack position i at time t is(
i−1
i

)K
, which immediately follows that the probability that st−1(i) to st−1(j), with

j > i, all remain in same stack positions at time t is simply
(
i−1
j

)K
. Equivalently,

the probability of there is at least one swap position from stack position i to j is

1−
(
i−1
j

)K
. With the probability given, we can solve the original problem by breaking

it into smaller sub-intervals and recursively solve each sub-intervals. Next, we will
demonstrate this top-down strategy by walking through a small example shown in
Figure 4.2. The Algorithm 1 is the complete pseudocode for the top down stack
update.

Figure 4.2 demonstrates swap positions generation with φ = 10. By definition, posi-
tion 1 and 10 are swap positions, then we perform a random draw to check whether
there are any swap positions in the interval (2, 9). If there are swap positions in the
interval, we further break it down into two sub-intervals (2, 5) and (6, 9). Then, we
perform the second random draws to determine which sub-intervals contain swap po-
sitions. Figure 4.2 indicates that both interval (2, 5) and (6, 9) contain swap positions.
We continue the process until all swap positions are identified.

To compute the expected running time of Algorithm 1, we need to sum up the cost
of every level in the recursion tree. As an example, Figure 4.2 (a) shows the complete
binary state-space tree for the swap position generation between positions 2 to 9.
Each node of the complete binary tree represents an interval of consecutive stack
positions. On each node, there is an O(1) cost for determining whether the given
interval contains swap positions. Note that the recursion tree is not the complete
binary tree, we do not traverse nodes that do not contain swap positions. Similarly,
we can say the recursion tree is induced by all traversed nodes in the complete binary
tree. Thus, the total cost of algorithm 1 is equivalent to the total number of nodes
in the recursion tree. In Proposition 3, we show that the expected number of nodes
in the recursion tree is bounded by O(log2M) if K is a small constant. By using this
top-down strategy, we reduce the stack update cost from O(M) to O(log2M).
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Proposition 3. Let X denote the total number of nodes traversed during swap posi-
tions generation, then the expectation E(X) is:

E(X) = O(Klog2M)

Proof.
First, let T denotes the complete binary state-space tree of swap positions generation.
Next, we label each node according to the level order traversal of T .

Then, we define indicator random variable Xi such that:

Xi =

{
1, if ith node is visited.

0, otherwise.

Since X is the total number of node visited, then we have

X =

|T |∑
i=1

Xi

Let Pr{i} = 1 −
(
αi−1
βi

)K
denote the probability of the interval associated with ith

node has at least one swap position, where αi is the interval’s start position and βi is
the end position.
Then, according to the algorithm, the ith node is visited iff the interval (αi, βi) con-
tains at least one swap position, therefore, the expected value of Xi can be calculated
as:

E[Xi] = 1 ∗ Pr{i}+ 0 ∗ Pr{i} = 1−
(
α− 1

β

)K
Immediately follows it, we have

E[X] = E

 |T |∑
i=1

Xi

 =

|T |∑
i=1

E[Xi]

Next, without loss, we assume the number of positions M is powers of 2. Now we
rewrite E[X] as follow:

E[X] =

|T |∑
i=1

Xi
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=

|T |∑
i=1

1−
(
αi − 1

βi

)K

=

Log2(M)−1∑
L=0

2L∑
i=1

1−
(

1 + (i− 1)(2Log2(m)−L)

1 + i ∗ (2Log2(m)−L)

)K

=

Log2(M)−1∑
L=0

2L−1∑
i=0

1−
(

2L + i ∗M
2L + (i+ 1) ∗M

)K

≤
Log2(M)−1∑

L=0

∫ 2L

0

1−
(

2L + i ∗M
2L + (i+ 1) ∗M

)K
di

≤
Log2(M)−1∑

L=0

O

(
K ∗ ln

(
2L +M ∗ 2L + 2 ∗M

2L +M

))

≤
Log2(M)−1∑

L=0

O

(
K ∗ ln

(
M2 + 3M

2M

))

=

Log2(M)−1∑
L=0

O (K ∗ ln (M))

= O(Klog2M)
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Algorithm 1 Approach I: Top Down Stack Update

1: procedure StackUpdate(ST, obj)
2: . ST: Ordered Stack, implemented as an

arrayList
3: . obj: referenced object
4: . random(): PRNG from [0,1)
5: . new object (cold miss) is attached to the

end of the stack before the stack update
6:

7: if obj.φ == 1 then
8: return . reference obj on the top of the stack, no

change needed
9: end if

10: if random() > (1/obj.φ)ST.k then
11: if obj.φ == 2 then . edge case
12: add to swapArray(2)
13: else
14: push to unVisitedStack(2, obj.φ)
15: end if
16: while unV isitedStack is Not Empty do
17: elt← pop unVisitedStack()
18: mid← d(elt.start+ elt.end)/2e
19: nsw1← ((elt.start− 1)/(mid− 1))ST.k

20: nsw2← ((mid− 1)/elt.end)ST.k . Probability of no swaps in
second interval

21: sw1← 1− nsw1
22: sw2← 1− nsw2 . Probability of at least one

swap in second interval
23: ntvl1← sw1 ∗ nsw2
24: ntvl2← nsw1 ∗ sw2
25: wght← ntvl1 + ntvl2 + (sw1 ∗ sw2)
26: Rand← random()
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27: if Rand < (ntvl1/wght) then . Fall in region 1
28: if elt.start == mid− 1 then
29: add to swapArray(elt.start)
30: else
31: push to unVisitedStack(elt.start, mid− 1)
32: end if
33: else if Rand < (ntvl1 + ntvl2)/wght then . Fall in region 2
34: if elt.end == mid then
35: add to swapArray(elt.end)
36: else
37: push to unVisitedStack(mid, elt.end)
38: end if
39: else . Fall in both regions
40: if elt.end! = mid then
41: push to unVisitedStack(mid, elt.end)
42: end if
43: if elt.start! = mid− 1 then
44: push to unVisitedStack(elt.start, mid− 1)
45: end if
46: if elt.start == mid− 1 then
47: add to swapArray(elt.start)
48: end if
49: if elt.end == mid then
50: add to swapArray(elt.end)
51: end if
52: end if
53: end while
54: end if
55:

56: StackSwaps(ST, obj, swapArray)
57: end procedure

4.3.2 Approach II: Backward Stack Update

We now introduce the second stack update method which only requires O(logM)
time per update. It is much simpler and only requires about 10 lines of code for stack
updates. Mattson et al.’s linear stack update for RR determines swap positions by
performing random draws from stack top till st−1(φ). We find that a much efficient
way can be done by generating swap positions backwards, starting from st−1(φ) to
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stack top. Let v1, v2, ..., vβ, vβ+1 denote swap positions ordered by their stack positions
in increasing order, where st−1(1) and st−1(φ) are v1 and vβ+1, respectively. We will
start by first identifying swap position vβ. Since vβ is the second to the last swap
position, this implies that the objects in stack positions greater than vβ and smaller
than φ will remain in the same positions at time t. Semantically, the object in swap
position vβ is the evicted object in a cache of size φ − 1 at time t. Next, from
Equation 4.2, we know the eviction probability of an object in KRR cache is directly
associated with its stack position. Furthermore, the cumulative distribution function

(CDF) of Equation 4.2 is P (X ≤ xi) =
(
i
C

)K
. Now, we can obtain vβ by simply take

the inverse of the CDF with C = φ−1. For vβ−1, since vβ is already identified, we can
compute it using similar idea with C = vβ−1. Algorithm 2 shows the complete steps
for this backward stack update approach. For total random replacement, or when
K = 1, this approach degenerates to the D-RAND proposed by Bilardi et al., which
is another stack version of random replacement policy [7]. The expected running
time for Algorithm 2 is O(logM), because, based on Corollary 1, expected number
of swap positions is bound by O(logM), and each iteration of Algorithm 2’s while
loop computes exactly one swap position. By using Algorithm 2, our KRR model can
approximate K-LRU cache in just O(NlogM) time.

Algorithm 2 Approach II: Backward Stack Update

1: procedure StackUpdate(ST , obj)
2: . ST: data structure include KRR stack and metadata
3: . obj: referenced object
4: i← obj.φ
5: while i > 1 do
6: r ← random() . random(): PRNG from (0,1]

7: x← dr 1
K ∗ (i− 1)e

8: ST.stack[i]← ST.stack[x]
9: i← x

10: end while
11: ST.stack[1]← obj
12: end procedure

4.4 Implementation

Unlike the LRU stack, the KRR stack only shifts a small subset of objects on stack
per stack update. To take advantage of that, we implemented the KRR stack as a
simple array, where objects are ordered according to the stack order. When the object
is referenced, we can find it in constant time using a hash table where a hash table
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entry holds a pointer to the array location. An object’s stack distance is simply its
array index. On a stack update, first we identify all swap positions by using one of
the algorithms described in Sections 4.3.1 and 4.3.2. Then, as shown in Figure 4.2
(b), we perform cyclic swapping on all marked positions. In our implementation,
we adopted spatial sampling technique described in Section 2.4. By default, we use
sampling rate of R = 0.001, but to ensure the accuracy of MRCs, a higher sampling
rate is applied to workloads with relatively small working set sizes.

A B C D EStack Top:

5 objects, total Size: 20

Uniform object sizes assumption:  D’s stack distance = 4*ଶ଴
ହ

= 16

Variable object sizes:  D’s stack distance = 11

11

Figure 4.3: Byte-level Stack Distance Example

4.4.1 Handling Variable Object Sizes
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Figure 4.4: Variable Object Sizes Stack Update

The basic array implementation of the KRR stack implicitly assumes that all objects
on the stack have identical sizes. Under such an assumption, the stack distance can
be directly related to the object’s array index. However, for workloads with diverse
object size distribution [30], computing the object’s stack distance base on its logical
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location on the stack could be problematic. For example, in Figure 4.3, we see that,
under uniform object sizes assumption, the estimated byte-level stack distance of
object D (16) significantly differs from the actual byte-level stack distance (11). On
each reference, to obtain the exact byte-level stack distance, one would need to sum
up the size of all objects from the stack top to the referenced object, which indeed
appears to be a very expensive task.

To collects byte-level stack distance efficiently, our solution is to add an additional
array structure, sizeArray. Each entry of the sizeArray maintains a partial accumu-
lation of stack size, specifically, the entry i of the sizeArray stores the total size of
objects from stack top to stack position bi, where b is the base parameter. Figure 4.4
illustrates the stack update process for a KRR stack with a base-2 sizeArray. Since
the length of sizeArray is logarithmically bounded with respect to KRR stack length,
the cost of maintain the sizeArray is at most O(logM), where M is the stack size.
With aids from sizeArray, we can make better estimations on byte-level stack distance
using Algorithm 3.

Algorithm 3 Byte-level KRR Stack Distance

1: procedure StackDistance(st, sizeArry, b, φ)
2: . st: Ordered Stack, implemented as an

arrayList
3: . sizeArry: array of partial stack sizes
4: . b: sizeArray’s base
5: . φ: stack position of referenced object
6:

7: index← logb (φ)
8: sdLow ← bindex

9: if sdLow < φ then
10: sdHigh← bindex+1

11: res← (sizeArry[index+ 1]− sizeArry[index]) ∗ φ−sdLow
sdHigh−sdLow

12: else
13: res← 0
14: end if
15: return sizeArry[index] + res
16: end procedure

4.4.2 Available Artifact

The complete implementation of the KRR algorithm can be found here:
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https://github.com/JYang1997/KRR-stack-algorithm
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Chapter 5

Experimental Evaluation

This chapter evaluates KRR’s accuracy, its time efficiency and space overhead.

5.1 Experiment Setup

The machine used for evaluation is configured with an Intel(R) Xeon(R) Gold 5118
2.30GHz processor with 30 MB shared LLC and 188 GB of memory, and the operating
system is Fedora 31 with Linux kernel 5.6.15.

For comparison, we have implemented Mattson’s LRU stack algorithm using a bal-
anced search tree [17]. The conventional LRU stack can be implemented using a
doubly-linked list which yields O(M) per search and O(1) per update. Using a bal-
anced search tree results in O(logM) for both search and update. This implementa-
tion can generate an accurate MRC for the true LRU policy. We also implemented
SHARDS [24], which can output an approximated MRC for the true LRU policy.

To reveal the ground truth of the miss ratio of a K-LRU cache, we designed and
implemented a cache simulator that adopts K-LRU replacement. A simulator can
only generate one miss ratio for a given cache size with one pass of the input trace.
To generate an MRC, we can run the simulator multiple times for different cache sizes
and using interpolation for miss ratio prediction.
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5.2 Workload Description

We use three different workloads for our evaluation:

MSR MSR Cambridge suite [1] is a collection of I/O traces from 13 different enter-
prise data center servers. We evaluate our model on all 13 traces, as well as the
merged ”master” MSR workload which is also used in Wire et al [24].

YCSB Yahoo Cloud Serving benchmark [2] is a well studied benchmark that pro-
vide a set of six different types of core workloads. In our evaluation, we use
Workload C and E. Specifically, Workload C is a read-only workload follows
Zipfian distribution, and Workload E is a scan dominant workload that uses
Zipfian distribution to choose the first key in the range, and then uses uniform
distribution to choose the number of objects to scan. For Workload E, we con-
figure the max scan length to be the same as the number of distinct objects in
the workload. We evaluate our model on both Workloads C and E, each with
three different α values, 0.5, 0.99 and 1.5.

Twitter Twitter Cache traces [30] is a collection of one-week-long cache request
traces from 54 Twitter’s in-memory caching clusters. In our evaluation, we use
4 sub-traces, each with 100 million requests, from Twitter trace no. 26.0, 34.1,
45.0 and 52.7.

For Section 5.3, we convert every request to a standard “get/set” operation with
uniform object size of 200 bytes.

For Section 5.4, which evaluates workloads with variable object sizes, we use both
MSR and Twitter traces. For MSR traces, we convert every request to a standard
“get/set” operation and use the block size from the first request to each object as
the object’s size. For Twitter traces, we use the original key, data size, and operation
type.

5.3 MRC Accuracy

To measure the accuracy of the KRR model, we compare it with actual MRCs gen-
erated from directly simulating K-LRU cache under 40 different cache sizes that are
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Table 5.1
Average MAE Under Different Sampling Size For MSR, YCSB and Twitter

Traces.

KRR KRR+Spatial Sampling

K 1 2 4 8 16 32 1 2 4 8 16 32
MSR 0.000079 0.00039 0.00052 0.00063 0.00067 0.00059 0.0015 0.0017 0.0017 0.0018 0.0019 0.0018
YCSB 0.000039 0.00079 0.0018 0.0029 0.0036 0.0036 0.0037 0.0039 0.0048 0.0058 0.0064 0.0063

Twitter 0.000016 0.00085 0.00057 0.000407 0.00029 0.00017 0.0017 0.0021 0.0018 0.0018 0.0017 0.0017

0.0 0.5 1.0
1e5

0.0

0.2

0.4

0.6

0.8

1.0
YCSB Workload E, alpha = 1.5

0.0 0.5 1.0
1e7

MSR src1

Color:       
K=1
K=4
K=16
LRU

Pattern:             
real KLRU
KRR
KRR+Spatial
LRU

Cache Size (# of objects)

M
iss

 R
at

io

Figure 5.1: Actual vs. Predicted K-LRU MRCs. Three different colors represent

K-LRU MRCs with K = 1, 4, 16, respectively. The actual and predicted K-LRU MRCs with and

without spatial sampling are represented using different line types. The MRCs of exact LRU are

plotted in black lines for comparison.

evenly distributed over the workload’s working set size. Note that, since both stack
update methods mentioned in Section 4.3 follow exactly the same swap probability,
thus the accuracy of our KRR model does not depends on which method we use for
stack update. For simplicity, all MRCs used in accuracy analysis are generated using
the faster backward stack update. To quantify the accuracy of MRCs generated by
the KRR model, we follow the error metric used in [24], the mean absolute error
(MAE). The MAE between the actual and KRR MRCs is calculated as the mean
of miss ratio differences across all simulated cache sizes. There are three sources of
errors: (1) Simulation error. K-LRU and KRR are both probabilistic policies. There
will always be a slight difference in miss ratio under different rounds of simulation. (2)
Sampling error. Waldspurger et al. show that the spatial sampling error is inversely
proportional to

√
ns, where ns is the amount of data sampled. Our default sampling

rate is R = 0.001. To make the sampling error low, we apply a higher sampling
rate to those workloads with a small working set size (less than 8M objects in our
experiments) such that for all workloads we ensure there are at least 8K objects are
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sampled. (3) Modeling error. As mentioned in Section 4.2, KRR and K-LRU are not
statistically identical except when K = 1. In this section, our evaluation shows that
for any arbitrary K, the MRC generated by KRR always closely approximates the
K-LRU MRC.

We evaluate 13 MSR traces, 2 YCSB workloads each with three different α values
(0.5, 0.99 and 1.5) and 4 Twitter sub-traces. Table 5.1 shows average MAE of all
three types of workloads under different K values from 1 to 32 for both KRR and
KRR with spatial sampling. Overall, we observe that the difference between actual
and approximated MRCs is almost negligible. For KRR only, the average MAE across
all traces with different sample sizes is 0.00099. KRR also works extremely well with
spatial sampling, the average MAE across all traces is only 0.0026. The maximum
MAE across all tested instances is around 0.01 from YCSB workload E with α = 0.99
under KRR+Spatial sampling (K = 2). However, we notice that the MAE of the
same trace under KRR without spatial sampling is negligibly 0.0003 which implies
that a large portion error is contributed by spatial sampling not KRR itself. As an
example, Figure 5.1 illustrates that MRCs generated by KRR are nearly identical to
the actual MRCs for two representative traces, YCSB workload E with α = 1.5 and
MSR src1.

We observe that there are two different types of traces, A and B. Type A consists of
the traces that have a notable difference in terms of MRC under different Ks. Type
B consists of the traces that have nearly the same MRCs with respect to change in
sampling size K. Figure 5.2 illustrates the MRCs of a few representative traces from
both types A and B. Note that all traces in type A exhibit a significant gap between
the LRU (K =∞) MRC and the random replacement (K = 1) MRC. Thus, directly
using true LRU’s MRC to approximates the MRC of a K-LRU cache with a small
K value (K = 2, 4, 8) can become very inaccurate. Existing fast MRC generation
techniques such as AET, SHARDS and Counter Stacks are designed for LRU policy,
use these techniques to approximate a K-LRU cache with a small K will not be
reliable. From Corollary 1, we see that the number of swap positions increases as K
increases. Thereby the stack update cost can be high with a large K such as K ≥ 32.
Fortunately, as illustrated by Figure 5.2, as K increases the K-LRU converges to
LRU. For that reason, when approximating K-LRU with K ≥ 32, directly applying
an LRU MRC approximation technique such as SHARDS or AET would be more
time efficient compared to KRR. For type B traces, the cache can yield similar miss
ratios under different Ks. By choosing a smaller K, (K = 1, 2), we can effectively
reduce the cost of sampling and eviction.
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Figure 5.2: MRCs of Traces under K-LRU and LRU

5.4 Accuracy - Variable Object Sizes Workloads

To measure the effectiveness of our variable object size-aware KRR implementation,
we evaluate our algorithms against variable object sizes MSR and Twitter traces (see
Section 5.2). For convenience, we use uni-KRR and var-KRR to denote the uniform
object size KRR and the variable size-aware KRR implementation described in Sec-
tion 4.4, respectively. In Figure 5.3, we show MRCs from 8 different representative
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traces (4 MSR and 4 Twitter). Each graph compares uniKRR and varKRR with the
true MRC. We observe that the MRCs generated based on uniform size assumption
(uni-KRR) does not always approximate the real MRCs well (shown in Figure 5.3(A)).
In contrast, the var-KRR approximates the real MRCs with almost negligible errors.
Table 5.2 summarized the MAE of MSR and Twitter traces under different K values
from 1 to 32 for var-KRR. Overall, var-KRR achieves an MAE of 0.0008 (0.00143
with spatial sampling) for MSR traces and 0.00025 (0.00210 with spatial sampling)
for Twitter traces.

Table 5.2
MAE Under Different Sampling Size for Variable Size MSR and Twitter

Workloads

Var-KRR Var-KRR+Spatial

K MSR Twitter MSR Twitter
1 0.00094 0.00023 0.00190 0.00201
2 0.00067 0.00045 0.00159 0.00213
4 0.00062 0.00034 0.00132 0.00176
8 0.00074 0.00018 0.00116 0.00165
16 0.00089 0.00013 0.00125 0.00238
32 0.00096 0.00014 0.00136 0.00268

Average 0.00080 0.00025 0.00143 0.00210

Table 5.3
Running Time Comparison for Processing One Million MSR src1 Requests

Stack Update Efficiency

Methods Time (Sec)

Simulation 26
Basic Stack 53606

Top Down Stack Update 97
Backward Stack Update 6.5

Top Down+Spatial 0.39
Backward+Spatial 0.07

5.5 Time Cost

To measure the efficiency of our stack update mechanisms, we compare both the top
down and backward stack update methods (with/without Spatial sampling) with the
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Figure 5.3: Accuracy and Time for Variable Size Aware KRR

naive linear stack update method and the simulation/interpolation-based approach.
For interpolation, we simulate K-LRU under 25 different cache sizes evenly distributed
across its working set size. For comparison, we use the first one million references from
MSR src1 trace (mostly cold misses), and we use K = 5, the default sampling size for
K-LRU in Redis. Table 5.3 is a summary of the results. We see that the top down
stack update method shows x552 times improvement over the linear stack update
approach, and the backward stack update method improves the run time overhead
by x8247 times. When spatial sampling with R = 0.011 is applied, the running
time is further improved by two more magnitudes. It is worth mentioning that even
though generating MRC through interpolation may seem efficient in terms of running
time, but there are several problems with using interpolation to generate MRCs for
online applications. First, the accuracy and time overhead is directly associated with
the number of cache sizes simulated. Second, for online applications, without the
knowledge of the workload’s working set size, it would be difficult to choose which
cache sizes to simulate. Thus, an efficient one-pass algorithm is always preferred over

1We use R = 0.01 here, rather than R = 0.001 in other experiments, to keep the sampling error low
by ensuring at least 8K objects are sampled over the one million requests.
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Figure 5.4: Normalized Average Stack Update Overhead Against K=1

interpolation. Next, we use the merged ”master” MSR trace to compare the running

Table 5.4
Master Trace Comparison

Merged-MSR Trace, Spatial Sampling Rate = 0.001

Method Top Down+Spatial Backward+Spatial SHARDS
Times (sec) 39.1 22.4 19.7

time of KRR+Spatial sampling with existing LRU MRC approximation technique,
SHARDS. Table 5.4 contains running time for both versions of KRR and SHARDS.
The running time of KRR shown in Table 5.4 is the average across different Ks
(1, 2, 4, 8, 16, 32). The average running time for KRR with backward stack update
and SHARDS are very close in our test. The top down stack update method on
average is about two times slower than SHARDS for the master trace.

Corollary 1 shows that the number of expected swap positions is proportional to
sampling size K. As the number of swap positions increases, the expected cost of
stack update also increases proportionally. Figure 5.4 shows the normalized average
running time overhead against K=1 across all traces. The time overhead for K ≤ 16
is generally no more than 4 times greater than that of K = 1 in our tests. As
mentioned in Section 5.3, as K increases, K-LRU converges to true LRU. Therefore,
when approximate MRC for K-LRU with a large K (K ≥ 32), conventional LRU
MRC approximation techniques like SHARDS are recommended.
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Figure 5.5: Validating the KRR with Redis. The Redis MRCs are generated by

running Redis instances with 50 different memory sizes.

5.6 Space Cost

The KRR stack is implemented as a simple array with a hash table where an entry
of the hash table holds a pointer to an object location in the array. Then the total
space overhead of the KRR stack is proportional to the total number of objects
stored on the KRR stack. In our implementation, each object consumes 68 bytes
including hash table and other auxiliary entries. For var-KRR, a 4 bytes field is
needed to store the size of each object, the additional sizeArray consumes negligible
space in comparison to the stack. After incorporating spatial sampling, the overall
space overhead is further reduced by sampling rate R. Thus the estimated percentage
of space overhead is 72 bytes * R / average object size. For instance, assuming R
= 0.001, and the average size of objects is 200 bytes2, then the space overhead for
processing a workload with 100 million distinct objects is just 0.036% of the working
set size.

5.7 Validation of KRR on Redis

In this section, we validate KRR against Redis, the real world in-memory key-value
store. We compare the actual Redis MRCs with the KRR model, as well as the MRCs
from our K-LRU cache simulator. The Redis MRCs are generated by running Redis
instances with 50 different memory sizes. In general, as shown in Figure 5.5, the KRR

2Many real in-memory cache workloads have much higher average KV size [30]
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approximation is highly accurate when compared to Redis’ MRCs. One might notice
that there is a slight deviation between MRCs from the K-LRU cache simulator and
Redis. This is because Redis uses a different sampling mechanism to sample K objects
from the cache. For the purpose of efficiency during sampling, the mechanism does
not guarantee that sampled objects follow a good random distribution. 3

To evaluate the overhead of KRR in Redis, we set the object size of all objects,
in the traces shown in Figure 5.5, to 200 bytes, and configure Redis memory size to
approximately 50% of the working set size of each trace. The average of three trials of
experiment on each trace reveals that only 0.08%, 0.11%, and 0.09% of total execution
time are consumed by KRR, respectively. The space overhead is also extremely small.
For all three traces, the space consumed by the KRR stack never exceeds 1MB.

3Redis also provides an alternative sampling mechanism, ”dictGetRandomKey()”, which is less effi-
cient than the default method but guarantees good random sampling. This sampling mechanism
yields nearly identical miss ratio curves to the ones by our K-LRU cache simulator.
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Chapter 6

Related Work

The Least Recently Used replacement (LRU) strategy is the most well-known replace-
ment strategy due to its simplicity and effectiveness. Many advanced recency-based
replacement strategies are more or less extensions of LRU replacement. Thus, many
prior works on cache modeling often assume the cache is configured with LRU replace-
ment. This chapter highlights some research works on cache modeling that are not
mentioned in previous chapters. Specifically, in Section 6.1, we describe few represen-
tative works on LRU miss ratio curve generation. Then, in Section 6.2, we describe
three works that aim to efficiently model cache beyond LRU replacement.

6.1 LRU MRC Techniques

The baseline technique by Mattson et al. [14] simulates a linear LRU stack to track
stack distance, which can be used to construct the MRC for an LRU cache through a
single pass of the trace. The original stack algorithm tracks exact stack distance for
every access, which generates exact MRC for the LRU cache but comes with the cost
of extremely large space and time overheads. However, in practice, the optimization
decision made based on MRC are often in much coarser granularity [10, 19]. Many
later works attempted to reduce the overhead of stack processing by using more
compressed stack representation.

Scale Tree [32] is a modified version of Olken’s stack [17]. Instead of using each node
to store exactly one reference, the scale tree stores a time range of references in
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one node. Compressing multiple references into one node is essentially a trade-
off between error and space/time overheads. The scale tree approximates stack
distance with a small bounded error in which only takes O(NLog(Log(M)))
time and O(LogM) space.

MIMIR [22] divides the LRU stack into B variable size buckets, in which the
elements can be in any order within a bucket. The sequence of buckets forms
a coarser-grained LRU stack. To obtain the stack distance of a reference in
bucket Bi, we simply sum up the size of all buckets before from B0 to Bi−1

which gives a rough estimate of its stack distance. This method takes O(B)
time and O(M) space. They demonstrated that with B = 128, MIMIR can
generate very accurate MRCs.

Counter Stacks [26] replaces the original LRU stack with a set of cardinality
counters. Each cardinality counter stores the total number of unique references
observed since the counter initialized. The basic idea for Counter Stacks is that
the LRU stack distance is just counting the number of unique references between
re-references. Thus, the LRU stack processing can be considered as a stack of
cardinality counters, one for each request. To make it practical for online use,
Counter Stacks employs multiple compression techniques includes downsam-
pling and pruning its data matrix as well as replaces the bloom filter-based
counter with a low overhead probabilistic cardinality counter. The compressed
Counter Stacks only requires O(NLogM) time and O(LogM) space to generate
accurate MRCs with bounded error.

More recent advancement in LRU MRC generation leverages the metric called reuse
time. reuse time is defined as the total number of references between two references
to the same object. These techniques do not explicitly maintain any representation of
stack when processing the workload, instead, they collect the reuse time distribution
of the workload through sampling which can be done in just linear time with a small
fraction of space overhead.

Statstack [9] converts the reuse time distribution to an expected stack distance
distribution. For every reference with reuse time r, or equivalently there is r
number of references in between the re-reference, they approximate the expected
stack distance as the expected number of references out of the r references that
have forward reuse time greater than r.

In HOTL [27], Xiang et al. shows that miss ratio of an LRU cache with capacity
c can be approximated by finite difference of average footprint at c, which is
equivalent to the fraction of reuse time longer than the footprint window.
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A recent work, AET [12], presents a kinetic model for LRU cache eviction process.
This model use reuse time distribution to computes the object’s movement
probability (or equivalently its instantaneous velocity) at an LRU stack position.
For a reference, given its reuse time, the model computes the approximated stack
distance by integrating the reference’s moving speed over reuse time.

In terms of correctness, these reuse time-based models do not always produce accurate
MRC. Their correctness often depends on how close the workload follows their as-
sumptions. For example, one common hidden assumption among these models is that
the reference’s reuse time is independent from each other, and the reuse time distribu-
tion is static over time, which is not necessarily true for many workloads. Nonetheless,
much empirical evidence shows that these reuse time-based models work very well in
practice, large errors only occur in a small circumstance where the correctness con-
ditions are awfully violated.

6.2 Generic MRC Techniques

Min-Tree Algorithm. Bilardi et al., proposed a new representation for stack pro-
cessing called Min-Tree and introduced a class of replacement policies called NSP [7].
A replacement policy belongs to the class NSP if, under such policy, the priority of
an item only changes upon access to that item. Replacement policies such as OPT,
LFU, LRU, and MRU belong to the class NSP. Under Min-Tree representation the
cost of processing certain NSP stacks can be significantly reduced. Bilardi et al. show
that the time cost of the Min-Tree algorithm is depending on the expected number
of swap positions per stack update. For a stack with D expected swap positions per
update, Min-Tree is expected to complete the stack update in O(D ∗ Logφ) time.
When compared to the original linear stack, Min-Tree representation shows signifi-
cant performance improvement over policies that have a small expected number of
swap positions, such policies include LFU, MRU, and OPT.

Miniature Cache Simulation. The key insight behind many efficient single-pass
MRC construction algorithms is that many replacement policies satisfy inclusion prop-
erty (2.2). Unfortunately, for many non-stack policies, such as ARC [15], there is no
known single-pass solution. Thus, the only option for constructing MRC for these
policies is to emulate each different cache size. Waldspurger et al. proposed the
miniature cache simulation, which emulates a given cache size using a scaled-down
miniature cache over a spatially-hashed sample of requests [23]. Like SHARDS (Sec-
tion 2.4), the miniature simulation can achieve extremely high accuracy even under
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a sampling rate of R = 0.001. This allows generating MRC by emulating multiple
cache sizes under relatively small space/time overheads.

LLC Modeling. The accesses to LLC are typically filtered by upper-level private
caches, so the input stream of LLC is typically stripped from temporal correlation.
Motivated by such property of LLC, Beckmann et al. developed a generic cache model
that predicts the performance of age-based replacement policies on modern LLCs [4].
The model established a relationship between reuse time distribution, hit and evict
distribution, then it takes reuse time distribution of the workload as the input solves
hit and evict distribution through a fixed point iteration. Although the original work
does not provide rigorous convergence criteria, their empirical results show the model
makes a very accurate prediction when the model assumption holds.
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Chapter 7

Conclusion

Random sampling-based cache replacement policies such as K-LRU become more
attractive recently due to their small metadata and data structure maintenance over-
head, and acceptable miss ratio. However, modeling these policies remains a chal-
lenging problem. This paper presents KRR, a probabilistic stack algorithm which
enables MRC construction for variable block size K-LRU cache in one pass of the
trace. Moreover, we propose two fast stack update schemes to further reduce the
algorithm’s cost. Incorporating spatial sampling, we show that KRR can construct
an accurate MRC with very low space and time overhead. In our future work, we will
investigate other random-sampling policies which use other metrics, such as access
frequency and object expiration time, as priority functions.
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