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Abstract

Augmented Reality (AR) and Mixed Reality (MR) enable us to build a new generation

of human-computer interfaces. In the future, AR Head Head-mounted display (HMD)

might replace mobile phones devices, and people use HMDs to enter text while they

are on the go on any surface. Despite advances in sensors, cameras, and recognition

systems in AR HMDs, accurately detecting when a tap occurs is difficult. A finger

can be detected in a mid-air text entry system via visible light camera data, infrared

camera, and artificial intelligence algorithms. However, executing mid-air taps is

difficult without tactile feedback and determine precisely when a tap occurred is

challenging. This thesis investigates whether we can detect and distinguish between

surface interaction events such as tapping or swiping using a wearable mic from a

surface. Also, what are the advantages of new text entry methods such as tapping

with two fingers simultaneously to enter capital letters and punctuation? For this

purpose, we conducted a remote study to collect audio and video of three different

ways people might interact with a surface. We also built a CNN classifier to detect

taps. Our results show that we can detect and distinguish between surface interaction

events such as tap or swipe via a wearable mic on the user’s head.

xix





Chapter 1

Introduction

Interaction with real environments and physical objects is a critical aspect of aug-

mented reality (AR) and mixed reality (MR). The development of new sensors and

cameras brings new capabilities to the augmented reality world. However, little has

been done to improve text entry and surface interaction accuracy on AR keyboards.

This project aims to study whether audio captured using an HMD’s microphone can

bring more accuracy and functionality to AR text entry. We trained a model to detect

when a tap or swipe has occurred. Additionally, we evaluated our model’s ability to

recognize various types of taps and swipes.
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1.1 Background

Today, technology is one of society’s most significant achievements, and it is an in-

tegral part of modern life. These technologies open up new possibilities and have

evolved into a necessary component of human interaction and communication. Peo-

ple use computers and mobile devices to interact with data such as text, audio, and

video. Hence, we need interaction techniques and tools such as keyboard and gesture

input to bridge the gap between human and machine communication. The mouse

and keyboard are heavily utilized in traditional interaction systems for selecting and

clicking buttons and targets. The widespread availability of touchscreens, primarily

in hand-held devices such as mobile phones, has displaced the mouse and keyboard.

There is a significant development of new technologies in augmented reality, which

rely on similar interaction fundamentals for most parts. The primary focus of re-

cent research is on different text entry and surface interactions, such as vision and

speech-based interaction, hand-held controllers, and wearable devices such as gloves

and rings—however, those studies have inherent drawbacks in recognizing inputs and

texts. For instance, an optical-based camera needs a substantial amount of process-

ing power, high-resolution data, and its accuracy depends on other factors, such as

ambient light and noise. Different approaches, such as wearing gloves, wristbands,

or hand-controllers, occupy hands with an external device and prevent them from
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using two hands freely. Furthermore, speech recognition systems are ineffective in

environments with a high level of background noise. Additionally, they face privacy

and social concerns.

In the future, AR HMDs might replace mobile devices, and people might use HMDs

to enter text while they are on-the-go. Midair text entry is one of the solutions for

future AR text entry systems. However, using a mid-air text entry suffers from several

limitations. For instance, typing on a mid-air keyboard and executing mid-air taps

without tactile feedback is difficult. Also, we need to detect the position of fingers

and determine when a tap has occurred. A finger can be tracked using a visible light

or an infrared camera. However, determining precisely when a tap occurred is one of

the challenges.

Tapping on everyday surfaces is another solution for future AR text entry systems.

Different surfaces such as walls or tables are abundant and may be more comfortable

to use. Moreover, the sound of tapping or swiping may aid in determining when

the tap or swipe has occurred. For example, it may assist the visible light camera

by utilizing a sensor fusion technique and synchronizing both audio and video data

acquired during an action such as tapping.

The purpose of this study was to investigate augmented reality text entry through

the use of tap and swipe input on a surface. We looked at both tapping and gestures

because both can be used for typing, games, and multimedia applications. Finally,
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we evaluated our system in a remote study using a wearable mic on the user’s head

to simulate AR HMD sensors in conjunction with an everyday surface. To begin, we

devised three distinct techniques for entering capital letters and punctuation. Second,

we used the study’s audio data to train a classifier and detect tapping and swiping

on a surface.

1.2 Thesis Structure

This thesis consists of five chapters. Chapter 2 is about the related work and existing

research in text entry and gesture input recognition in AR. Chapter 3 discusses the

main research questions, experimental design, and components of the experiment.

Chapter 4 elaborates on the experiments’ results, and Chapter 5 is the in-depth

analysis and discussion about current limitations and possible future works.
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Chapter 2

Related work

Recent emerging novel technologies such as augmented reality (AR), and new devices

such as advanced Head-Mounted displays (e.g., Microsoft HoloLens and Magic Leap

headset) bring new opportunities to daily human life. Interaction with the surface

and text entry are core applications in augmented reality applications such as AR

tabletop in education [57], rehabilitation [52], and multimedia [35]. In this chapter,

we review the recent literature on surface interaction in AR. Prior work falls into two

main areas. In the first section, we discuss touch interaction on surfaces and review

several past studies related to this work. In the second section, we review text entry

and surface interaction in AR.
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2.1 Touch input on surfaces

2.1.1 Touch input on instrumented surfaces

Interaction on instrumented and not instrumented surfaces is not a new concept. We

define not instrumented surfaces as a surface which do not have any sensing capa-

bilities by themselves. However, instrumented surfaces contain sensing capabilities

by themselves. Touchscreens are one of the categories in instrumented surfaces, and

they measure the capacitance between the display and a user’s finger. This method

has a long history in the Human-Computer Interaction field [30].

SmartSkin [42], ThemetaDESK [53], and DiamondTouch [11] are other examples of

instrumented surfaces. They employed surface-integrated capacitive sensors to recog-

nize human hands and fingers. This system calculates the 2D location of the hand and

finger via a grid-shaped sensor. This system can sense multi-finger interaction and

provide visual feedback on the surface via a projector but they did not implement

any text entry. Moreover, these efforts were limited by some factors, such as user

interaction calibration, portability, and the size and scale of touchscreen technology.
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2.1.2 Interaction on not instrumented surfaces

Prior work has been done on the idea of using a surface and not instrumented char-

acterized based on vision sensing, acoustic sensing, or a hybrid approach. The recent

emergence of different cameras has led to the widespread use of other methods to

detect touch on surfaces, including LIDAR, RGB cameras, and depth cameras.

2.1.2.1 Surface interaction based on vision

Paradiso et al. [38] proposed four different systems to detect near-surface gesture in-

teraction, including a low-cost laser-based approach to track the polar coordinates

of the hand above a large plane surface. However, three-dimensional object scan-

ning on a large surface requires sufficient resolution and a powerful, accurate laser

scanner. RGB cameras (e.g., [1, 32, 59]) allow touch sensing by analyzing images

and videos of objects coming from a camera. Sugita et al. [50] described a camera

approach involving image processing and the color pattern of a finger when it touches

a surface. The system uses image processing techniques and several computer vi-

sion algorithms to determine the difference between the fingertip color patterns on

the surface. However, this system is not practical for supporting accurate touch and

multi-gesture-based input.
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Some other optical techniques [15, 33, 43, 58] use a threshold method to detect an

object on a different surface and a camera pointed toward a surface. Moreover, they

use projectors to provide visual feedback on the surface.

Depth cameras calculate the spatial accuracy of items on a surface by calculating the

distance between each point in the camera’s field of view. (e.g., PlayAnywhere [60],

DIRECT [63], Paradiso [38], and Wilson [61]). Typically, objects are recognized using

this approach by distinguishing between the object’s depth data and the depth map

model from the background. The background model can be created in a variety of

ways, including by capturing multiple frames and averaging them to create a back-

ground profile [62], doing real-time 3D reconstruction [23] or creating a unique model

for each finger without creating a depth map from a background such as Flexpad [49].

Despite all of these efforts, vision touch sensing suffers from various limitations such

as occlusions, noise, and delay. Also, determining the contact moment between the

finger and the surface is difficult.

2.1.2.2 Surface interaction based on acoustics

There has been a significant amount of research done related to acoustic sensing. One

of the most popular approaches is passive acoustic systems, which rely on the sound

produced by touching or dragging a finger on top of the surface. Scratch input [16]
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is one example of a passive acoustic system based on the unique high frequencies

produced by dragging fingernails on different surfaces such as wood, fabric, or walls.

The system classified different gestures based on their amplitude profiles captured by

a stethoscope attached to a microphone. However, this method of sensing is limited

to using a stethoscope attached to a surface.

RapTapBath [51] is a system that uses piezoelectric sensors to analyze sounds pro-

duced by a tap on the edge of a bathtub. A piezoelectric sensor detects and converts

changes in pressure, force, and strain to an electrical charge. In their approach, the

location of the tap is determined by calculating the difference in signal arrival times

at the piezoelectric sensors. However, since the system has no way to determine when

the tap occurred, it can only look at the relative differences between when each mic

hears the sound. This approach is similar to the time difference of arrival (TDOA),

which has been described as early as 1985 [2, 4, 5, 31]. This paper’s method can also

identify different types of taps, such as knuckle, pad, and tip. They also provided vi-

sual and audio feedback via a projector and speaker. However, this paper’s approach

is limited to the surface attachment of an array of sensors, and thus is not applicable

to future augmented reality applications that require text entry via everyday surfaces.

Toffee [64] used a similar system for detecting taps on a surface. This system relies on

piezoelectric sensors and the traditional TDOA method for detecting the location of

the tap. This system added an array of piezoelectric sensors attached to the bottom
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of devices such as smartphones and laptops to detect taps on the surfaces around the

device. For instance, a cell phone may be placed on a table and the area around it

used to detect taps. These efforts were limited to the space around the device, the

number of sensors, and other objects on top of the surface. Expressive Touch [39]

proposed tapping force as a new modality for interacting with devices such as mobile

phones, tablets. They showed it was possible to measure force-sensitive tapping by

studying the sound wave produced by tapping on the surface. The study used four

contact microphones to detect the highest point of the amplitude value in the sound

wave.

Another study [17] presented a similar approach to identifying the type of object being

used for the input. This system uses a microphone connected to a stethoscope and a

support vector machine to classify the acoustic signatures of different objects, such as

different parts of the finger. This system achieved 95% accuracy for identifying four

input types. Using wearable sensors is another area of exploration that has explored

surface interaction. Tapskin [67] used the skin around a watch as a surface and used

the watch microphone, gyroscope, and accelerometer to identify three gestures set

on the skin with 97.32% accuracy. They showed that hitting a surface with different

parts of the body causes a specific sound. For instance, the position close to the

knuckle with more bone structure has more energy at lower frequencies.

Most of the mentioned studies in this section are limited to utilizing a surface with
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an array of sensors. In our detection system, we used a wearable mic on the user’s

head to detect tapping and swiping without any sensors attached to surfaces.

2.2 Text entry and gesture-based input in AR and

MR

MRTouch [65] is another example of vision-based touch interaction in MR HMDs.

This system uses data coming from the Microsoft HoloLens v1 depth and an infrared

camera to detect and track fingers and surface planes in real-time. MRTouch locates

each known surface and touchpoint over it in a depth frame. This paper showed

95% button input accuracy with an average positional error of 5.4 mm. However,

the Microsoft HoloLens depth camera suffers from very high latency. Moreover, this

paper reported a high rate of missed touches of 3.5% and extra touches of 19% related

to hover sensing.

ARKB [29] proposed a system consisting of a vision-based finger tracking attached

to an HMD and an AR keyboard. Moreover, they provide audio feedback when

fingers touch keys on the virtual keyboard. This system uses 3D position information

obtained from fingers and a virtual keyboard. Moreover, it determines the collision

between the finger point clouds and the keyboard plane in order to detect a keyboard

tap. However, they did not conduct a text entry experiment.
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Typing on Glasses [14] investigated the smartglasses touchpad for gesture-based input

and text entry by introducing Swipeboard. Swipeboard is a smart eyewear text entry

technique that uses two directional gestures to select a subgroup of keys and a specific

key in the second step. This paper proposed a new technique called SwipeZone, which

uses a touchpad on the side of a smartglasses for entering text and gesture-based input.

A text entry study reported an 8.73 WPM entry rate, which is 15.2% faster than the

default swipeboard in smart glasses. PalmType [56] used the palm as a base for the

keyboard and Google Glass as a smart wearable to display the keyboard. Also, they

used a wrist-worn sensor to enable typing without visual attention to the hand. This

system mapped a QWERTY layout to the user’s hand and showed this approach

is 39% faster than the other touchpad-based QWERTY keyboards. However, this

system is limited to the wrist-worn sensor which occupies hands with an external

device.

BISHARE [68] studied the interaction between smartphones and AR HMDs. This

paper relied on a framework for supporting both smartphones and HMDs. They

introduced several design principles for interaction between a smartphone and an

HMD. For example, a cross-platform interaction technique uses hand gestures and

local touch on the phone as an input event platform or the ability to extend display

space for 2D and 3D content. However, this paper does not provide a text entry

experiment.
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Reifinger et al. [41] describe infrared-based hand-gesture recognition for augmented

reality applications. This system tracks the position and orientation of each finger

based on the user’s thumbs and index fingers. They showed that the proposed sys-

tem reduces the average task duration time by a third compared to the mouse and

keyboard. However, this system restricts the user by wearing hardware. VISAR [12]

is another mid-air text entry approach for AR HMDs. This system provides an

error-tolerant text prediction system that uses a statistical decoder. There is also

a supportive mechanism to modify the auto-correction process. They used a Mi-

crosoft HoloLens v1 to provide a mid-air virtual keyboard and a hand-tracking sys-

tem for tracking one hand. The study showed VISAR is 17.4% faster than Microsoft

HoloLens default gaze-direct cursor system. The second experiment showed proba-

bilistic auto-correcting text entry and literal text with reduced character error rates

(CERs). Moreover, they reported a mean entry rate of 16.76 words-per-minute via

their refined design, a 19.6% increase compared to the baseline.

MyoKey [28] utilizes surface Electromyography (sEMG) and a forearm wearable sen-

sor that captures arm motion information. This system uses arm motion information

to build an interactive system and identify five gestures in real-time. The system uses

a 1-line horizontal text entry layout with 27 characters. They used American Sign

Language as their gesture-based input. For instance, gesture 1 moves the cursor to

the left and gesture 2 moves it to the right. They also used arm motion information to

make a cursor work with a 1-line keyboard layout. This paper showed 91% accuracy

13



in the five gestures. However, they did not conduct a traditional full-size keyboard

text-entry between different keyboard types.
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Chapter 3

Research Methodology and

Experimental Setup

3.1 Motivation

A surface typing system is composed of three primary components. We need to

display a virtual keyboard and determine the time, type, and location of a surface

interaction event such as a tap or swipe. This thesis aim was to focus on the time and

type of action and detect tap and swipe on a surface using acoustic data captured

via a wearable mic on the user’s head. We also conducted a text entry experiment

and explored three different input methods to enter capital letters and punctuation
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which might be helpful for a future AR text entry system.

As we mentioned earlier (Chapter 2), it appears that current systems still have several

challenges to resolve. Toffee [64] used an array of piezoelectric sensors attached to

the device. However, the number of sensors, the difficulty of attaching sensors to the

device, the lack of text entry experiments, and the difficulty of classifying various

types of tap and gesture input are all drawbacks of this system. MRTouch [65]

and VISAR [12] used Microsoft Hololens v1 for tracking hands. According to these

studies, the Microsoft Hololens v1 depth camera suffers from very high latency and

these systems are limited to the performance of the Microsoft Hololens v1 depth and

infrared sensors. However, we need to detect the position of fingers and determine

when a tap has occurred. A finger can be tracked via an HMD. However, it may

be a challenge to determine precisely when a tap has occurred. For instance, users

are adept at determining when they have come into contact with a surface, and their

fingers may approach the surface without touching it.

All mentioned limitations demonstrate that we need a system to detect tap and swipe

that does not need an array of piezoelectric sensors attached to the surfaces or devices.

While it is a problem for Hololens v1 sensors to recognize when a tap has occurred, we

intended to use the sound of a tap and swipe to recognize when a tap has occurred.

We also ran a text entry experiment to see whether the way of entering capital letters

and punctuation for an AR text entry system is the best. We investigated text entry
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input using the shift key on the keyboard, tapping with two fingers at the same time,

and swiping up with one finger to enter capital letters and punctuation. All of the

factors mentioned above prompted us to pose the following questions.

1. Question 1: Can we detect surface interaction events such as tapping and

swiping via a wearable mic on the user’s head? Does acoustic data capture

enough acoustic features to distinguish between tapping with two fingers at the

same time, single tap, and swipe? Our primary hypothesis was that it might

be possible to detect when a surface event occurs and it might be possible to

differentiate between different types of surface events. However, it would be

challenging.

2. Question 2: Is there a detectable difference between tapping and swiping on a

sheet of paper versus off the sheet of paper? Exploring the impact of different

surfaces is a potentially interesting topic and might be helpful for future AR

text entry systems. We used a paper keyboard attached to the wall to simulate

the experience of using a virtual keyboard displayed on future augmented reality

glasses. Our primary hypothesis was that using data from a paper keyboard

surrogate for what would probably be displayed by an AR headset would be

close enough to detect surface event interactions on a surface without paper.

3. Question 3: Which way of entering capital letters and punctuation is more

accurate and efficient? For instance, we compared the entry rate of a single tap
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on the keyboard versus swipe up on the keyboard and the shift key to enter

capital letters and punctuation. We hypothesize that swiping up and tapping

with two fingers at the same time provides a faster alternative for entering

capital letters and punctuation.

3.2 Setup

In an ideal world, we would use an augmented reality head-mounted display (HMD)

to display a virtual keyboard on the wall in the lab environment. However, due to

the COVID-19 pandemic, running in-person lab studies became difficult. So instead,

we designed a study that could be completed remotely via a mobile phone simulating

an AR HMD, utilizing a sheet of paper on the wall as a virtual keyboard. We

developed an Android application written in Java to conduct this study remotely

(Figure 3.6). Moreover, a Python-based web application for participant registration

and distribution of all necessary files and materials for conducting our experiments.

We considered over 20 variables when developing the mobile application to ensure

that data collection was consistent and accurate during the remote experiment. We

considered factors such as audio and video resolution, as well as optimizing recorded

files to ensure a manageable upload size. We used the mobile application to upload

all files to our server. In our web application, we included a section for downloading
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mobile applications (APKs) via a tiny URL or QR code, as well as keyboard print-

outs, an experiment checklist, and a reference sheet. Additionally, we used our web

application to provide instructions for conducting our experiments and filling out our

questionnaires.

We used the front-facing camera on the mobile phone to achieve a wide field of view,

similar to that of AR HMD cameras, and the microphone to record audio from taps

and gestures. Throughout the recording, participants held their phones in front of

their forehead Figure (3.2). As a result, they were unable to view the phone’s screen

during the recording. We defined two gesture functions and controlled the recording

procedure via the phone’s touchscreen. They were instructed to swipe left or right

to advance to the next sentence and up or down to delete and repeat the previously

recorded sentence. Additionally, we provided online support in the form of a one-

hour zoom session for each participant to assist them throughout the experiment—in

addition to the interactive assistance provided by the app and website.

3.3 Experiment Procedure

1. Participants downloaded and installed a mobile application on their phones.

We asked participants to print reference sheets and a keyboard layout.

2. Before starting the experiment, we described how to measure their distance to
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Figure 3.1: A participant measuring their distance to the wall.

the wall (Figure 3.1). We asked them to use one straight arm as a measuring

procedure to find their distance to the wall and then take one short step forward

and align the bottom of the keyboard printout with their hand. The main reason

behind this measurement was to align the keyboard layout location on the wall

with the participant’s height. Then we asked them to attach the keyboard

printout and reference sheet to the wall.

3. Following that, we requested that participants log into the mobile application

using their assigned ID. Throughout the experiment, we demonstrated how

to use the application’s gesture function to delete and repeat a sentence, as
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well as navigate to the next sentences. To control the recording, we included

two primary gesture functions. Swipe up and down to delete and repeat the

sentence, respectively, and swipe left or right to go to the next sentence.

4. We described how to hold the phone. For instance, it should come into contact

with the participant’s forehead (Figure 3.2). Also, they should avoid covering

the front face camera or bringing down the phone during the experiment. The

application announced all necessary instructions via audio. For instance, it told

the participants about finishing the conditions or the number of the sentence

they were being asked to enter.

5. Prior to each condition, we explained how to practice it and the steps required

to complete it. Additionally, we discussed how to upload videos following the

conclusion of the experiment.

6. We asked them to complete a questionnaire on the experiment website after

they completed the two experiments.

3.4 Experiment 1: Swipe-up, Dual-finger, Single

This experiment’s main goal was to answer our third question about which way of

entering capital letters and punctuation is more accurate and efficient? Additionally,
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Figure 3.2: A participant entering text on a paper keyboard.

we used audio data acquired in this experiment to create our classifier in experiment

2.

3.4.1 Condition 1: Swipe-up

We focused on gesture interaction and selected swipe up as a common interaction

primitive on touchscreens, which is easy to learn. Today, gesture interaction is one of

the common interaction methods in user interfaces and text entry systems [46, 54].

Hence, keyboards in AR can take advantage of regular keyboard gesture functions

such as Swipe-up (Figure 3.3) to enter capital letters and punctuation. Moreover,

Swipe-up requires fewer keys than the shift key to enter capital letters and punctua-

tion. From an acoustic and sensing perspective, gesture interaction such as swipe may

have advantages, and it may have a distinctive acoustic signature compared to a sin-

gle tap. In this condition, participants were instructed to type lowercase letters using
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simple taps and to swipe up to enter capital letters and punctuation. (Figure 3.3).

For example, in order to enter “G” and “!” in sentence “Good day!”, participants

must swipe up.

Figure 3.3: A participant swiping up to enter a capital letter.

3.4.2 Condition 2: Dual-finger

We defined Dual-finger as a tapping (Figure 3.4) on the surface consisting of two

fingers tapping at the same time and it was different from double-tap. Double-tap is

a term that refers to two consecutive taps, similar to double-clicking a mouse. From

an acoustic standpoint, it may be difficult for an audio classifier to detect double-tap

because detecting rapid, consecutive taps might be hard and possibly confused with

single taps.
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As a result, we proposed Dual-finger, which may be more detectable. It may be

easier to detect the acoustic signature of a Dual-finger rather than a double-tap.

In this condition, we asked participants to type lowercase using simple taps on the

keyboard layout and tap with two fingers at the same time to enter capital letters and

punctuation. For instance, in order to enter “G” and “!” in sentence “Good day!”,

participants must tap with two fingers at the same time.

Figure 3.4: A participant using Dual-finger to enter a capital letter.

3.4.3 Condition 3: Single

This condition is similar to a touchscreen keyboard where a user tap the shift key

which causes the next key to be shifted. Most people are familiar with touchscreen

keyboards these days because they employ a shift key to enter capital letters and
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punctuation. In the single condition, participants entered capital letters by tapping

on the shift key and then on the letter. For instance, in order to enter “G” and “!” in

sentence “Good day!”, participants required to tap on the shift key. This condition

closely mimics entering text on a traditional keyboard. We call this condition Single

because of the single tap the user makes on the shift key. This condition’s primary

motivation was to compare standard text entry performance and single tap acoustic

signature to the other mentioned conditions in this experiment (Figure 3.5).

Figure 3.5: A participant using shift key to enter a capital letter.
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3.5 Experiment 2: Off-paper/On-paper

Participants who participated in Experiment 1 (Section 3.4) completed experiment

2 and used the same keyboard printout attached (Figure 3.7) to the wall. The pri-

mary objective of this experiment was to address our first and second questions about

the difference between tapping and swiping on and off a sheet of paper. In a future

scenario involving augmented reality, the user interacts with a simulated keyboard

projected onto the wall or another similar surface. As a result, it is critical to investi-

gate various taps and gestures on various surfaces. Using a paper keyboard surrogate

for what would probably be displayed by an AR headset would be close enough to

tap on a surface without paper. This would allow us to collect lots of data using a

phone and a sheet of paper rather than data from people using an actual AR headset.

In this experiment, we asked participants to perform the Swipe-up, Dual-finger,

and Swipe-up conditions five times on and off the sheet of paper. In the first task,

participants were instructed to tap five times in the center of the keyboard printout.

In the second task, participants were instructed to tap five times on the wall above

the keyboard printout. We asked them to swipe up five times in the middle of the

keyboard printout for the third task and for the fourth one, repeat the swipe up but

on the wall above the keyboard printout. We asked them to repeat the Dual-finger

five times in the middle of the keyboard printout for the fifth task, and five times on
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the wall above the paper printout for the final task.

Figure 3.6: The login page of the experiment’s mobile application. We
assigned a unique ID to each participant.

3.5.1 Keyboard layout

We used a 104-key US keyboard layout [9] and customized it based on our conditions

and experiment. We kept some keys and removed some parts of the keyboard (Figure

3.7) to provide a printable keyboard layout. For instance, we kept the letters, num-

bers, space bar, shift key, as well as punctuation such as comma, exclamation mark,

question mark, and quotation marks. We replaced backspace with a function on our

mobile application to delete the possible mistakes during the text entry experiment

because we were not able to detect the location of keys in this experiment in real

time.
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There was no visual or audio feedback for the text entry experiment. Hence, we

decided to remove backspace and replaced it with a gesture in our mobile application.

Building a dataset that included audio and video data from the text entry experiment

was one of the goals of this study. We added six fiducial markers to the top and

bottom of the keyboard layout. We did not used these fiducial markers to detect

finger location in this study but It will help future vision experiments find where the

keyboard printout is and how it is oriented relative to the camera in the video feed.

We provided a measuring box on the keyboard layout’s top right corner to ensure the

keyboard is the correct size. We asked participants to measure this box after printing

the keyboard.

3.5.2 Reference Sheet Layout

For the text entry experiment, we provided a letter-size reference sheet (Figure 3.8).

Participants read sentences from this reference sheet and typed them on the key-

board printout. We required sentences with more than three capitalized letters, so

we used both the Twitter [55] and the Enron mobile [55] dataset. We selected 45

sentences from each dataset with capital letters at the beginning, middle, and end

of sentences. Moreover, sentences with more than or fewer than three capital letters

were excluded from the reference sheet dataset. Experiment 1 required participants

to type six sentences in three different conditions. The order of these conditions was
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Figure 3.7: We asked participants to print paper keyboard and attach it
to the wall before starting the experiment.

counterbalanced. The final section of the reference sheet is for Experiment 2, in which

interaction events such as tapping and swiping on and off a sheet of paper.

3.6 Participants

We recruited 18 participants to run the application on their phones for this study. The

participants’ ages ranged from 18 to 50 (mean 24.5), 11 were female and seven were

male. Four participants were left-handed, thirteen participants were right-handed,
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Figure 3.8: Reference sheet layout printed by participants. The first three
counterbalanced conditions were for Experiment 1. The last condition was
for Experiment 2.

and one participant reported equal dominance. Seventeen participants reported they

frequently enter text on a desktop keyboard, and nine participants look at the keys

when typing on a desktop keyboard. Seventeen participants often use a mobile key-

board, and 12 participants look at the keys when typing on a mobile phone.
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Chapter 4

Experiment Results

4.1 Experiment 1: Swipe-up, Dual-finger, Single

In this experiment, first, we calculated the words per minute (WPM) for each sentence

entered by a participant and then averaged the results for each condition for each

participant.

We calculated words per minute by dividing the total number of characters, including

spaces, by five and multiplying by the time interval between the user’s first and final

taps on the keyboard printout. We viewed each recorded video and determined the

time of the initial and final tap.
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4.1.1 Text entry rate

Figure 4.1: Words-per-minute (WPM) in Experiment 1.

We analyzed text entry performance and words-per-minute (WPM) for all three con-

ditions. Figure 4.1 shows participants were slightly faster in Dual-finger (17.8

WPM) than Swipe-up (16.4 WPM). We also saw a lower words-per-minute entry

rate in Single (16.3 WPM). However, as Table 4.1 shows, these differences were not

statistically significant.
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Table 4.1
Experiment 1 results for words-per-minute (WPM). The top section shows
the overall average ± SD [min, max]. The bottom section shows one-way

ANOVA.

Condition Words-per-minute (WPM)
Dual-finger 17.8 ± 3.9 [9.5, 25.4]
Single 16.3 ± 3.2 [11.9, 23.4]
Swipe-up 16.5 ± 3.7 [10.5, 23.5]
ANOVA F2,34 = 2.02, p= 0.14

4.1.2 Questionnaire

Following the second experiment, participants completed a questionnaire. We asked

them which condition they preferred the most and least, and why. Additionally, we

questioned them about fatigue throughout the study. Eight participants preferred the

Dual-finger condition. These participants answered that they preferred Dual-

finger because it was faster, required no additional movement, felt natural, and

was simple to use. Three participants indicated that the Dual-finger condition

was their least preferred, primarily because it may be difficult for people with larger

finger sizes and they were concerned about hitting the wrong key.

Three participants preferred the Single condition, owing to their familiarity with

it. In comparison, eleven participants rated Single as their least preferred condition

because pressing multiple keys in different locations on the keyboard slowed down the

action or caused them to lose their typing flow when switching between the shift and
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Table 4.2
A selection of positive (+) and negative (−) comments from participants

about each condition in Experiment 1

Dual-finger
+ “I felt like I could type faster and not worry about different commands. It felt
natural.”
+ “Using the Dual-finger was more like regular typing; there was no extra movement
involved.”
+ “It was less steps to capitalize by just taping with 2 fingers.”
− “My fingers are different sizes so it was a little hard to hit one key with two
fingers.”
− “I did not prefer the Dual-finger method as much as the others due to the size of
the keyboard.”
− “Felt like I was pressing two buttons.”

Swipe-up
+ “Swiping was easy and could be done without much added effort.”
+ “It took me less time and energy compared to having to use another key or finger.”
+ “Feel just a tiny bit more easier.”
− “It was the most unfamiliar to me and sometimes I was not sure whether to swipe
up or not.”
− “Took longer time.”
− “Swiping up is confusing because we in phones we swipe up for other kind of
actions.”

Single
+ “More used to it.”
+ “Feels like real keyboards.”
+ “I am much more familiar with using the shift key.”
− “Having to tap another ”key” took extra time and slowed the type entry.”
− “Felt like an extra step. Slowest.”
−“Prefer not to use multiple keys.”

letter keys. Seven participants indicated their preferred Swipe-up condition because

it eliminated the need for finger adjustments, as with condition Dual-finger, or

for additional keys, as with condition Single. Four participants stated that they
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disliked Swipe-up conditions because it took longer to use or it was confusing to

use. In terms of fatigue, 11 participants reported experiencing some level of fatigue

throughout the experiment. Table 4.2 gives a list of selected positive and negative

comments about the condition.

4.1.3 Open Comments

Additionally, the questionnaire asked participants to imagine themselves wearing a

pair of future augmented reality smart glasses. They were told these future AR smart

glasses could project a keyboard onto any surface in their environment and could

detect their interactions with the projected keyboard. We asked what locations and

surfaces they would type, such as walls or tables. Most of the participants preferred

a table or desk and some mentioned their body or a vertical wall. Additionally, we

inquired about any changes they would make to the keyboard’s size or orientation.

Some users expressed a desire for a larger keyboard to facilitate typing with two

hands. However, the majority chose to remain at their current size. Finally, we

asked how they would envision interacting with the projected keyboard. Would they

use one hand or both? How are they going to input symbols? The majority of

participants preferred to type with both hands and use a separate row for punctuation

or a combination of keys and punctuation, switching between them via conditional

functions such as swipe. A list of selected comments is listed in Table 4.3.
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Table 4.3
Selected answers to questions about the future AR keyboard.

What locations and surfaces do you think you would type on?
“Floor, desk, wall, at home, inside table.”
“I prefer typing on a table.”
“Table, Wall, and on my body (e.g., forearms).”

What would you change about the keyboard’s size or orientation?
“Put all punctuation in a separate line above or below letters.”
“I prefer typing on a table.”
“I think the size was fine.”
“I would make it bigger for augmented reality as it seems small if I wanted to use
two hands to type.”

Would you use one or both hands and How would you input symbols?
“I would use both hands and use it the same way as a computer keyboard.”
“I would use both hands. I envision it being like typing on a keyboard that is
connected to my computer but in AR”
“I would use both hands. I would also use the shift key to input the symbols.”

We asked participants to comment on how they thought this study could be made

easier in the final section of the questionnaire. The majority of them found the study

simple. Also, we asked about the most confusing part of the study and any other

comments about it. Some found our experiments confusing when measuring their

distance to the wall.

Overall, we were unable to confirm our hypothesis. Our hypothesis was that the

Swipe-up and Dual-finger interaction methods would be faster than using a con-

ventional shift key.
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4.2 Experiment 2: Detecting and classifying taps

and gestures

A classification algorithm’s primary goal is to discover and learn patterns between

distinct groups of data, and by generalizing these differences well, it may predict

unseen data. In other words, try to minimize the errors associated with unobserved

data. In recent years, the Convolution Neural Network (CNN) has gained attention in

the audio research field because of recent audio classification and speech recognition

successes [18, 40, 44]. Moreover, prior work on environmental sound classification

found that time-frequency representations are highly beneficial as learning character-

istics [13, 19, 37].

Generally, we describe a waveform as a representation of the signal sample value

intensity varying over time. However, this is not a good representation of the in-

formation in a signal for a CNN. In order to extract the information embedded in

a signal, we need to use time-frequency representation. Time-frequency represents

signal information over both time and frequency (Figure 4.2).

Spectrograms are one type of time-frequency representation used to describe an audio

signal. It is made of pixels that represent the intensity of a range of frequencies at a

particular time step. For example, brighter pixels have a greater amount of energy
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for that specific frequency.

The Mel-spectrogram (Figure 4.3) is a subcategory of spectrograms that converts

audio frequency values into a scale that matches human hearing perception model

(mel scale). Also, it makes it ideal for applications like speech recognition and audio

categorization that require a human hearing perception model. Moreover, because of

the 2-dimension representation of the mel-spectrogram, it is a good candidate for our

CNN. Finally, they have lately been successfully employed to classify sounds [21].

Overall, we used time-frequency data (Figure 4.3) and CNN to create an audio clas-

sifier to classify and detect surface interaction events. The following section will go

over the specifics of our CNN classifier.

Figure 4.2: The waveform (top) and time-frequency (bottom and right)
representations of a single audio sample from the Dual-finger class.
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4.2.1 Pre-processing

Our two experiments resulted in a total of 432 recorded videos. We excluded 16

sentences because of corrupted files and duplicated sentences. This problem at most

affects two videos of the same participant in a given condition. We began by watching

all the videos and identifying the sequence of video frames that constituted the differ-

ent actions Swipe-up, Dual-finger, and Single. Moreover, we extracted frames

without any events called NoTap. We named our classes based on these extracted

events (Swipe-up, Dual-finger, Single, NoTap). As a result, we extracted 1,840

audio clips (460 for each class) which each contains a single event. For instance, there

were no two Swipe-up actions in a single clip. Since we need the same size input

for our CNN, all audio samples were standardized by clipping and padding them to

a 1-second duration.

4.2.2 Architecture

A convolution neural network usually consists of multiple different layers stacked on

top of each other (Figure 4.4). We define convolution as an operation where we have

an input and a kernel sliding over the input data to create a feature map. The feature

map shows which features were detected in the input.
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(a) Dual-finger (b) Single (c) Swipe-up

(d) NoTap

Figure 4.3: Mel-spectrograms for 10 milliseconds of audio data from each
of our four classes. (a) Dual-finger (b) Single (c) Swipe-up (d) NoTap

We constructed our convolutional neural network using time distributed 1D convolu-

tion and time-frequency data (mel-spectrogram) as its input data. Time distributed

1D convolution was a good fit for our application because it learned local patterns

in the frequency spectrum over time, which aligned with our input data dimension.

Moreover, 1D convolution performed well in applications with small datasets similar
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to our dataset [25, 26].

Time distributed 1D convolution looks at each time step where each time set is a set

of mel features. This method helped us to organize some data in a sequence without

considering their order. Hence, a pattern learned at one position can be recognized at

another position afterward. We also experimented with a variety of other networks,

including Long short-term memory (LSTM) [20] and very deep convolutional networks

for large-scale image recognition (VGG) [48]. However, 1D convolution achieved

better performance and provided better accuracy on the unseen data.

The first layer of our network was extracted mel features from our audio dataset.

The batch normalization layer [22] was the second layer, and it helped our model

learn and generalize new data more effectively. Our classifier’s basic concept was to

start with general features in the first layers and then move deeper and learn more

patterns in the final layers by increasing the number of parameters. It helped CNN

to learn more abstract representations of the input data as we went through layers.

We employed five 1D convolution layers with a kernel size of four and began with a

filter size of eight, progressively increasing the filter size to 16, 32, 64, and 128 for

the last four 1D convolution layers. For all 1D convolution layers, we employed the

rectified linear unit (ReLU) as an activation function.

Each 1D convolution layer is followed by a max pooling 2D layer. The primary reason

for implementing max pooling is to minimize the number of feature-map coefficients
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needed to be processed. Large feature maps also lead to overfitting. We used global

max pooling after the final 1D convolution layer to highlight the most present fea-

tures in the last layer, allowing us to add one dense layer to the model and perform

classification. After global max pooling, we applied dropout to prevent overfitting

by randomly dropping out some output features of the layers during training. More-

over, an L2 weight regularization was added to reduce training dataset overfitting

and improve model generalization. Finally, the value produced by the last layer was

converted and normalized into a probability distribution using a softmax layer as an

output layer.

4.2.3 Experiment setup

We used Librosa [34] to extract audio features and Keras [8] to implement our 1D

convolution CNN. We prepared a train and test dataset based on the Leave-one-out

cross-validation. We held out one participant from our dataset and each training

set was made up of all participants except the one held out. The goal was to know

the expected accuracy of the system on a participant who had just used the training

model based on a collected set of other participants’ data. To keep balance, we need

to repeat the training experiment 18 times with each participant being held out one

time. This approach may perform better on a particular set because the held out test

participant is more or less like the data in the 17 trained participants’ data.
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Figure 4.4: Model architecture for the 1D convolution classifier.

We experimented with a variety of settings and found that the Adam optimizer [24]

with 30 epochs, a batch size of 16, a learning rate of 0.001, and a momentum term [3]

of 0.9 gave the best results. Moreover, after our last global max pooling, we had 0.001

L2 weight decay and a 0.5 dropout probability. On an RTX 2080 Ti GPU, training

and testing took four hours for all 18 training runs.
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4.2.4 Results

T Our results summarized in Table 4.4. We also provided normalized confusion

matrices (Figure 4.5) for On-paper and Off-paper conditions. The confusion matrix

is an additional tool for analyzing our classifier’s output. The rows represent the

actual classes, whereas the columns represent the predicted classes. As we described

earlier (Section 3.5), we analyzed tapping and swiping on a sheet of paper versus off

the sheet of paper. The confusion matrices demonstrate that several classes have been

classified incorrectly. In both matrices, the classifier was unable to reliably classify

audio snippets for the Swipe-up, Single, and Dual-finger classes.

In Off-paper data, Dual-finger 35% and Single 20% performed somewhat worse

than Dual-finger 40% and Single 23% in On-paper data but slightly better in

Swipe-up 25% versus Swipe-up 23% in On-paper. The NoTap class did better

than other classes with 83% predicted classes in both matrices.
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Table 4.4
The result of classification evaluation. The overall accuracy was then

determined by averaging accuracy across all 18 training run.

Experiment No Accuracy
1 52%
2 56%
3 42%
4 68%
5 45%
6 24%
7 34%
8 48%
9 56%
10 45%
11 34%
12 33%
13 47%
14 25%
15 55%
16 65%
17 33%
18 42%
Overall average 45%

45



Figure 4.5: Confusion matrices for On-paper data (top) and Off-paper
data (bottom) classes. Swipe-up was the most challenging class to predict
in both on and off paper audio data because it was frequently mistaken with
Dual-finger. NoTap with the highest proportion of predicated classes
was also the network’s best prediction.
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Chapter 5

Discussion and Future Work

5.1 Discussion

This thesis investigated augmented reality surface interaction by leveraging tap and

swipe input on a surface for future AR applications where people use head-mounted

displays to enter text while they are on-the-go on any surface. Despite advances in

sensors, cameras, and recognition systems, augmented reality HMDs face significant

problems determining when a tap or swipe has occurred. A finger can be detected

via visible light or infrared camera. However, it might be challenging to determine

precisely when a tap has occurred since determining surface contact is likely hard.
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We examined tapping and swiping to address the mentioned issue, since both inter-

action techniques may be used for typing, games, and multimedia applications. For

this purpose, we conducted two experiments. In an ideal scenario, we’d employ an

augmented reality head-mounted display (HMD) in a lab setting to project a virtual

keyboard on the wall. However, due to the COVID-19 pandemic, we evaluated our

system in a remote study where we utilized a sheet of paper as a keyboard and a

mobile phone to simulate AR HMD sensors in conjunction with a surface. First, we

developed three methods for entering capital letters and punctuation and compared

them using words-per-minute metric. Second, we trained a classifier to detect surface

interaction events and distinguish between tapping with two fingers at the same time,

single tap, and swipes using recorded audio from the study.

The first experiment explored the difference between text entry input using the shift

key on the keyboard (Single condition), tapping with two fingers at the same time

(Dual-finger condition), and swiping up with one finger (Swipe-up condition) to

enter capital letters and punctuation. Although we hypothesize that swiping up and

tapping with two fingers at the same time provides a faster alternative for entering

capital letters and punctuation, the results showed that participants were only slightly

faster in Dual-finger (17.8 WPM) than Swipe-up (16.4 WPM) and Single (16.3

WPM), but this difference was not statistically significant. It may be interesting to

see if the lack of a difference continues if more data was collected.
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The second experiment investigated surface interaction events such as tapping and

swiping on and off a sheet of paper. The paper keyboard is intended to simulate the

experience of using a virtual keyboard displayed in future augmented reality glasses.

Hence, it is essential to investigate different taps and gestures on different surfaces.

From the mel-spectrogram derived from the audio data, we constructed a 1D convo-

lutional CNN audio classifier. The classifier does a much better job of recognizing the

NoTap class and accurately predicted 83% of the provided test data. However, it

performed relatively poorly in other classes, such as Dual-finger, Swipe-up, and

Single. For instance, in On-paper data, the classifier predicted 40% Dual-finger,

23% Swipe-up and 30% Single, while in Off-paper data, the classifier predicted

only 35% Dual-finger, 26% Swipe-up and 27% Single. Our primary hypothesis

was that it might be possible to detect when a surface event occurs and it might be

possible to differentiate between different types of surface events. The results showed

that we can detect surface events and it is possible to differentiate between different

types of surface events.

Overall, The results showed that we can detect surface events and it is possible to

differentiate between different types of surface events. We can determine whether

a tap or swipe occurred on the surface versus no event occurring. There was some

ability to discriminate within the four classes (Dual-finger, Single, Swipe-up,

and NoTap). We also proved that we can use data from a surface with a paper

keyboard to detect taps on a surface without paper. Moreover, we can use our system
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on a participant who just used the training model based on a collected set of other

participants’ data. In other words, we can train a system to detect surface interaction

events on any data that hasn’t been in our training dataset.

As previously stated, it is extremely beneficial because detecting surface impact with

head-mounted vision sensors can be difficult. For example, users are adept at de-

termining when they have come into contact with a surface, and their fingers may

approach the surface without touching it. As a result, using vision-based systems

may not be sufficient. However, our approach is capable of resolving this issue. Addi-

tionally, we gathered our audio dataset from a variety of places and under a variety of

conditions. As a result, our model may be a good illustration of a real-world situation

in which we must detect a tap or swipe varying surfaces.

5.2 Limitations

Our classifier is capable of detecting when a user taps or swipes the surface. However,

it is unable to ascertain the timestamp of an surface interaction event within an audio

sequence. We intend to address this limitation by enhancing our detection system to

accurately determine the timestamp of audio events inside an audio file.

Another limitation is the dataset’s size. In general, there are no definitive answers
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for determining the optimal size of a CNN dataset and it depends on a variety of

factors, including the problem’s scale and dataset parameters. Hence, we need to

investigate more about the optimum size for our dataset. We intend to address these

limitations in the future. We can determine the optimal dataset size for our problem

by analyzing the prior work dataset and the performance of our network.

We chose mel-spectrogram as the input data to our classifier mainly because of recent

successful use of mel-spectrogram in sound classification. Moreover, due to the fact

that mel-spectrogram data is two-dimensional, it is an excellent candidate for our

CNN. However, it may be worthwhile to experiment with alternative audio repre-

sentations in the future, such as waveform, Linear-STFT, or CQT, and compare the

results to the current ones.

The system we used was not designed to detect rapid, consecutive taps. Using Dual-

finger eliminates the need to detect when rapid, consecutive taps occur in the

audio data and might be faster and/or easier for users to perform than double-tap.

Nonetheless, future work may be needed in the area to detect when taps occur when

a person is entering text with two hands.

We conducted our experiments remotely due to COVID-19 restrictions, which pre-

cluded us from using an AR HMD and conducting an in-person experiment. Hence,

we asked participants to use their phones and they were required to hold the phones

at their foreheads and type sentences with another hand; they were unable to enter
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text with two hands. Additionally, we faced several obstacles, including developing a

mobile application compatible with various mobile device versions. We made every

effort to provide straightforward instructions, a simple user interface for the mobile

application, and an easy experiment setup. However, conducting a remote study af-

fected our experiment and confused some participants. It was challenging to provide

good instructions, helping people remotely when they had trouble—for example, ad-

justing the keyboard layout on the wall to accommodate the participant’s height and

installing the application on older versions of Android.

Finally, Holding the phone at the forehead with one hand and reading sentences from

the reference sheet below the keyboard was another limitation of this experiment,

resulting in fatigue and errors such as incorrect sentence entry during the experiment.

We anticipated this issue and attempted to make the reference sheet as clear as

possible, but we still noticed some errors.

5.3 Future work

Due to the fact that work on augmented reality surface interaction has only be-

gun recently, there are many possibilities for future work. We make the following

recommendations for future work based on the experiment results and mentioned

limitations:
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1. A critical component of our strategy is the use of alternative sensing methods,

such as vision. We have already collected video clips from our experiment,

which will aid in the extension of our current model and detect surface event’s

location on a surface. Additionally, it will assist us in classifying the various

types of events.

2. Finding the optimal dataset size for our problem by analyzing the prior work

dataset and the performance of our network.

3. Extend our text entry by detecting when taps occur when a person is entering

text with two hands.

4. Investigate alternative audio representations in the future, such as waveform,

Linear-STFT, or CQT, and compare the results to the current ones.

5. We intend to make the audio/video dataset from collected data available for

other public use.

6. We intend to expand the current dataset by acquiring additional data. The

first advantage of having more data is that it improves performance and avoids

overfitting with a small dataset.

7. Conducting in-person experiments with better control over the experiment pro-

cess may result in a higher-quality dataset.

8. Extend our audio detection system to include the detection of timestamp events
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in audio data.

9. Additionally, we intend to expand our research by examining different surface

materials and horizontal surfaces.

5.4 Conclusion

This thesis investigated augmented reality text entry by leveraging tap and swipe

input on a surface for future applications. Despite advances in sensors, cameras, and

recognition systems, augmented reality users face significant problems determining

when a tap or swipe has occurred. We investigated the ability of a wearable mic

on the user’s head to capture acoustic data from surface interaction events such as

taps or swipes, and made an audio classifier to detect those events. Additionally,

we investigated the benefits of novel text entry methods such as tapping with two

fingers simultaneously, swiping up, and single tapping to enter capital letters and

punctuation.

Despite the challenges, our system demonstrated new potential for future augmented

reality text entry during the experiment. There was some ability to detect tapping

and swiping. Moreover, discriminate within the four classes (Dual-finger, Single,

Swipe-up, NoTap) primarily between the NoTap and other classes, which is quite

useful for future augmented reality text entry systems.
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