
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2019

DATA SET GENERATION USING DEEP LEARNING ALGORITHMS DATA SET GENERATION USING DEEP LEARNING ALGORITHMS

AND VISUAL FEATURE TRACKING AND VISUAL FEATURE TRACKING

Kusuma Pallapotu
Michigan Technological University, kpallapo@mtu.edu

Copyright 2019 Kusuma Pallapotu

Recommended Citation Recommended Citation
Pallapotu, Kusuma, "DATA SET GENERATION USING DEEP LEARNING ALGORITHMS AND VISUAL
FEATURE TRACKING", Open Access Master's Report, Michigan Technological University, 2019.
https://doi.org/10.37099/mtu.dc.etdr/822

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Artificial Intelligence and Robotics Commons, and the Other Computer Sciences Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/822
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.mtu.edu%2Fetdr%2F822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.mtu.edu%2Fetdr%2F822&utm_medium=PDF&utm_campaign=PDFCoverPages

DATA SET GENERATION USING DEEP LEARNING ALGORITHMS AND

VISUAL FEATURE TRACKING

By

Kusuma Pallapotu

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2019

© 2019 Kusuma Pallapotu

This Report has been approved in partial fulfillment of the requirements for the

Degree of MASTER OF SCIENCE in Computer Science.

Department of Computer Science

Report Co-advisor: Dr. Nilufer Onder

Report Co-advisor: Dr. Nina Mahmoudian

Committee Member: Dr. Bo Chen

Committee Member: Dr. Jianhui Yue

Department Chair: Dr. Zhenlin Wang

Dedication

To my family and my dearest friends who have always supported me and have been

there for me when I needed them. This would not have been possible without their

support.

Contents

List of Figures . ix

List of Tables . xi

List of Abbreviations . xiii

Abstract . xv

1 Introduction . 1

1.1 Objective . 2

1.1.1 Develop a GUI for user interaction 2

1.1.2 Suggesting objects of interest 2

2 Background . 5

2.1 Visual Feature Tracking . 5

2.1.1 Tracking vs Detection . 5

2.1.2 Tracking Algorithms . 6

2.1.2.1 Boosting Tracker 6

2.1.2.2 MIL Tracker . 7

2.1.2.3 TLD Tracker . 7

2.1.2.4 GOTURN Tracker 8

2.1.2.5 MOSSE Tracker 8

2.1.2.6 CSRT Tracker . 9

2.2 Classification Neural Network . 9

vii

2.2.1 Retinanet . 10

3 Software Design and Implementation 13

3.1 UI Design . 13

3.1.1 Main Window . 14

3.1.2 Image display pane . 14

3.2 Implementation . 14

3.2.1 Load media File . 16

3.2.2 Select Bounding Boxes for Object Tracking 16

3.2.3 Bounding box suggestions using Object Detection 18

3.2.4 Integration of Object Detection and Object Tracking 20

3.2.5 User Modifications . 22

3.2.6 Save Annotations . 26

4 Results and Discussion . 27

4.1 Software performance evaluation . 29

4.1.1 Case 1 . 30

4.1.2 Case 2 . 31

5 Conclusion and Future Work . 33

References . 35

viii

List of Figures

2.1 Error vs Size of training data set[13] 10

3.1 UI flow of the software . 15

3.2 Object Tracking Algorithm . 17

3.3 Training the CNN [19] . 19

3.4 Object Detection with the Inference Model [20] [21] 19

3.5 Algorithm flow of the software [19] 20

4.1 Select objects [23] . 27

(a) Select 1st object . 27

(b) Select 2nd object . 27

4.2 Object Detection [23] . 28

4.3 Deleting bounding boxes [23] . 28

(a) Before Deletion . 28

(b) After Deletion . 28

4.4 Moving a bounding box [23] . 29

(a) Before Moving . 29

(b) After Moving . 29

5.1 Variation in consecutive video frames 33

(a) Frame 1 . 33

(b) Frame 2 . 33

ix

List of Tables

3.1 CSV File structure . 26

xi

List of Abbreviations

AR Augmented Reality

ASEF Average of Synthetic Exact Filters

CNN Convolution Neural Network

COCO Common Objects in Context

CSRT Discriminative Correlation Filter with Channel and Spatial Reliability

CSV Comma separated values

DCF Discriminative Correlation Filter

FPN Feature Pyramid Network

FPS Frames per second

GOTURN Generic Object Tracking Using Regression Networks

GUI Graphic User Interface

IOU Intersection over Union

KCF Kernelized Correlation Filters

MIL Multiple Instance Learning

MOSSE Minimum Output Sum of Squared Error

ROI Region of Interest

SLAM visual Simultaneous Localization and Mapping

SSE Sum of Squared Error

TLD Tracking, learning and detection

UI User Interface

YOLO You Only Look Once

xiii

Abstract

Object detection and classification plays a major role in today’s modern technology.

The implementations of these concepts range from consumer products to self driving

cars. These concepts largely reply on the data sets used for training these models.

There is a considerable amount of effort in generating these data sets for every specific

application of these algorithms.

In this report, a method for generating image data sets with the use of visual feature

tracking and deep learning algorithms for application in autonomous vehicles has been

proposed. The aim is to reduce the time and effort dedicated towards the generation

of these application specific data sets.

For this purpose, a software has been developed in Python for a Linux based system

using Tensorflow, Keras, Pygames and OpenCV libraries which is capable of tracking

an object of interest in a given media input specified by the user along with detect-

ing various similar objects using a pre-trained Classification neural network. This

software then compiles a file containing all the annotations for the above specified

objects.

xv

Chapter 1

Introduction

Though the concepts of deep learning have existed for far longer, the increase in the

processing power of the computers and the capability of processing large sets of data in

the last decade has led to the increase in their popularity. A major application of deep

learning algorithms in today’s world is in the field of object detection, classification

and segmentation. These are largely used for the development and operation of

autonomous vehicles or bots. Some of the most popular algorithms in object detection

include the likes of YOLO [1] and Alexnet which are trained over hundred thousand

images [2].

However, the algorithms are only as good as the images they were trained on. They

can only perform within the range of data that they were trained on. Hence, an

algorithm trained for use with an autonomous car cannot work on a drone, unless

it was trained on an image data set that included images which the drone would

encounter. Therefore, it is important to use the right set of annotated images for

each application to achieve high performance.

1

These annotated data sets are generated over years of collecting, processing and

labelling. This process is long and takes a lot of effort to generate annotated data

for a specific application. For example, the COCO data set has over 100,000 images

which has been in the works since 2014. There is a need to make this process of

generating annotated data sets simpler and faster.

1.1 Objective

To ease this process of generating annotated data sets, we developed a software.

The objective of this software is to generate annotations for image data sets while

optimizing time and effort using the following.

1.1.1 Develop a GUI for user interaction

The software is designed to take media inputs both in Video and Image formats which

the user can use to generate his/her data set. The user is then prompted to select

one or multiple ROI around the objects of interest and annotate the selected objects.

1.1.2 Suggesting objects of interest

At each Frame/Image, the user is prompted with suggestions of objects similar to the

ones already selected. These suggestions are made using

† Visual Feature Tracking

2

† Classification Neural Network

These suggestions can then be confirmed, modified or rejected based on the need of

the user. Following the user’s response, the suggestions for the following frames are

modified accordingly.

The visual feature tracking feature is aimed at reducing the effort of annotating the

same object across different frames of video. This will enable the annotation of the

same object in different angle of view or different look as long as it is gradually

changing.

The object detection feature is aimed at allowing the user to annotate any object that

can already be detected by a trained CNN. This reduces the effort by automatically

selecting the objects and will help in enriching the data base of the user.

3

Chapter 2

Background

2.1 Visual Feature Tracking

Applications for Visual Feature Tracking range from the areas of AR to self driv-

ing cars [3]. This is due to its ability to track complex objects through rotations,

occlusions and other distractions [4].

2.1.1 Tracking vs Detection

Visual feature tracking is the problem of continuously localizing a target in a video-

sequence when provided with its appearance in one frame [5] where as detection is

the problem of identifying a set of objects in a frame of image that it is trained to

recognize.

In terms of identification of an object in a given set of frames, Tracking works faster

5

than Detection in most of the cases [6]. It is only presumable as in Tracking there is

much more information available about the object’s appearance and location. A good

Tracking algorithm will make use of all the information available about the object in

order to track it efficiently in the further frames.

Tracking algorithms can accumulate a small amount of error through multiple frames

and lose track of the object at a point. This is when detection algorithms can help

rectify the problem. Running a detection algorithm for every few frames will reduce

the error and optimize the computation time.

On the other hand, Tracking algorithms are of a great advantage if the object is being

occluded. Detection algorithms would not be able to detect that object whereas, the

Tracking algorithm would still be able to detect it.

2.1.2 Tracking Algorithms

The following are the 8 Tracking algorithms implemented in Opencv

2.1.2.1 Boosting Tracker

This Tracker algorithm is based on the on-line version of the AdaBoost Algorithm

[7]. This algorithm is trained on positive and negative samples and each of the user

selected object is considered to be a positive sample and the background around the

bounding box as a negative sample. The location of the object is used to define a

search region where the algorithm is run to identify a set of pixels with the least

amount of error. And the detected object is then a part of the positive samples.

6

2.1.2.2 MIL Tracker

For each frame of the video sequence, a set of HAAR-like features are computed for

each of the image patch [8]. A discriminative classifier is then used to determine if

the object of interest is present in that image patch.

The tracker maintains the object location and collects a set of image patches within

a certain radius of that location. It then uses the classifier to determine if the object

is present in any of those image patches collected and updates the location of the

tracker using the greedy strategy.

2.1.2.3 TLD Tracker

In this algorithm, the object selected by the user is tracked using a short term tracker

based on the lucas Kanade method [9]. The online model is then created by analyzing

the trajectory in the feature space. The model is then pruned from samples that are

wrong.

The objective of creating the online model is to represent a memory of the system

and to generate the object detector which is constantly updated and evaluated. Using

the online model, the object detector return a set of bounding boxes for every frame

in the video sequence which represents an alternative suggestions to the result of the

tracker.

The tracker result is compared to these set of bounding boxes returned by the object

detector. A confidence score is then calculated to decide if the object is visibe or not.

7

2.1.2.4 GOTURN Tracker

GOTURN is a deep learning based tracking algorithm [6]. Unlike most of the al-

gorithms which train in an online manner to learn the appearance of the object of

interest, GOTURN learns the motion of the object in an offline manner. It is trained

on multiple video sequences and does not require to be trained during runtime.

GOTURN has been trained on a pair of cropped images. The previous frame is the

cropped image where the object is centered and the bounding box has been provided

by the user, and the current frame is the one where the algorithm crops the image to

double the size of the bounding box provided.

These two images are then sent to through a bank of convolution layers which comprise

of the first five convolution layers of the CaffeNet architecture. The output if these

convolution layers are then concatenated into a 4096 length vector which is then sent

as an input to a 3 fully connected layers. The last fully connected layer is connected

to an output layer which returns 4 nodes containing the bottom and top points of the

bounding box.

2.1.2.5 MOSSE Tracker

Mosse algorithm is designed to produce ASEF [10] like filters from fewer training

images. It needs training images and training outputs where the training outputs are

generated from the ground truth such that it has a 2D Gaussian shaped peak centered

on the target in the training image. Training is performed in a Fourier domain which

has an advantage of having a simple element -wise relationship between the input and

output. [4]

8

MOSSE finds a filter that minimizes the SSE between the actual and desired output

of the convolution to map the training images to their output. In this optimization

every training output is customized unlike most other algorithms where it is assumed

that the target is always centered in the training images and their outputs.

2.1.2.6 CSRT Tracker

In DCF-CSR we use spatial reliability map for adjusting the filter support to the

part of the object which is suitable for tracking. This helps overcome the problem of

circular shift and the limitations related to the rectangular space assumptions. This

is done by using the output of a graph labeling problem which is solved for each of

the frames [5].

The second feature is the channel reliability which is estimated using the properties

of the constrained least square solution to filter design. The channel reliability scores

are used for the weights of the per-channel filter responses in localization [5].

2.2 Classification Neural Network

Image recognition has boomed over the past decade due to the desire to move towards

automation and the many services that become possible with it’s use. To this end,

CNN have been able to deliver good and consistent results. This has been made

possible due to the availability of hardware with high computational capacity and

the annotated data sets that are comprehensive [11, 12].

However, the performance of these CNNs is highly dependant on the quality and the

9

Figure 2.1: Error vs Size of training data set[13]

size of the data sets that are used to train them [13]. Figure 2.1 shows the Error rate

vs Size of training dataset. As can be seen, the error rate reduces exponentially as

the number of the training images increase. Therefore, it is important to choose the

right set of data and the right size of data for the right application to optimize the

performance and the computation of the CNN.

2.2.1 Retinanet

Retinanet [14] is based on a one stage object detector that matches the accuracy of

more complex two stage detectors such as FPN [15] or Mask R-CNN [16] variants of

faster R-CNN[17].

Retinanet is composed of an off-the-shelf convolutional backbone network which is

responsible for the computation of a convolutional feature map over the input image

10

and two task-specific subnetworks namely classification subnet and box regression

subnet.

The classification subnet is responsible for the classification of the objects from the

backbone’s output and the box regression subnet is responsible for the convolutional

bounding box regression.

The backbone of the retinanet is adopted by the FPN described in [15]. This is

built on top of the RestNet architechture in [18]. [14] shows the architecture of the

RetinaNet detector.

11

Chapter 3

Software Design and

Implementation

3.1 UI Design

The software is designed to facilitate in the process of labelling and annotating images

for data set generation. The aim is to build a user friendly UI for the proposed flow

of algorithm in Figure 3.5 which would enable the user to select multiple objects of

interest and annotate them subsequently in following frames without having to select

the ROI again. The use of CNN further reduces the need to select objects which the

CNN can detect.

13

3.1.1 Main Window

The main window consists of a large image display pane which is opened once a media

input has been selected by the file browser display.

3.1.2 Image display pane

The user interacts for the most amount of time with the image display pane. It is

designed to select, display and edit the bounding boxes as necessary. This pane is

designed to perform all the tasks necessary without having to move to another pane.

The image display pane covers the entire window and the user is allowed to interact

with the images using the mouse to drag and draw bounding boxes and use keystrokes

to give commands such as next frame, delete bounding box or entering the label name.

3.2 Implementation

This section describes the method of implementation and integration of the UI with

the algorithm flow of the proposed software.

The UI is designed in python using the OpenCV library. The UI flow of the software

in Figure 3.1 is implemented using the algorithm flow discussed in 3.2.4. In this

section, each step of the UI’s flow is described along with its code.

14

Figure 3.1: UI flow of the software

15

3.2.1 Load media File

The first step in the process of data generation is to load the files to be used. There

are two types of files that can be used, Images and Videos. The user can select if

they are opening a video or an image from the file menu on the menu bar.

Upon selecting the type of file the user would like to load, they are given a file browser

window to select the directory in case of an Image, and for a video, the user is required

to select the video file to be used.

3.2.2 Select Bounding Boxes for Object Tracking

After specifying the file directory, the first image/frame is displayed on the image

display pane. The user then needs to follow the following steps to select the objects

of interest for tracking.

† Draw bounding box by dragging the mouse from one corner vertex to the op-

posite corner vertex of the desired box.

† As soon as the user releases the mouse button, they are prompted to enter the

label of the object.

† After entering the label name, the user needs to press enter to complete anno-

tating the object.

† The user can repeat the above process to select multiple bounding boxes within

the same image or frame by entering any value other than ’q’ using the keyboard.

16

† After selecting all the bounding boxes the user needs to enter ’q’ on the keyboard

to start tracking the objects.

For our application, we require a tracking algorithm that has a higher accuracy in

terms of tracking as well as reliably reporting the failure of the tracking. In terms

of accuracy, CSRT Tracker is more accurate than all the other tracking algorithms

mentioned in 2.1.2.

Also, To create a diverse data set, we not only need complete images of the objects

of interest, but we also need images where only a part of the object is visible. While

Boosting does not handle occlusion well, MIL and KCF Tracker do not recover from

full occlusion where as CSRT handles occlusion very well.

Computation time and fps throughput are also some of the features to be considered

while considering an algorithm for an application. Although, MOOSE is very fast

and KCF has a faster FPS throughput, in our application we will not be processing

real time data and hence can accommodate lower FPS throughput.

Due to the better accuracy and better handling of occlusions in CSRT, we prefer

CSRT over MOOSE.

Figure 3.2: Object Tracking Algorithm

To track an object of interest, the CSRT tracker requires a bounding box enclosing

the object. This bounding box is then used to initialize the tracker. This tracker is

17

then used to update the location of the object in the subsequent frames. Figure 3.2

shows the flow of the algorithm for object tracking.

#Select the bounding boxes

Select_bounding_box(frame)

#Creating a multitracker to track all the objects ←↩
specified in the bounding boxes above

multiTracker = cv2.MultiTracker_create ()

for select_box in bounding_boxes:

multiTracker.add(cv2.TrackerCSRT_create (),frame ,←↩
select_box)

3.2.3 Bounding box suggestions using Object Detection

The RetinaNet Detector described in 2.2.1 is used as the object detection algorithm

as it shows a considerable amount of increase in accuracy compared to some of the

existing detection algorithms.The comparision between RetinaNet and other one-

stage and two-stage detectors is shown in [14].

After the first frame/image is annotated, the algorithm moves to the next frame/im-

age. However, since the user has already listed some labels of interest, the CNN

analyses the current frame/image to suggest bounding boxes for objects from the

labels already created by the user.

This is achieved by first training the RetinaNet model as shown in Figure 3.3 on

a subset of COCO database containing cars, trucks, buses, motorcycles, bicycles,

traffic lights, people and road signs, as this software was designed for a specific

application in the field of object detection for vehicles to begin with. Although, this

18

can be used for other applications suited to the user by training the model with

the entire COCO data set. ResNet50 was used as the backbone for the training model.

Figure 3.3: Training the CNN [19]

After the training has been complete, the training model is converted to an inference

model that can be used for performing the object detection as shown in Figure 3.4.

The inference model returns the coordinates of the bounding box, the detected label

id for the object enclosed and a confidence score for the detected label as shown in

Figure 3.4. This information can be then visualized by using OpenCV library.

Figure 3.4: Object Detection with the Inference Model [20] [21]

def cnn_keras(detect_frame ,out_queue):

preprocess image for network

image = cv2.cvtColor(detect_frame , cv2.COLOR_RGB2BGR←↩
)

19

image = preprocess_image(image)

image , scale = resize_image(image)

process image

start = time.time()

cnn_boxes , cnn_scores , cnn_labels = model.←↩
predict_on_batch(np.expand_dims(image , axis =0))

print("processing time: ", time.time() - start)

correct for image scale

cnn_boxes /= scale

out_queue.put([cnn_boxes , cnn_scores , cnn_labels])

3.2.4 Integration of Object Detection and Object Tracking

The results from both the object tracker module in Figure 3.2 and the object

detection module in Figure 3.4 are compared to see if there is any redundancy. If the

object tracker and the object detector give two overlapping bounding boxes, then

we use the Intersection Over Union (IOU) calculation to decide whether to combine

both the boxes or to keep them as separate boxes.

Figure 3.5: Algorithm flow of the software [19]

20

After computing both the modules, an IOU is computed between all the bounding

boxes from the RetinaNet with the ones in object tracking. Any two bounding boxes

with IOU greater than 0.75 is considered as the same object and is removed from the

RetianNet set of bounding boxes. Then we check the scores of the bounding box and

the ones with a score less than 0.5 are also eliminated.

def IOU(box_cnn ,box_object):

int1_x = max(box_cnn [0], box_object [0])

int1_y = max(box_cnn [1], box_object [1])

int2_x = min(box_cnn [2],(box_object [0]+ box_object←↩
[2]))

int2_y = min(box_cnn [3],(box_object [1]+ box_object←↩
[3]))

intersect_area = max(0, int2_x - int1_x + 1) * max←↩
(0, int2_y - int1_y + 1)

area_box_cnn = (box_cnn [2] - box_cnn [0] + 1) * (←↩
box_cnn [3] - box_cnn [1] + 1)

area_box_object = box_object [2] * box_object [3]

iou_area = intersect_area/float(area_box_object + ←↩
area_box_cnn - intersect_area)

return iou_area

Then we make our final comparison of the class labels with the labels annotated by

the user for object tracking and only the labels that have been annotated by the user

are provided as suggestions for user convenience.

21

3.2.5 User Modifications

The user is then presented with the suggested bounding boxes with their labels in

the current frame/image. The user can then follow the following steps to edit/delete

any of the bounding boxes.

† To delete a bounding box, select the box of interest by double clicking inside

the box and enter ’w’ using the keyboard.

if user_input == ord('w') and active:

bounding_boxes.remove(bounding_boxes[←↩
box_number])

bounding_boxes_color.remove(←↩
bounding_boxes_color[box_number])

reset()

if(len(bounding_boxes) == 0):

flag=0

else:

edited = True

active = False

† To move a bounding box, double click within the box of interest, then move the

box to the desired location and double click to confirm the position and deselect

the bounding box.

† To edit the shape of a bounding box, double click on any of the 4 vertices

or the center of the 4 edges. Then, move the selected edge or vertex to its

desired location. Double click once again to confirm the location and deselect

the bounding box [22].

22

def mouseMove(x,y,param):

global hold ,TL ,TM,TR,LM ,RM,BL,BR ,BM ,←↩
bounding_boxes ,box_number

if hold:

print("moving")

new_x = x - anchorx

new_y = y - anchory

new_wid = bounding_boxes[box_number][2]

new_hig = bounding_boxes[box_number][3]

createObjectBox(new_x ,new_y ,new_wid ,new_hig)

RedrawRect(param)

return

endif

if TL:

new_x = x

new_y = y

new_wid = (bounding_boxes[box_number][0] + ←↩
bounding_boxes[box_number][2]) - x

new_hig = (bounding_boxes[box_number][1] + ←↩
bounding_boxes[box_number][3]) - y

createObjectBox(new_x ,new_y ,new_wid ,new_hig)

RedrawRect(param)

return

endif

if BR:

new_x = bounding_boxes[box_number][0]

new_y = bounding_boxes[box_number][1]

new_wid = x - bounding_boxes[box_number][0]

new_hig = y - bounding_boxes[box_number][1]

createObjectBox(new_x ,new_y ,new_wid ,new_hig)

RedrawRect(param)

return

23

endif

if TR:

new_x = bounding_boxes[box_number][0]

new_y = y

new_wid = x - bounding_boxes[box_number][0]

new_hig = (bounding_boxes[box_number][1] + ←↩
bounding_boxes[box_number][3]) - y

createObjectBox(new_x ,new_y ,new_wid ,new_hig)

RedrawRect(param)

return

endif

if BL:

new_x = x

new_y = bounding_boxes[box_number][1]

new_wid = (bounding_boxes[box_number][0] + ←↩
bounding_boxes[box_number][2]) - x

new_hig = y - bounding_boxes[box_number][1]

createObjectBox(new_x ,new_y ,new_wid ,new_hig)

RedrawRect(param)

return

endif

if TM:

new_x = bounding_boxes[box_number][0]

new_y = y

new_wid = bounding_boxes[box_number][2]

new_hig = (bounding_boxes[box_number][1] + ←↩
bounding_boxes[box_number][3]) - y

createObjectBox(new_x ,new_y ,new_wid ,new_hig)

RedrawRect(param)

return

endif

if BM:

new_x = bounding_boxes[box_number][0]

24

new_y = bounding_boxes[box_number][1]

new_wid = bounding_boxes[box_number][2]

new_hig = y - bounding_boxes[box_number][1]

createObjectBox(new_x ,new_y ,new_wid ,new_hig)

RedrawRect(param)

return

endif

if LM:

new_x = x

new_y = bounding_boxes[box_number][1]

new_wid = (bounding_boxes[box_number][0] + ←↩
bounding_boxes[box_number][2]) - x

new_hig = bounding_boxes[box_number][3]

createObjectBox(new_x ,new_y ,new_wid ,new_hig)

RedrawRect(param)

return

endif

if RM:

new_x = bounding_boxes[box_number][0]

new_y = bounding_boxes[box_number][1]

new_wid = x - bounding_boxes[box_number][0]

new_hig = bounding_boxes[box_number][3]

createObjectBox(new_x ,new_y ,new_wid ,new_hig)

RedrawRect(param)

return

endif

† Press ’return’ to complete and save the annotation and move to the next

frame/image.

The user can also draw any new bounding boxes of interest by pressing the ’f’ key on

the keyboard and following the steps mentioned in the previous section. 3.2.2

25

3.2.6 Save Annotations

Video Name Frame Number Bounding Box Label
Testing.mp4 1 [80,50,20,30] Car
Testing.mp4 1 [10,40,20,40] Bike
Testing.mp4 1 [30,60,5,4] Person
Testing.mp4 2 [12,38,20,40] Bike

Table 3.1
CSV File structure

While the user selects and annotates the objects of interest, the program saves the

bounding boxes and its labels into a CSV file. The file is updated regularly after

each frame/image. The structure of the CSV file is shown in the table 3.1.

with open('Object_Detection.csv', 'a') as csvFile:

writer = csv.writer(csvFile)

for i, box in enumerate(bounding_boxes):

row = [vid_path , frame_number ,box ,←↩
bounding_box_labels[i]]

writer.writerow(row)

csvFile.close()

26

Chapter 4

Results and Discussion

Figure 4.1 shows how ROI can be selected in an image or a frame. Figure 4.1(a)

shows the first object that was selected in the frame and Figure 4.1(b) shows the

second object that was selected in the frame.

(a) Select 1st object (b) Select 2nd object

Figure 4.1: Select objects [23]

Figure 4.2 shows the objects detected in the frame by the CNN along with the two

objects selected by the user. The objects in pink and lime green (the colors are

assigned randomly) are the objects selected by the user and are being tracked. The

27

Figure 4.2: Object Detection [23]

objects in the blue boxes are the ones that were detected by the CNN. These also

have the label of detection and the confidence score on top of the boxes.

(a) Before Deletion (b) After Deletion

Figure 4.3: Deleting bounding boxes [23]

If the user chooses to use these boxes they can move to the next frame. However,

if they would like to not use some or all of the boxes detected in the frame, they

may remove them, as shown in Figure 4.3. In this figure, the bounding box in lime

28

green color in Figure 4.3(a) is deleted. When the user moves to the next frame after

deleting the bounding box, the CNN once again detects the object and displays the

label and the confidence score along with it.

Figure 4.4 shows an image of a bounding box that was moved. As we can see that the

pink bounding box in Figure 4.4(a) has been moved to a different location in Figure

4.4(b). When the user moves to the next frame, the moved bounding box starts

tracking the object within it while the car that was earlier enclosed in the bounding

box in Figure 4.4(a) is now detected by the CNN.

(a) Before Moving (b) After Moving

Figure 4.4: Moving a bounding box [23]

4.1 Software performance evaluation

The software that has been created needs to be evaluated to analyze the improvement

in the effort of the user. The following assumptions are made during this analysis.

† The quality of the media input is acceptable, meaning the objects of interest

are clearly distinguishable.

† The media has multiple instances of the objects of interest.

29

† The change in visual features from frame to frame is not very high.

For this, we performed an evaluation where the user defined a bounding box for

the object of interest in each frame. An object tracker was then initialized using the

bounding box in the first frame. The goal was to compute the percentage of overlap of

the bounding boxes defined by the user and the ones returned by the tracker. An 80%

overlap was considered to be an acceptable suggestion from the tracking algorithm.

With this criteria, we were able to see an acceptable performance from the tracker for

4 frames on an average. The performance of the object detection algorithm is given

in [14].

4.1.1 Case 1

The most conservative case would be when the number of objects of interest is 1 in

each frame. Considering this case, let us assume a video at 60 fps. The user has to

draw a bounding box around the object of interest every 5th frame as the tracker can

track the object for 4 frames. Hence,

Number of frames in 1 second = 60

Number of frames the tracker can track an object = 4

Number of frames the object is annotated = 1 (user defined) + 4 (tracker)

Number of frames the user has to define the bounding box in 1 second = 60/5 = 12

Number of times the user has to define the bounding box without the tracker in 1

second = 60

Reduction in effort = 60/12 = 5

30

The effort of the user in this case is reduced by 5 times which is 80%.

4.1.2 Case 2

Considering a case where the number of instances of the object of interest is more

than 1. In such a case, once the user has labelled the first instance of the object of

interest, the object detector will detect the rest of the instances. Hence, the efforts

of the user for defining 1 instance remains the same as in case 1. However, the effort

for defining the rest of instances reduces proportionally to the number of instances.

Therefore, ideally the software should be able to reduce the user’s effort by at least

80%.

31

Chapter 5

Conclusion and Future Work

A software has been developed to facilitate in the process of image data set generation

and annotation. This has been achieved with the help of deep learning algorithms

and Visual Feature Tracking. The use of RetinaNet CNN and CSRT Tracker in this

process has helped reduce the time and effort required in generating an application

specific data set.

(a) Frame 1 (b) Frame 2

Figure 5.1: Variation in consecutive video frames

Currently, the software is saving the annotations at the end of every frame. This can

lead to a lot of redundancy in the images saved as the variation of the data within a

33

video frame is not that significant in all the cases. Figure 5.1 shows a comparison of

two consecutive frames in a video.

Hence, it would be beneficial to remove the redundancy in the video files by com-

pressing them based on the variation of the image from frame to frame. This would

lead to a compressed video where the variation from frame to frame is significant and

can lead to distinct images as opposed to similar images as shown in Figure 5.1.

34

References

[1] Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 779–788, 2016.

[2] Krizhevsky, A.; Sutskever, I.; Hinton, G. E. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[3] Gauglitz, S.; Höllerer, T.; Turk, M. International journal of computer vision

2011, 94(3), 335.

[4] Bolme, D. S.; Beveridge, J. R.; Draper, B. A.; Lui, Y. M. In 2010 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, pages 2544–

2550. IEEE, 2010.

[5] Lukezic, A.; Vojir, T.; Cehovin Zajc, L.; Matas, J.; Kristan, M. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages

6309–6318, 2017.

[6] Mallik, S. Object Tracking using OpenCV (C++/Python); Learn OpenCV:

https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/,

2017.

[7] Grabner, H.; Grabner, M.; Bischof, H. In Bmvc, Vol. 1, page 6, 2006.

35

[8] Babenko, B.; Yang, M.-H.; Belongie, S. In 2009 IEEE Conference on Computer

Vision and Pattern Recognition, pages 983–990. IEEE, 2009.

[9] Kalal, Z.; Matas, J.; Mikolajczyk, K. In 2009 IEEE 12th International Con-

ference on Computer Vision Workshops, ICCV Workshops, pages 1417–1424.

IEEE, 2009.

[10] Bolme, D. S.; Draper, B. A.; Beveridge, J. R. 2009 IEEE Conference on Com-

puter Vision and Pattern Recognition 2009.

[11] Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. In 2009 IEEE

conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[12] Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár,

P.; Zitnick, C. L. In European conference on computer vision, pages 740–755.

Springer, 2014.

[13] Soleyman, S. Effect of Dataset Size on Image Classification Accuracy; Word

Press: http://seansoleyman.com/effect-of-dataset-size-on-image-classification-

accuracy/, 2018.

[14] Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. In Proceedings of the IEEE

international conference on computer vision, pages 2980–2988, 2017.

[15] Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017.

[16] He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. 2017 IEEE International Confer-

ence on Computer Vision (ICCV) 2017.

[17] Ren, S.; He, K.; Girshick, R.; Sun, J. IEEE Transactions on Pattern Analysis

and Machine Intelligence 2017, 39(6), 11371149.

36

[18] He, K.; Zhang, X.; Ren, S.; Sun, J. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

[19] Vogel, R. Traffic Image; NewYork Times:

https://www.nytimes.com/2019/01/21/upshot/stuck-and-stressed-the-health-

costs-of-traffic.html, 2019.

[20] Vision, T. Traffic bounding box image; Traffic Vision:

http://www.trafficvision.com/, 2015.

[21] Minesweeper. Traffic bounding box original image; Wikipedia:

https://en.wikipedia.org/wiki/Traffic, 2015.

[22] Chavan, A. opencvdragrect; GitHub: https://github.com/arccoder/opencvdragrect,

2016.

[23] cam videos, L. V. D. Testing Video; Youtube:

https://www.youtube.com/watch?v=8aFkNRrj8n8—&t=5s, 2015.

[24] Sharif Razavian, A.; Azizpour, H.; Sullivan, J.; Carlsson, S. In Proceedings of the

IEEE conference on computer vision and pattern recognition workshops, pages

806–813, 2014.

[25] Shin, H.-C.; Roth, H. R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura,

D.; Summers, R. M. IEEE transactions on medical imaging 2016, 35(5), 1285–

1298.

37

	DATA SET GENERATION USING DEEP LEARNING ALGORITHMS AND VISUAL FEATURE TRACKING
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Abstract
	Introduction
	Objective
	Develop a GUI for user interaction
	Suggesting objects of interest

	Background
	Visual Feature Tracking
	Tracking vs Detection
	Tracking Algorithms
	Boosting Tracker
	MIL Tracker
	TLD Tracker
	GOTURN Tracker
	MOSSE Tracker
	CSRT Tracker

	Classification Neural Network
	Retinanet

	Software Design and Implementation
	UI Design
	Main Window
	Image display pane

	Implementation
	Load media File
	Select Bounding Boxes for Object Tracking
	Bounding box suggestions using Object Detection
	Integration of Object Detection and Object Tracking
	User Modifications
	Save Annotations

	Results and Discussion
	Software performance evaluation
	Case 1
	Case 2

	Conclusion and Future Work
	References

