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Abstract

Modern superscalar processors are able to potentially issue and execute multiple

instructions per cycle. Several techniques over the years have focused on increasing

the Instruction Level Parallelism (ILP) that a processor can exploit. However, there

are many limitations of ILP that hinder performance, chief of them being the chain

of dependencies between instructions that stops instructions from being executed in

parallel.

We propose a new micro-architecture design which extends the superscalar pipeline

with a data-flow pipeline where the dataflow part identifies immediately dependent

instructions and executes them early. The dataflow pipeline is able to identify redun-

dant instructions, track changes in the operands of the redundant instructions and

execute new instructions early in case of operand change. Our design helps alleviate

some of the main limitations of ILP.
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Chapter 1

Introduction

Superscalar architectures are able to potentially issue and execute multiple indepen-

dent instructions per cycle. This parallelism which machines exploit at the instruction

level is called Instruction Level Parallelism (ILP). Register renaming techniques help

eliminate false dependencies in an out of order superscalar and helps in extracting

more ILP. A lot of research has been focused on trying to maximize ILP in superscalar

processors. However, there are some fundamental limitations of ILP that hinders the

processor to utilize ILP to its full power.

One limitation of ILP is related to the size of the issue window. A small issue window

does not allow enough independent instructions in it at any given time. Increasing

the window size on the other hand leads to hardware complexity which makes it
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difficult to maintain a high clock speed. Another limitation of ILP is associated with

the control flow of a program. Branch predictions in a processor delays the fetching

of instructions until the correct target address becomes known. It is not practical to

fetch instructions from more than one target address in a single cycle. This delays

the filling of the issue window even on a correct prediction.

Another limitation of ILP is associated with data cache misses. Load instructions

are often the first instruction in a dependency chain and they often miss in the data

cache. These misses translate to the delay of all instructions that are dependent on

the load instruction. A non-blocking cache reduces the impact of a data cache miss

on ILP but misses still affect ILP performance.

A third limitation of ILP is the inherent sequential portion of computation. The

true dependencies in a code can never be parallelized and this sequential component

gravely restricts ILP.

Past work has tried to overcome the limitations of ILP by trying to dynamically de-

tect and eliminate redundant computation. We believe that along with eliminating

redundant instructions, the processor should also try to execute the next group of

immediately dependent instructions. We can achieve a higher ILP by executing de-

pendent instructions earlier which reduces the time to process instructions along the

critical path.
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We propose a new micro-architecture design which extends the superscalar pipeline

with a data-flow pipeline where the dataflow part identifies immediately dependent

instructions and executes them early. The dataflow pipeline is able to identify redun-

dant instructions, track changes in the operands of the redundant instructions and

execute new instructions early in case of operand change.

The eager execution paradigm includes the following advantages: (1) Redundant

instructions are identified in the front end of the processor. Redundant computation

is not only eliminated, thereby freeing up resources, but its result is also available

earlier leading to execution of its dependent instructions. (2) Immediately dependent

instructions are issued and executed earlier, leading to quicker collapse of dependence

chains. (3) Early execution of instructions makes their result available to long latency

operations earlier, which can improve performace by reducing the length of the critical

path.
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Chapter 2

Background

Compilers employ a number of optimization techniques to improve code. One such

technique is loop invariant code motion. Loop invariant code consists of expressions

that can be moved out of a loop body without affecting the program semantics. By

moving the invariant code out of the loop, that code only executes once instead of

every loop iteration. Another added benefit of code motion is that the result of the

invariant code is available to dependent instructions in the loop earlier.

Compiler techniques are able to capture a large amount of static redundancy in com-

putations. However, studies [1] [2] indicate that a large amount of redundancy in

programs is actually dynamic.

Sodani and Sohi [3] introduced the concept of Dynamic instruction reuse. They store
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the results of a previously executed instruction in a hardware structure called the

Reuse Buffer(RB) (Figure 2.1).

Figure 2.1: Reuse Buffer

After an instruction is decoded, the RB is searched to determine whether a valid

result from its previous execution is available. This search is done with the use of the

Program counter (PC) of the instruction. The information accessed from the RB then

passes through a Reuse Test to determine the validity of the result. Three schemes

are presented for reusing instructions. These schemes differ in the way in which the

RB results are identified.

The first scheme is based on operand values (Sv). The operand values are stored in

the RB along with the result of the instruction. The reuse test in this case simply

consists of comparing the source values of the decoded instruction with the values in

the RB. A match indicates the result in RB is valid. No explicit invalidation logic is
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needed in this scheme as a mismatch of operand values during reuse test automatically

invalidates the RB entry.

Figure 2.2: ReuseBufferentry(a)Sv, (b)Sn, (c)Sn+d

The second scheme is based on register names (Sn). In this scheme, the operand

architecture registers of an instruction are stored in the RB along with its result.

Any writes to architecture registers are broadcasted to the RB for invalidation. The

reuse test in this case involves checking whether the corresponding RB is valid.

The third scheme uses register names and dependence chain information to extend Sn

(Sn+d). In this scheme, a source index field is added along with the operand register

as in Sn. The source index field stores the RB index of the source operand. This

creates a dependency chain of the instructions in RB. The reuse test for independent

instructions is the same as in Sn. A dependent instruction is valid if source operands

(stored in source index) are the latest producers of those registers. Invalidation of

independent instructions is the same as in Sn. Dependent instructions are invalidated
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when their source operands are evicted from the RB.

Richardson [4] observes that long latency operations take up a significant portion of

computation time. A result cache is proposed which stores the results of such long

latency operations. The result cache is indexed using a hashing of an instruction’s

source operands. Access to the result cache can be initiated at or before the time of a

long latency instruction operation. A hit in the cache makes the result of the instruc-

tion available instantly and the already issued instruction can be halted/killed. The

execution continues normally on a cache miss and updates the cache after completing

execution.

There are a number of key differences between the reuse buffer and the result cache.

The foremost difference is that the reuse buffer is indexed with the address (PC) of

the instruction while the result cache is indexed with a hash of an instruction’s source

operands. This difference translates to when the result of a reuse is available to the

processor (reuse latency). Access to the reuse buffer can be initiated as soon as the

instruction is fetched. On the other hand, the result cache can only be accessed after

the instruction has been decoded, renamed and its source operands pass through the

hashing algorithm. Thus the reuse buffer makes the result of a reuse available at

least one cycle earlier than the result cache. One drawback of the reuse buffer is

that since it is indexed with PC, it can only reuse dynamic instances of the same

static instruction. A different static instruction with the same source operands (and
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consequently the same result) will not hit in the reuse buffer. However, since the

result cache is indexed with a hash of its source operands, multiple instructions using

the same source operands will hit in the result cache.

One advantage of the reuse buffer over result cache is that the entire fetch block can

search the reuse buffer in parallel since it is indexed by PC. The dependencies among

instructions can then be checked in the same manner as parallel renaming. In case

of result cache, parallel lookup of instructions cannot happen since the result of an

instruction is needed as the source of another dependent instruction. Thus access to

the result cache is inherently sequential and cannot happen in a single cycle.

Molina et.al. [5] proposes the Redundant Computation Buffer (RCB) which seeks to

embrace the merits of both reuse buffer and result cache. The proposed RCB has the

same reuse latency as the reuse buffer while also being able to identify reuse across

different static instructions. On an average, the RCB is able to reuse around 30% of

all dynamic instructions.

Yi et. al. [6] observe that some redundant computations in the reuse buffer may

be evicted, re-executed and re-stored in the reuse buffer. They go on to say that

such computations with a low frequency of execution hurt the effectiveness of storing

instructions in a reuse buffer. They introduce a novel approach called instruction

precomputation which involves profiling of the program before its execution. Profiling

determines the redundant computations with the highest frequencies of execution and
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stores them in the Precomputation Table (PT) before program execution. The PT

is checked during execution to determine a successful instruction reuse. The PT is

loaded during the profiling step and does not undergo replacement or eviction of

entries. Their approach outperforms similar instruction reuse techniques for similar

table sizes while providing a decrease in area, cycle time and port usage.

Several studies have examined the concept of value prediction to achieve a higher

ILP. Some of them [7] focus on load value predictions while others [8] extend the

concept to predict the values of any instructions that write their result to a register.

Value prediction helps in breaking down true data dependency chains by predicting

the result of an instruction and allowing the dependent instruction to speculatively

execute using the predicted value. Reexecution is necessary in case of a missprediction

but many value prediction based techniques have shown a significant increase in ILP.

Value prediction and value reuse capture distinct parts of redundancy in a program.

Liao and Shieh [9] propose an architecture which combines the two techniques. They

use information from the value prediction table to produce a speculative result from

the value reuse table. By combining the two techniques, they are able to achieve a

speedup of around 8% over the baseline.

Gellert et. al. [10] observe that branches that depend on dynamic values during

execution correspond to a majority of branch misspeculations, even in modern state of

the art branch predictors. These branches eat up a lot of cycles during missprediction
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recovery. They observed that more than 30% branches are dependent on critical load

instructions (instructions which miss in the L2 cache) and around 25% of them depend

on the result of a multiply or division operation. They postulate that by reducing the

latency of these high latency operations, the dependent branches would be executed

early and thus reduce the misprediction penalty. To accomplish this, they use a Reuse

Buffer for multiply and division instructions. Another table is implemenented which

serves as a value predictor for loads that miss in the L1 data cache. By eliminating

redundant long latency operations and predicting critical loads, they are able to obtain

a speedup of 3.5% in Spec integer benchmarks and around 23% in Spec floating point

benchmarks.

Golander and Weiss [11] explore the significance of instruction reuse in checkpoint

processors. Checkpoint processors are known for their fast misprediction recovery

rate. The recovery process involves two steps: bringing the architecture state back

to the last safe checkpoint (rollback), and reexecuting the instruction sequence be-

tween the safe checkpoint and the mispredicted instruction. They discovered that a

large number of instructions in integer benchmarks rexecute after the state has been

restored to the previous checkpoint and a large fraction (nearly 92%) of these instruc-

tions already have a result avaiable by the time the misspeculation is detected. They

propose that by reusing the isntructions along the reexecution path, a large fraction

of redundant computation can be avoided, thus leading to higher ILP.
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Huang and Lilja [12] observe that there is a strong correlation between the inputs

and outputs of a chain of instructions. They argue that reuse at a basic block level

(in contrast to reuse at instruction level) will reduce execution time further while

also consuming less hardware. To exploit block reuse, the authors propose a Block

History Buffer which stores dynamically determined basic block boundaries along

with its inputs and live outputs. The entire basic block is squashed if there is a hit

in the block history buffer with a particular series of inputs.

Continuing with the trend to increase reuse granularity, many researches have ex-

plored function level reuse. Kavi and Chen [13] replace the entries in the reuse buffer

from that of an instruction to that of a function. The reuse buffer is indexed by the

PC of the function call and stores the inputs and result of the function. Access to

the reuse buffer is initiated at the same time as fetch and a hit in the reuse buffer

skips the entire function by correctly changing the PC.

12



Chapter 3

Exploiting redundancy and its

interaction with the fetch engine

There are many parameters that affect the performance of a superscalar. When

dealing with code which is highly independent, two parameters become very important

to the performance: (a) the number of instructions issued every cycle and (b) number

of functional units. Assuming the number of functional units to be greater or equal

to the issue width, the IPC of a highly independent program almost reaches the issue

width of the processor.

Consider a piece of independent code executing on a 3-wide issue machine with 3

functional units. 3 instructions are fetched every cycle and placed in the issue window.
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Assuming no dependencies between the fetched instructions, all 3 instructions can be

issued in the issue cycle. Such independent code allows the superscalar to achieve an

IPC of 3 (issue width). This scenario is illustrated in Figure 3.1.

Figure 3.1: Independent code without reuse

Studies have indicated that there exists a large amount of dynamic redundancy in

programs. Certain micro-architectures have been proposed which attempt to use this

dynamic redundancy to increase ILP. They involve buffering the previous result of an

instruction so that future instances of the same instruction can use the result after

establishing that the sources of the instruction have not changed. Several of these

techniques are discussed in the background section.

Consider the above piece of code executing on a machine utilizing dynamic redun-

dancy. Assume instructions i1 and i3 are buffered in the first cycle. For every other

iteration of the code, instruction i1 and i3 are found in the buffer and do not execute.

They are essentially squashed as soon as they are decoded. This scenario is illustrated

in Figure 3.2.

Dynamic reuse of instructions provides a lot of benefits. The most obvious benefit

14



Figure 3.2: Independent code with reuse

is the reduction of resource use in the superscalar. Since i1 and i3 are squashed

after being decoded, this frees up the issue window and the execution units and

reduces resource contention. Another important benefit of dynamic reuse is that

dependent instructions can be executed early since the result of their producer is

available early. This helps break down dependence chains sooner and thus increases

ILP. Upon evaluation of the code sequence in Figure 3.2, we see that even though

instructions i1 and i3 are squashed every iteration, the IPC of the program essentially

comes out to 3. Thus dynamic reuse of even two-thirds of the fetch width does not

improve ILP.

The solution to increasing ILP with dynamic reuse is to increase the fetch width of

the processor. The fetch width was not considered to be an important parameter for

increasing performance since a machine without dynamic reuse will not be able to

issue more instructions than the issue width. Since there is a possibility of squashing

instructions earlier in the pipeline, other instructions from the now-widened fetch

group maybe able to proceed to the execution units.

15



Figure 3.3: Wider front end with reuse

Consider 6 independent instructions being fetched in a 6-wide fetch, 3-wide issue

machine. In the first iteration of the loop, instructions i1 and i3 are placed in the

buffer and are redundant for all other iterations. The second iteration (and every

iteration thereafter) of the loop is illustrated in Figure 3.3. Since i1 and i3 have valid

results in the buffer, they will be squashed before they enter the issue window. This

allows i4 and i5 to proceed to the execution units one cycle earlier than they would

have in the baseline. At this moment of time, the machine with instruction reuse is

2 instructions ahead in its execution than the baseline. This effect is propagated at

every instance of an instruction reuse. In a highly independent program, this machine

will be able to achieve an ILP of greater than 3 even in a 3 issue superscalar.

The benefits of a wider frontend with instruction reuse are twofold. Since some

instructions are squashed at decode, they do not occupy the issue window. This

makes space in the issue window for the next fetch group which may contain more

independent instructions. The second benefit is that the instructions in the same

16



fetch group which would not have otherwise proceeded to execution are now issued

because the issue width has been freed of the instructions which have been reused.

Note that the IPC of the baseline with this configuration will never exceed 3.

(a) Code (b) Dependency Graph

Figure 3.4: Dependent sequence of instructions

A real world program rarely exhibits such high levels of independent code. The ILP

of a realistic program is thwarted by the data dependencies between instructions.

A realistic code sequence is shown in Figure 3.4(a). The dependency graph of the

given code is shown in Figure 3.4(b). (Note: Reuse is only available for arithmetic

instructions). Our motivation is to obtain the result of instruction i6 as soon as

possible because the rest of the loop depends on the value produced by i6. We can

now look at the execution time of these 6 instructions under a narrow and wide front

end with and without instruction reuse. Instructions i1 and i2 are cached in the reuse

17



buffer in the first iteration of the loop and can be reused for subsequent iterations of

the loop.

The fetch blocks under a narrow and wide front end are shown in Figure 3.5.

(a) Wide Front
end

(b) Narrow
Front end

Figure 3.5: Illustration of Fetch Blocks

We consider Figure 3.6(a) as the baseline with a 3-wide fetch engine with no instruc-

tion reuse. Reusing instructions with a narrow front end (Figure 3.6(b)) increases

performance but does not realize the full potential of instruction reuse. In this con-

figuration, i3 is issued one cycle earlier than the baseline since the dependency chain

for i3 is collapsed earlier because of reuse of i1 and i2.

Widening the front end without instruction reuse (Figure 3.6(c)) does not offer any

benefit in this case because of the existence of dependencies among instructions. A

wider fetch engine provides more instructions to the superscalar but dependencies

18



among them are not collapsed fast enough.

Having a wider front end with instruction reuse (Figure 3.6(d)) with instruction

reuse effectively utilizes the fetch bandwidth while also collapsing dependency chains

earlier. This case provides the maximum performance improvement among all the

cases. Wider fetch bandwidth and instruction reuse complement each other and help

increase ILP.
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(a) Narrow Front end with
no reuse

(b) Narrow Front end with in-
struction reuse

(c) Wide front end with no
reuse

(d) Wide Front end with instruc-
tion reuse

Figure 3.6: Instruction Execution (Executions are for second iteration of
the loop)
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Chapter 4

Eager Execution

Past work has mainly focused on dynamic reuse of instructions which are stored in

a buffer to avoid redundant exeuction of instructions. Ideally, the more time an

instruction resides in the buffer, the better chance it has of being reused. Several

factors limit an instruction from continuing to reside in the buffer - the size of the

buffer (older instructions need to be replaced with newer ones when the buffer is

full) as well as the limited number of logical locations that the ISA provides and the

limited number of physical locations that the hardware provides. Since the ISA has

a specific number of logical registers, certain logical names are used multiple times

throughout the program. In order to maintain correctness in the buffer, instructions

need to be invalidated in the buffer when any of their sources are being rewritten.

Since logical names are repeated all the time in programs, the continuous invalidation
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of instructions in the buffer lead to the destruction of their invariance. An invalidated

instruction can no longer be reused since one or more of its source operands have now

changed.

Our aim with eager execution is to make use of the invalidated instructions and not

discard them as soon as their invariance ends. Henceforth, we will call the buffer

which stores instructions as the Eager Shelf. Instead of invalidating an instruction

when their source operand is updated in the shelf, we treat the updated operand as

a new producer of that instruction. Thus, while finding independent ready instruc-

tions to dispatch, we also attempt to execute the next set of immediately dependent

instructions from the shelf. The vast majority of instructions encountered in typical

programs are operations on one or two operands which are stored in other registers.

By eagerly executing instructions whenever their source operand is updated, we in-

crease the ILP as the result of eager execution will be available when the instruction

is encountered on the regular path.

The eager execution paradigm combines the power of an out-of-order superscalar

with a dataflow style pipeline where the dataflow pipeline makes the capture and

early execution of dependent instructions possible. This is accomplised by placing

instructions in the eager shelf and re-executing them as soon as any of their producer

operands are updated. A speculative dependence graph for the dataflow engine is

generated dynamically in the shelf as the superscalar processor keeps fetching new
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instructions. Instructions are placed in the shelf as they are fetched and their source

operands are updated by each new producer instruction writing to the same logical

destination. These dependent instructions are dispatched from the shelf as soon as

their source operands become ready. The dependence graph built in the shelf is

speculative since there is no guarentee that a certain instruction in the shelf will be

encountered on the regular path.

In Chapter 1, we discussed the main issues limiting ILP on superscalar processors.

One of them is the limited number of reservation stations associated with functional

units where an instruction waits for its source operands to become ready. Fully

occupied reservation stations stall the fetch engine, thereby halting the ability of the

processor to find independent instructions which can be issued. In this case, the

eager shelves act as a second set of reservation stations which stores instructions even

across control dependencies. An invariant instruction found in an eager shelf does

not proceed further in the pipeline. Similarly, a successful hit in an eager shelf for an

eagerly executed instruction is not placed in the reservation station since the result

of that instruction is already available. Eager shelves decrease the number of fetch

engine stalls since instructions found in an eager shelf (whether invariant or eagerly

executed) do not occupy a slot in the reservation stations. This approach allows the

processor to find independent instructions from future fetch blocks which increases

the utilization of execution units which in turn increases the ILP of the program.

In some cases, the early availability of results also propagates to branch instructions
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which are now computed early. Thus eager execution also leads to faster branch

computation and as a result, lower branch misprediction delays.

A second factor limiting the ILP is load instructions which miss in the data cache.

Generally, loads precede a number of instructions that are dependent on the result

of the load. A data cache miss stalls the load instructions and all the instructions

dependent on the load. With eager execution, the dependence chain leading to a

load is collapsed more quicky, allowing the load to be quickly issued. Therefore data

cache misses are triggered earlier and thus the effect of the miss is reduced for future

instructions.

A final limitation of ILP is the inherent sequential nature of most programs. The

critical path of a program (i.e the height of its dependence graph) is usually confined

by the sequential portion of the code. Redundant and eagerly executed instructions

help in collapsing the dependence graph. The result of these instructions are ava-

iable in the shelf and thus redundant computation is either completely avoided or

instructions are more quickly executed, increasing the ILP.
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4.1 The Eager Shelf

The eager shelf can be thought of as a second reservation station for the dataflow

part of the pipeline. Any arithmetic or logical instruction can be placed in the shelf.

We will call these instructions as Shelvable instructions. The shelf stores the physical

source operands and opcode of Shelvable instructions. The shelf also contains the

result of the instruction. The result is stored as a physical register number in the shelf.

We design the shelf in such a way that the shelf entry number directly corresponds

to the destination physical register of the instruction stored in that entry. Thus an

instruction stored in shelf entry 5 will have its result in physical register number 5.

This direct correlation allows the shelf, in some cases, to maintain the validity of

instructions even when the same logical destination is being over-written. This is

because the physical mapping is still retained in the shelf.

Figure 4.1 shows a simple code sequence and how it interacts with the shelf. In-

structions i5 and i7 are Shelvable instructions. They are placed respectively at shelf

entries 2 and 3. Since shelf entry numbers directly correlate with physical register

numbers, these intructions are allocated P2 and P3 as their destination. Both in-

structions write to the same logical register but their results are still preserved in the

shelf. While the map table only maintains the latest mapping, the shelf is able to

maintain multiple mappings to the same logical destination. For the next iteration
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Figure 4.1: Code sequence

of the loop, instructions i5 and i7 will search the shelf successfully and the redundant

computation will be avoided.

The previous code sequence is now extended in Figure 4.2. In this example, instruc-

tions i4 and i5 are placed in the shelf at entries 2 and 3 respectively. One of the sources

of the instruction in entry 3 resides in entry 2. As long as entry 2 remains valid, the

source operand of entry 3 will remain valid too. This feature allows the shelf to retain

a chain of dependent instructions which remain valid in the shelf until the head of the

chain is invalidated. By preserving the physical destination of instructions in the shelf

and correlating them with shelf entry numbers, we overcome the problem of having

a limited number of logical registers in the ISA. Multiple instructions writing to the

same logical destination do not invalidate other instructions in the shelf as long as
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Figure 4.2: Code

their original producers also remain in the shelf.

When the predicate p0 in Figure 4.2 turns true, instruction i8 is searched in the shelf

using its physical operands and opcode. The search returns a successful hit at entry

2. Note that instruction i8 has a different logical destination than the instruction

placed at shelf entry 2. This distinction does not invalidate the search but actually

maps r5 to P2 in the map table. i8 is detected as a redundant instruction and does

not execute now. By using physical register identifiers for shelf search, we can map

multiple logical registers to the same physical register or the same shelf entry. This

is synonymous to Global Value Numbering in compiler literature where underlyiing

equivalence is detected regardless of the usage of the logical name space. Because

of the mapping of r5 to P2, instruction i9 will also be found in the shelf and will
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be considered redundant. The shelf is able to dynamically detect equivalence and

eliminate redundant instructions just by updating the map table.

4.2 Eager Execution Example

We will now introduce an extra dependence in the example code sequence from Chap-

ter 3 to make the code more realistic and nullify redundancy. The new code sequence

and its dependency graph is shown in Figure 4.3. Instruction i2 is made to be depen-

dent on i4 from the previous iteration. This dependence breaks the reusability of i2

since one of its source operands now change at every iteration of the loop.

(a) Code (b) Dependency Graph

Figure 4.3: Dependent sequence of instructions nullifying reuse
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Instructions i1 and i2 are placed in the Eager Shelf during the first iteration of the

loop. Any change in the source operands of instructions in the Eager Shelf triggers

eager execution of that instruction. Thus, execution of i4 leads to the eager execution

of i2. Note that since eager execution can start as early as the completion of its trigger

instruction, i2 in the Eager Shelf begins execution before the second iteration of the

loop is even fetched. When the next iteration of the loop is eventually fetched, the

result of i2 is already available in the Eager Shelf, making i2 essentially ”invariant” to

the processor. As shown in Figure 4.4, eager execution beats simple instruction reuse

in performance since eagerly executed instructions are additional reusable instructions

even with a change of their source operands. (i2 in Figure 4.4(a) can be issued in the

same cycle as i4 since i2 is dependent on the previous iteration of i4).
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(a) Wide fetch unit with only
reuse

(b) Wide fetch unit with reuse + eager
execution

Figure 4.4: Instruction execution (Executions are for second iteration of
the loop)
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Chapter 5

Algorithm

This chapter provides a detailed explanation of our eager execution algorithm.

The algorithm makes use of a shelf structure called the eager shelf. The structure

is similar to reservation stations in operation, permitting broadcasting, changing the

source operands of shelved operations, as well as selecting and issuing ready instruc-

tions. In addition to the shelf structure, a free list of available shelf entries called

shelf queue is provided. We also utilize definition and use counters for each shelf

entry for checking when an entry can be safely released. We begin by describing the

organization of the eager shelf.
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5.1 Eager Shelf

An eager shelf entry, although organized similar to a reservation station, requires

additional functionality not found in traditional reservation stations. A shelf entry

needs to be able to accomplish two functions: have a set of identifiers which can

uniquely identify an instruction, and have enough information about an instruction

to recreate it for eager execution. The former is required to correctly identify whether

an instruction has been buffered in the shelf while the latter is required to assemble

the instruction and send it for execution. By buffering the physical source operands

and the opcode of an instruction, the shelf can achieve both functions. An instruction

can be uniquely identified by the physical source operands and opcode. The execution

units for eager execution also need only the physical registers and an opcode for

executing instructions.

Apart from the source operands and opcode, the shelf also contains additional sup-

porting fields. Each entry contains a eager bit which indicates whether the entry is

eligible for eager execution. Each entry also has a definition and use count which

are meant to check whether an entry can be safely released. The definition count

indicates the number of active definitions of an entry and the use count indicates the

active use of the entry within the shelf. Because we eargerly execute instructions from

the shelf, the shelf needs to have a ready bit for each of its source operands, which
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indicates that the result of the operand is now available. An instruction can be sent

for eager execution only after all of its source operands are ready.

A total of n + m physical registers are available to the processor. Physical registers

1:n are reserved for eager shelf, where n is the number of shelf entries. The other m

physical registers are avaiable in the free register pool. Shelf entry numbers and phys-

ical register numbers are directly correlated. For instance, the result of instruction in

Shelf entry 5 will be written into physical register 5.

We now describe the operations that can be performed on the shelf. Each of these

operations support the functioning of the algorithm.

When trying to buffer an instruction in the shelf, obtaining an empty entry and

placing the instruction are two key operations.

Get free entry: This operation returns an empty Shelf entry by popping from the

shelf queue.

Place instruction: This operation places a new instruction into an empty entry

using its physical source operands and opcode.

With the help of these two operations, we can buffer an instruction in a shelf entry.

After an instruction has been placed in the shelf, the result of that instruction is

available to any subsequent iterations of that instruction. To utilize the result, the
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subsequent instruction needs to search the shelf to check whether a previous version

of that instruction was buffered. This is accomplished by the following operation.

Shelf Search: Search the shelf using two register identifiers and an opcode. There

can either be one unique Shelf hit or no hit. A hit is termed as Shelf hit and no hit

is termed as Shelf miss.

After an instruction has been buffered in the shelf, it remains redundant until there

is a change to any of its source operands. The shelf needs to be made aware of this

change. This is done by the instruction which is writing to the same location. This

instructions uses an update operation which informs the shelf to change any operands

having the old register to the new one. With the updated operand, the shelf entry

can now be made eligible for eager execution by setting its eager bit.

Update-broadcast and send to RS: Update the source operands of existing in-

structions in the Shelf – thereby invalidating their results and enabling them for eager

execution. After the broadcast is complete, the instruction is sent to the reservation

stations.

Instructions in the shelf with their eager bit set are synonymous to instructions in the

reservation stations. Both wait in their respective buffers until their source operands

are available. As soon as their operands are ready, the instruction can be sent to

the execution units. The ready signal for both the shelf and the reservation stations
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arrive from the execution units, which sends the ready signal whenever a result is

written into a physical register.

ready-broadcast: Update the ready bit of the source operands in the Shelf – thereby

making the shelf entry ready for eager execution.

The select logic checks for all the entries that have its eager bit set. Among these

entries, the select logic checks for entries which have both of its source operands ready.

These entries are selected and sent to the execution units by the following operation.

select: Select an entry that is enabled for eager execution (eager bit set) and send

it to execution units.

The following operations help in tracking the usage of a shelf entry throughout the

pipeline. An entry may have been used by either an instruction that is currently in

the pipeline or it may have been used as a source operand by another shelf entry.

increment def: Every hit in the Eager shelf is a new definition of that entry. The

definition counter is incremented to reflect the new definition.

increment use: The use counter of a shelf entry is incremented at every use of the

entry’s physical register as the source to another shelf entry.

A high level illustration of the pipeline is shown in Figure 5.1. In the next section, we

35



Figure 5.1: High-level illustration of pipeline

discuss the operation of the pipeline by following the instruction flow starting with

the fetch stage.

5.2 Fetch Stage

A wider front end is employed in the pipeline to exploit redundancy as mentioned in

Chapter 3. The fetch width of the processor will be larger than the issue width. This

makes more instructions search the shelf every cycle which would result in a higher

reuse count each cycle. On the other hand, this would also fill up the issue window

faster. This allows independent instructions to be quickly issued and leads to higher
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ILP.

5.3 Shelf Stage

Decoded instructions arriving at this stage are renamed using the map table. Re-

named instructions arriving at this point are categorised into 2 groups: shelvable and

non-shelvable instructions.

Shelvable instructions search the shelf using their physical register identifiers and

opcode. A successful shelf search indicates that the instruction is either redudant or

has been eargerly executed in the Shelf. In either case, the physical destination of the

instruction is renamed to the shelf entry number it was found in. This instruction,

after updating the map table, is killed at this point. The instruction will not be

sent to the issue window. The benefits of this are twofold: the issue window has

more empty slots now which can be used by other instructions, and the result of the

redundant instruction is already ready which means its dependent instructions can

start execution as early as the next cycle.

Shelvable instructions which do not hit in the shelf look for an empty entry in the

shelf. The instruction is placed in the empty entry and its destination is renamed to

that entry number. Since this instruction did not hit in the shelf, we do not have a
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result for this instruction. Thus this instruction needs to be executed and is sent to

the issue window after updating the map table. Now that the instruction has been

placed in the shelf, the next fetch of this instruction will yield a successful shelf hit.

Non-shelvable instructions are renamed as usual by obtaining a free register from the

physical register pool. The instruction is sent to the issue window after updating the

map table.

The shelf has to be maintained corresponding to the in-order state of the front end

of the pipeline. Failure to do so would lead to incorrect shelf hits. Thus each non-

redundant instruction needs to update the shelf with its new destination. We ac-

complish this by broadcasting the previous destination and the new destination of

each non-redundant instruction to the source operand field of the shelf. All matches

of the previous destination are invalidated and a new entry is allocated in the shelf

for that instruction with the new operand. The entry is marked eligible for eager

execution. The combination of broadcast and invalidation keeps the shelf updated

and synchronized with the map table.

Apart from keeping the shelf synchronized with the map table to keep shelf search

operations error-free, we also need to maintain individual shelf entries. Since shelf

entries are directly correlated with physical register numbers, the shelf needs to be

incorporated with the register release protocol. To accomplish this, we equip each

shelf entry with a definition count and a use count. Each successful hit to a shelf entry
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increments the definition count for that entry. Because we place no limitations on

logical to physical mapping, multiple logical registers may increment the definition

count of one shelf entry. The definition count keeps track of all active definitions

of a particular physical register in the processor. We modify the register release

mechanism by preventing any physical register correlated to the shelf to be released

if its definition count is not 0.

The definition count monitors the active utilization of a physical register by instruc-

tions in the pipeline. We also need to keep track of the number of entries that use

the result of one particular shelf entry. To achieve this, we also equip each shelf entry

with a use count. The use count records how many other shelf entries use the result

of a particular entry (that is, the number of times a particular shelf entry serves as a

source operand to other entries). Whenever a new instruction is placed in the shelf,

the use count of its source operands are incremented. We again modify the register

release mechanism to not release any shelf entries with a use count greater than 0,

even if its definition count is 0. This is because while there are currently no active

definitions of this entry in the pipeline, there is still one or more instructions in the

shelf which use the result of this entry. The definition count and use count, in con-

junction, make sure than a shelf entry can never be released when a use of its result

is pending, whether in the pipeline or in the shelf.

We now describe exactly how an instruction flows through this stage.
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For each instruction i in the rename block:

The source operands of i are renamed from the map table.

If instruction i is shelvable : Search the shelf (Shelf Search:) using the physical

identifiers and opcode. The instruction will either hit in the shelf or miss in the shelf.

We describe the operations performed in either case.

Shelf hit: In case of a shelf hit, i is a resuable or eagerly executed instruction.

This instruction will not proceed further in the pipeline. The map table is updated

to reflect the new physical destination obtained from the shelf. Since this is a new

definition, increment the definition counter (increment def ) of this entry.

Shelf miss: In case of a shelf miss, we get the previous destination of i from the

map table. Since the instruction was not found in the shelf, we place this instance

of the instruction in the shelf. We get an empty entry (Get free entry) from the

shelf queue and Place instruction in that entry. The shelf maintainance counters

(increment def and increment use) are incremented to reflect the change. A new

physical register from the free pool is allocated as the new destination. The previous

destination and the new physical destination are used to update the source operands

in the shelf (update-broadcast and the instruction is sent to the reservation

stations).
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If instruction is non-shelvable : This instruction flows through this stage as an

instruction would in a typical superscalar. This instruction does not need to search

the shelf. We get the previous destination from the map table and allocate a new

physical register from the free pool. The map table is updated to reflect the new

allocation. The instruction updates the shelf through broadcast and the instruction

is sent to the reservation stations (update-broadcast and send to Reservation

Stations (previous dest, new dest)).

As mentioned earlier, each instruction broadcasts its previous destination and new

allocation to the shelf. The broadcast is associatively performed and each match

invalidates that shelf entry. Since the invalidated shelf entry may not be eligible for

release (because of non-zero definition or use counts), we allocate a new entry for the

instruction to be copied. The invalidated instruction is copied with the new operand

in the empty entry and the entry is marked eligible for eager execution.

5.3.1 procedure update-broadcast and send to RS(old,new)

The old source operand is broadcasted to the source operand fields of the shelf. At

every match, we get free entry to place the new instance of the instruction. The

new operand is written into the empty entry while all other instruction information is

copied from the previous entry. The old entry is invalidated since its source operand
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was updated. Invalidated entries are not checked during Shelf search. The invali-

dated entry will remain in the shelf until its definition and use counts are decremented

to 0 at which point it will be released and added to the shelf queue.

The instruction invoking this procedure is sent to the reservation station and each

new shelf entry where the updated instructions is placed is marked eligible for eager

execution by setting their eager bit.

5.3.2 procedure get free entry()

Empty shelf entry numbers are held in the shelf queue. If there are shelf entries

available in the queue, the procedure pops an entry and returns it.

Each shelf entry has an extra attribute called age. Every entry starts out with age 0

and its age is incremented by one each cycle until it reaches its max age. In case the

shelf queue is empty (i.e. shelf is full), the shelf for an entry which does not have a

successful hit on it and whose age is max age is returned by the procedure.

Note that since this entry does not have a successful hit, the definition and use counts

of this entry will be 0. We are sacrificing a potential hit on this entry in the future

for the ability to place a new instruction in the entry. The max age parameter can

be changed accordingly.
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5.4 Select Stage

In the select stage, we check all shelf entries and select entries which are marked for

eager execution (eager bit set) and have their source operands ready, and send

them to execution units.

Instructions whose source operands are ready in the reservation stations are also

selected and sent to the execution units.

5.5 Execute Stage

Instructions are executed and their results are written into their destination register in

this stage. ready-broadcast operation is performed on both the eager shelf and the

normal path reservation stations. The ready flags of all sources that match with the

destination register in both the Eager shelf and the reservation stations are updated.

43



5.6 Retire Stage

The retire stage in a typical superscalar has two purposes: Update the in-order state

of the map table using the destination of the instruction, and release the previous

destination of the instruction by adding it to the register pool. All instructions in the

eager superscalar follow the first step by updating the in-order map table.

Since some physical registers are now correlated with the eager shelf, we need to

modify the register release process. All instructions whose previous destination is

independent of the eager shelf (in simple terms - the previous destination number

is greater than the eager shelf size), release their previous destination normally - by

adding it to the free register pool. All other instructions do not directly release their

previous destination. Instead, this instruction will decrement the definition counter of

its previous destination. Since the current destination of this instruction has reached

the in-order state, the processor can be sure that all other uses of this definition have

already retired. However, the eager execution paradigm allows multiple definitions

of a single physical register. Thus, we decrement the definition counter instead of

directly releasing the previous allocation.

When trying to release a shelf entry (and its corresponding physical register), we look

at both the definition and use counts. A definition count of 0 implies that there are
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no active definitions of that entry in the processor while a use count of 0 implies that

no other shelf entry is using the corresponding physical register as its source. The

shelf entry can be released only when both of these conditions are satisfied. Upon

release, the shelf entry decrements the use count of its physical register.
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Chapter 6

Results and Analysis

6.1 Methodology

We model the eager execution superscalar on ADL [14], an architecture description

language which generates cycle accurate simulators. The simulator runs on the MIPS

ISA.We use the Spec2006 benchmark suite for performance analysis.

The baseline architecture is a conventional 8-wide issue superscalar with a 12-wide

fetch engine. A g-share branch predictor is used in the front end. The complete

processor configuration is shown in Figure 6.1.

The baseline architecture and eager superscalar are kept as identical as possible. The
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Figure 6.1: Processor Configuration

eager superscalar adds the eager shelf in the front end of the pipeline and execution

units in the back end of the pipeline. Instructions executed from the eager shelf have

their own set of execution units. This is done to ensure that instructions from the

eager shelf do not take up resources meant for normal path instructions.

6.2 Performance Results

We executed Spec2006 benchmarks on the eager superscalar. Figure 6.2 shows the

utilization of the shelf as a percentage of total shelvable instructions. On an average,

only around 20% shelvable instructions are placed in the shelf. Since physical registers

are correlated with shelf entries, we cannot release a shelf entry until its definition

and use counts are 0. In case the shelves are full, incoming shelvable instructions will

not be placed in a shelf and will be treated as normal path non-shelvable instructions.

The processor will not be able to take advantage of redundancy of these instructions
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in case they are encountered again.

Figure 6.2: Shelf Utilization

Instructions that hit in the shelf can be categorized into 2 groups: Redundant instruc-

tions and eagerly executed instructions. Instructions that did not have any change

in their source operands from the moment they were placed in the shelf are termed

redundant instructions or reused instructions. Instructions with an updated source

operand and issued from the shelf early are termed eargerly executed instructions.

Figure 6.3 shows the percentage of reused instructions and eagerly executed instruc-

tions for all hits in the shelf. Programs with dependent instructions close to each

other will have more reusable instructions than eagerly executed instructions. This

is because instructions in the shelf need at least a cycle to eagerly execute after their

source operands have changed. Dependent instructions in the same fetch group or

the immediate next fetch group will not be able to take advantage of eager execution

since the shelf will not have had enough time to start eager execution. On the other

hand, dependent instructions in different fetch groups will have a better chance of
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being executed early. The source change by the producer will trigger eager execution.

By the time the dependent instruction is fetched, the shelf will have its result ready.

Figure 6.3: The percentage of redundant instructions and eagerly executed
instructions

Table 6.1 shows the decrease in the number of cycles for each benchmark.

Benchmark Baseline cycles Decrease in number of cycles

401.bzip2 4,952,927,743 38,210
403.gcc 2,316,538,235 45,605
429.mcf 2,076,526,594 350,766

445.gobmk 387,013,197 21,030
456.hmmer 1,023,002,150 4,272,094
458.sjeng 7,768,552,457 1,854,333

999.specrand 35,623,757 19,351

Table 6.1

Decrease in number of cycles for Eager superscalar

50



Figure 6.4: Total shelf hits as a percentage of number of instructions placed
in shelf

6.3 Analysis and Future Work

We do not see a substantial decrease in the number of cycles for most benchmarks.

This is, in part, because of the low utilization of the shelf. Since we only average

around 20% utilization, we cannot take advantage of the other 80% of instructions

that may have been reused. Because of low utilization, the shelf may not be able to

buffer critical path instructions too. Figure 6.4 shows the percentage of instructions

that hit in the shelf to the total number of instructions placed in the shelf. We see

around 10% hit rate on 20% utilization which suggests that a very small number of

resuable instructions are actually being reused.

There are a number of improvements that can be made on top of the eager execution
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paradigm. For our simulator, we consider only single cycle arithmetic and logical

instructions as shelvable instructions (instructions that can be placed in the shelf).

By changing the design of the eager shelf, one can easily place multiply and division

instructions in the shelf. These instructions are multi-cycle instructions which can

provide a boost in performance if they are reused or eagerly executed. The downside

of eagerly executing these instructions is that every unsuccessful early execution eats

up many cycles of an execution unit.

Another category of instructions that can be placed in the shelf are load instructions.

A new paradigm would need to be established in the shelf which would keep track of

the dependencies between loads and stores. The shelf will be treated as the top level

cache in case of a load reuse while early execution of a load will essentially act as a

prefetch mechanism.

We can also program the compiler to use a certain set of logical registers for memory

instructions. This will make sure that arithmetic instuctions independent of the load

do not invalidate the loads in the Shelf. Instructions writing to a register belonging to

the memory set will be the only instructions responsible for invalidating and eagerly

executing load instructions which will reduce wasteful early executions.

In our design, we effectively clear the shelf at every branch misspeculation. This is

not a necessary requirement. We propose two methods which can be explored in the

future with regards to maintaince of shelf during a misspeculation: in an architecture
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using reorder buffer, the instructions from the tail of the reorder buffer to its head can

use their physical destination registers to invalidate any matches in the shelf. This

will not invalidate any entries which were placed before the misspeculation and these

entries can be reused after the recovery process ends. The second method is motivated

from the concept of checkpoint processors. A checkpoint of the eager shelf can be

taken at every branch or at a regular interval of cycles. Upon a misspeculation,

the last safe checkpoint is copied to the shelf. The ILP immediately following a

misprediction is very low in typical programs and having redudant results available

in the shelf will lead to a boost in the ILP.

Figure 6.5: A simple for loop

Certain complier techniques may also be able to aid in eager execution. Consider a

simple for loop that runs for a million iterations as shown in Figure 6.5. The shelf,

by virtue of correlating physical register and shelf entry numbers, is able to capture

the entire dependency chain between instructions i1, i2 and i3. All three instructions

will be considered redudant instructions for all iterations of the loop except the first.

However, instruction i4 serves as a bottleneck for this loop. i4 creates a million
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instruction long sequential dependence chain. Although the shelf eliminates every

instruction in the loop, we see almost negligible gain in performance. By using some

compiler techniques like loop unrolling, we may be able to reduce the impact of i4

on the performance. This loop unrolled by a factor of 10 will see almost a 10-fold

decrease in execution time since every instruction apart from i4 will be eliminated

because of redundancy.

Figure 6.6: Eager shelf with multiple register sets for each shelf entry

As seen in Figure 6.2, the utilization of shelf is not even 50%, even for a shelf size

of 128. Increasing the shelf size is counterproductive, since searching the shelf will

take more time, leading to an increase in the clock speed. Increasing shelf size also

leads to an increase in the area of the shelf. Instead of adding more shelf entries, we

can provide more physical registers to each shelf entry. Instead of each entry being

correlated with one physical register, now each entry is correlated with 2 physical

registers as shown in Figure 6.6. Thus, each entry will have its own set of physical
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registers. Each set of physical registers has its own definition and use counts. When

an instruction is placed in an entry, one of the registers from the set is allocated

to that entry. The definition and use counts for that register are updated per the

algorithm. When the shelf is full, we empty an entry for the new instruction but do

not necessarily release the register associated with that entry. This register will be

released only when its definition and use counts reach 0. Instead, the register from

the other set is allocated to the new instruction. In this way, multiple registers can

be provided for each shelf entry. We can increase the utilization of the shelf without

increasing the shelf size by a sizeable amount.
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Chapter 7

Conclusion

Eager execution is a novel idea that builds upon the work of instruction reuse. Many

instruction reuse techniques have been proposed in the past but all of them destroy

invariance with a change in source operands. Our work utilizes the changes in source

operands and treats it as a potential future producer to start eager execution. Eager

execution helps eliminate dynamic redundancy and helps collapse dependency chains

earlier even in highly sequential programs.

Our preliminary work has shown small but promising improvement in ILP with the

help of eager execution. We believe that there is a large scope for improvement in

this paradigm and even better improvement in ILP in the future.
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