
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2019 

Contextual Bandit Modeling for Dynamic Runtime Control in Contextual Bandit Modeling for Dynamic Runtime Control in 

Computer Systems Computer Systems 

Jason Hiebel 
Michigan Technological University, jshiebel@mtu.edu 

Copyright 2019 Jason Hiebel 

Recommended Citation Recommended Citation 
Hiebel, Jason, "Contextual Bandit Modeling for Dynamic Runtime Control in Computer Systems", Open 
Access Dissertation, Michigan Technological University, 2019. 
https://doi.org/10.37099/mtu.dc.etdr/942 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Artificial Intelligence and Robotics Commons, and the Systems Architecture Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/942
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F942&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.mtu.edu%2Fetdr%2F942&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.mtu.edu%2Fetdr%2F942&utm_medium=PDF&utm_campaign=PDFCoverPages


Contextual Bandit Modeling for Dynamic Runtime Control in Computer Systems

By

Jason Hiebel

A Dissertation

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In Computer Science

Michigan Technological University

2019

© 2019 Jason Hiebel





This dissertation has been approved in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in Computer Science.

Department of Computer Science

Dissertation Co-Advisor: Laura E. Brown

Dissertation Co-Advisor: Zhenlin Wang

Committee Member: Nilufer Onder

Committee Member: Allan A. Struthers

Department Chair: Linda Ott





To my mother,

a woman with a great capacity

for tenacity and perseverance

that I strive everyday to myself achieve





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Acknowlegments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Performance Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Phase Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Memory Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Hardware Memory Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Multi-Armed Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



CONTENTS

2.5.1 Selection Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Contextual Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Supervised Learning and Classification . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Paging Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Memory Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Contextual Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Dynamic Paging Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Direct Sampling (DSP-SAMPLE) . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Contextual Bandit Model (DSP-OFFSET) . . . . . . . . . . . . . . . 39

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.4 Profiling Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

viii



CONTENTS

4 Hardware Memory Prefetcher Utilization . . . . . . . . . . . . . . . . . 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Contextual Bandit Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Action Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Context Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.3 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.4 Policy Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Workload Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 Workload Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Performance Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Dynamic Hardware Prefetcher Control . . . . . . . . . . . . . . . . . . . . . 77

ix



CONTENTS

5.3 Correlation-Based Feature Selection . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.1 Workload Design and Execution . . . . . . . . . . . . . . . . . . . . . . 80

5.4.2 Dynamic Hardware Prefetcher Control . . . . . . . . . . . . . . . . . 81

5.4.3 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.1 DPL Prefetcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.2 DCU IP Prefetcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A Copyright Permission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

x



List of Figures

3.1 A comparison of Shadow Paging and Hardware-Assisted Paging using

extended/nested page tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Design and parameters of DSP-SAMPLE. . . . . . . . . . . . . . . . . . . . . 38

3.3 Overview of the Binary-Offset model construction and Binary-Offset

model evaluation workflows for paging mode selection and the associ-

ated data transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 IPC to instance weight transformation: Top; traces of IPC and paging

mode using a random selection policy for a subset of select workloads.

Middle; IPC transformed to reward. Bottom; Binary-Offset transfor-

mation to weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Mean normalized execution time for Hardware-Assisted Paging, Shadow

Paging, and dynamic selections including DSP-SAMPLE, DSP-OFFSET

(benchmark-specific, benchmark-agnostic), and ASP-SVM [80] on SPEC

INT2006. Error bars indicate minimum and maximum normalized times. . 45

3.6 Mean normalized execution time for Hardware-Assisted Paging, Shadow

Paging, and dynamic selections including DSP-SAMPLE, DSP-OFFSET

(benchmark-specific, benchmark-agnostic), and ASP-SVM [80] on SPEC

FP2006. Error bars indicate minimum and maximum normalized times. . . 46

3.7 Paging modes selected over time for SPEC CPU06 benchmarks using the

benchmark-agnostic DSP-OFFSET constructed on SPEC INT06. . . . . . 48

xi



LIST OF FIGURES

4.1 A small sample segment of log data from a random execution of a two-

core workload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Overview of the Binary-Offset model construction and model evalua-

tion workflow for hardware memory prefetcher utilization. . . . . . . . 62

4.3 Change in prefetcher performance and memory bandwidth utilization

for benchmarks from SPEC CPU2006, SPEC CPU2017, and PARSEC. . . 65

4.4 Workload performance for DPL prefetcher related policies on Sandy

Bridge and Kaby Lake experimental environments, relative to baseline

All Enabled (all prefetchers enabled on all cores). . . . . . . . . . . . . 69

4.5 Comparison of (geometric) mean policy performance on both the Sandy

Bridge and Kaby Lake for the DPL prefetcher. . . . . . . . . . . . . . . . 69

4.6 Workload performance for DCU IP prefetcher related policies on

Sandy Bridge and Kaby Lake experimental environments, relative to

baseline All Enabled (all prefetchers enabled on all cores). . . . . . . 71

4.7 Comparison of (geometric) mean policy performance on both the Sandy

Bridge and Kaby Lake for the DCU IP prefetcher. . . . . . . . . . . . . . 71

5.1 Overview of the CFS performance event selection, Binary-Offset model

construction, and Binary-Offset model evaluation workflows for hard-

ware memory prefetcher utilization. . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Comparison of (geometric) mean policy performance on both the Sandy

Bridge and Kaby Lake for the DPL prefetcher. . . . . . . . . . . . . . . . 87

5.3 Workload performance for DPL prefetcher related policies on Sandy

Bridge and Kaby Lake experimental environments, relative to the base-

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xii



LIST OF FIGURES

5.4 Comparison of (geometric) mean policy performance on both the Sandy

Bridge and Kaby Lake for the DCU IP prefetcher. . . . . . . . . . . . . . 92

5.5 Workload performance for DCU IP prefetcher related policies on

Sandy Bridge and Kaby Lake experimental environments, relative to

the baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xiii





List of Tables

3.1 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Performance Monitoring Events for Contextual Information . . . . . . 57

4.2 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Benchmark Selections by Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 CFS Events for Sandy Bridge DPL Prefetcher . . . . . . . . . . . . . . . . 85

5.2 CFS Events for Kaby Lake DPL Prefetcher . . . . . . . . . . . . . . . . . . 86

5.3 CFS Events for Sandy Bridge DCU IP Prefetcher . . . . . . . . . . . . . . 90

5.4 CFS Events for Kaby Lake DCU IP Prefetcher . . . . . . . . . . . . . . . . 91

xv





Preface

Chapter 3 contains material previously published in the Proceedings of the 47th International Con-

ference on Parallel Processing (ICPP ’18) [61]:

Jason Hiebel, Laura E. Brown, and Zhenlin Wang. Constructing dynamic policies for

paging mode selection. In Proceedings of the 47th International Conference on Parallel

Processing, ICPP ’18, pages 72:1–72:9, 2018, doi:10.1145/3225058.3225082.

Chapter 4 contains material previously published in the Proceedings of the 48th International Con-

ference on Parallel Processing (ICPP ’19) [62]:

Jason Hiebel, Laura E. Brown, and Zhenlin Wang. Machine learning for fine-grained

hardware prefetcher control. In Proceedings of the 48th International Conference on

Parallel Processing, ICPP ’19, pages 3:1–3:9, 2019, doi:10.1145/3337821.3337854.

The material described in Chapter 5 has been submitted for review and publication.

xvii





Acknowledgements

I would first like to give my sincere appreciation and thanks to my advisors, Dr. Laura E. Brown and

Dr. Zhenlin Wang, for their continued instruction and guidance. Through these past seven years,

their counsel and enduring patience helped me learn, grow, and accomplish more than I imagined

I could at the start of this journey. I would also like to recognize both Dr. Nilufer Önder and Dr.

Allan A. Struthers. Their cheerful investment in my work was a fount of motivation to improve.

As the Turkish proverb goes, ”always the trees that bear fruit are stoned.” I’m glad that they saw

potential in myself and my work and challenged me to succeed and excel.

Finally, I would like to extend my deepest gratitude to my mother, Mary Hiebel, father, Larry

Clemo, and step-mother, Shannon Clemo, for their love and support. It was upon this bedrock that

I was and continue to be able to build towards my future. From my first exposure to computer

science in the shadow of my father, to the parallel struggles of working through graduate education

with my mother, my family has been an indispensable source of comfort and inspiration.

xix





Abstract

Modern operating systems and microarchitectures provide a myriad of mechanisms for monitoring

and affecting system operation and resource utilization at runtime. Dynamic runtime control of these

mechanisms can tailor system operation to the characteristics and behavior of the current workload,

resulting in improved performance. However, developing effective models for system control can be

challenging. Existing methods often require extensive manual effort, computation time, and domain

knowledge to identify relevant low-level performance metrics, relate low-level performance metrics

and high-level control decisions to workload performance, and to evaluate the resulting control

models.

This dissertation develops a general framework, based on the contextual bandit, for describing and

learning effective models for runtime system control. Random profiling is used to characterize the

relationship between workload behavior, system configuration, and performance. The framework

is evaluated in the context of two applications of progressive complexity; first, the selection of

paging modes (Shadow Paging, Hardware-Assisted Page) in the Xen virtual machine memory man-

ager; second, the utilization of hardware memory prefetching for multi-core, multi-tenant workloads

with cross-core contention for shared memory resources, such as the last-level cache and memory

bandwidth. The resulting models for both applications are competitive in comparison to existing

runtime control approaches. For paging mode selection, the resulting model provides equivalent

performance to the state of the art while substantially reducing the computation requirements of

profiling. For hardware memory prefetcher utilization, the resulting models are the first to provide

dynamic control for hardware prefetchers using workload statistics. Finally, a correlation-based fea-

ture selection method is evaluated for identifying relevant low-level performance metrics related to

hardware memory prefetching.

xxi





Chapter 1

Introduction

Modern operating systems and microarchitectures rely on a vast set of algorithmic choices, parame-

terizations, and heuristic models to facilitate performant resource allocation and program execution.

Design decisions often offer a trade-off, improving the performance of some workloads while impair-

ing the performance of others. When these design decisions and parameterizations can be affected

at runtime, the system can be tuned or reconfigured to operate in a manner advantageous to the

performance of the currently executing workload.

The opportunity for runtime control and configuration is ripe. Since the Nehalem microarchitecture

(2008–), Intel has publicly exposed a set of four hardware memory prefetchers which can be enabled

or disabled at runtime on each core [132, 67]. IBM POWER7 and later POWER microarchitec-

tures (2010–) expose a highly configurable engine for hardware memory prefetcher control which

further offers opportunities to configure prefetcher depth and stride [121]. Intel’s Resource Direc-

tor Technology is an emerging toolkit for hardware monitoring and resource allocation, available

for the Xeon microarchitecture, which further expands the available system control mechanisms to

include the ability to partition and assign cache ways to specific programs or threads (Cache Alloca-

tion Technology) and measure and throttle memory bandwidth usage per-core (Memory Bandwidth

Monitoring, Memory Bandwidth Allocation). Effective utilization of these tools is an active body

of research [70, 62, 69, 140, 100, 141, 142]. Additionally, there are many bespoke and application-

specific examples of system control available in the computer systems literature, including paging

mode utilization in virtual machine memory managers [15, 136, 80, 61], thread and data-center

scheduling [120, 131, 41], power consumption control [38, 120], and feedback-directed optimization

in virtual machines [7, 110, 32, 34, 109].

1



CHAPTER 1. INTRODUCTION

In static runtime control utilizes a fixed configuration for the duration of a workload’s execution. In

contrast, dynamic runtime control makes use of fine-grained profiling to affect system operation and

adapt system capabilities in favor of the current system and workload characteristics. Developing

effective models for dynamic runtime control can be challenging due to limited feedback. Perfor-

mance measurements obtained through profiling only provide partial information, limited to the

system configuration under which the profiling occurred. Feedback for alternative configurations

can not be measured simultaneously with the same execution. One common method for providing

comparative profiling relies on identifying representative regions of program execution or develop-

ing micro-benchmarks which are representative of certain types of workload behavior. Enumerative

profiling of representative regions for the full set of available configurations provides full-information

feedback, which is directly comparable within that region.

Determining which profiling metrics which are relevant to a runtime control decision presents a

similar challenge of limited feedback. The Performance Monitoring Unit (PMU) [66, 6], available on

most modern architectures, is a ubiquitous mechanism for measuring and characterizing system and

workload behavior [52, 18, 146, 83]. The PMU exposes a large number of architecture events which

can be measured at runtime using a small set of performance counters. Modern microarchitectures

expose thousands of unique events but only provide up to eight performance counter registers with

which to measure those events. There is significant pressure for these performance counter registers,

as the number of performance events has far out-paced the number of events which can be measured

simultaneously [149]. This is further complicated by the nature of those performance events. Which

events are exposed by a particular system varies substantially both between vendors and between

microarchitectures of the same vendor. Statistical sampling can allow for larger sets of performance

events to be sampled at the cost of measurement error [14]. However, even with statistical sampling,

measuring the full suite of performance events is both impractical, due to the incurred measurement

error, and unnecessary, as a substantial number of events will be irrelevant or redundant to the

application.

Instead, a subset of relevant and representative performance events should be chosen to drive runtime

control. However, selecting relevant and representative performance events is often a laborious

2



CHAPTER 1. INTRODUCTION

process. Reasoning about the relationship between low-level performance events and the resulting

effect on configuration performance is often challenging even for domain experts. Performance event

documentation, when available, is often terse, vague, and in some cases incorrect. Many performance

events describe components or behaviors which are specific to a microarchitecture, and there are few

performance events which are standardized across microarchitectures. Even for performance events

which are consistently available, the relationship between those events and performance will also

depend on microarchitecture design and the interaction between components.

This dissertation presents a framework for the uniform modeling of fine-grained, dynamic runtime

control problems which are informed by measurable statistics of microarchitecture and workload

behavior. This framework provides a simple and direct method for constructing effective runtime

control models while mitigating the time cost and domain expertise required to achieve that perfor-

mance. More specifically, the framework models fine-grained, dynamic runtime control as a contex-

tual bandit [12]—a mathematical model which describes sequential decision making with so-called

bandit feedback, which is representative of the limited feedback produced when profiling performance

due to a control decision. At each iteration, the bandit observes some contextual information (work-

load behavior, according to performance event measurements), and uses that context, as well as

existing domain knowledge about the control mechanism, to select an action (system configuration).

In response, the bandit receives a reward (performance) dependent on both the context and selected

action. By exploiting established off-policy contextual bandit methods (e.g., Binary-Offset [21]),

profiling data that is obtained from random system control can adequately and efficiently capture

the relationships between workload behavior, system configuration, and performance.

This work focuses on two motivating applications. The first application, paging mode selection, con-

siders the trade-off in performance between common virtual memory abstractions (Shadow Paging,

Hardware-Assisted Paging) in the Xen [16] virtual machine memory manager. The performance of

each paging mode will favor certain types of memory access patterns. Shadow Paging introduces

additional overhead to page table activity, which will, in turn, adversely affect the performance

of workloads with larger memory working sets. Conversely, Hardware-Assisted Paging introduces

additional overhead to the translation-lookaside buffer, which will, in turn, adversely affect the

3



CHAPTER 1. INTRODUCTION

performance of memory-intensive workloads. The second application, hardware memory prefetcher

utilization, considers the configuration of existing hardware prefetchers. Prefetching is an effective

tool for mitigating the cost of accessing DRAM. Future memory accesses are predicted and requested

in advance of their potential use, ensuring that the requested memory is cached or in-flight by the

time the memory is required. While prefetching is overwhelmingly effective for single core workloads,

the added memory utilization due to prefetching can increase pressure for memory resources, such as

the last-level cache and memory bandwidth, which are shared by multiple cores. This contention can

be destructive to system-wide performance on multi-core systems. These two applications represent

a scaffold in difficulty and complexity. In paging mode selection, there is a binary choice between

paging modes, directed by the behavior of specific memory components (page table, translation-

lookaside buffer) behavior. In hardware memory prefetcher utilization, there is a combinatorial set

of binary choices, selecting to enable or disable each of the four prefetchers on each core. Perfor-

mance is not dictated by a single decision for a single core, but rather by the interaction of multiple

decision, across multiple cores, through the shared last-level cache and memory bandwidth. This

is further complicated by the complex interactions between cache and memory components which

result in system-wide performance. Identifying which performance events are relevant and effective

for dynamic prefetcher control presents a distinct challenge.

The main contributions of this work are three-fold. First, a mapping between dynamic runtime

control and off-policy contextual bandits is developed. Leveraging the Binary-Offset algorithm [21],

dynamic runtime control models are learned from profiling data acquired by utilizing random runtime

control decisions over time. Second, the framework is evaluated for the two motivating applications,

paging mode selection and hardware memory prefetcher utilization, with the scaffolded difficulty

introducing additional modeling features. Third, a correlation-based feature selection method is

described for selecting relevant performance events from the logged random profiling data, and is

evaluated for hardware memory prefetcher utilization. The selected performance events are further

analyzed in the context of available documentation to show that the events are substantiated by

domain expertise.

The remainder of this work is organized as follows. Chapter 2 presents background material and

4



CHAPTER 1. INTRODUCTION

related work relevant to the system configuration and resource allocation, the contextual bandit,

machine learning, and feature selection. Chapter 3 introduces the contextual bandit framework for

runtime control, and details the application of this framework to the dynamic selection of performant

paging modes in the Xen virtual machine monitor (Hiebel et al. [61]). Chapter 4 further details the

application of the framework to the dynamic utilization of hardware memory prefetchers in multi-

tenant workloads which suffer from contention for shared memory resources (Hiebel et al. [62]).

Chapter 5 presents correlation-based feature selection for selecting performance events relevant to

the hardware memory prefetcher utilization. Finally, Chapter 6 summarizes this work and describes

several avenues for future work.

5





Chapter 2

Background

2.1 Performance Monitoring

The Performance Monitoring Unit (PMU) is a commonly available component which allows for

microarchitecture event occurrences to be measured at runtime with hardware assistance [66, 6].

The PMU consists of a small number (4–8) of configurable performance counters per CPU. Each

performance counter is implemented as a pair of Model Specific Registers (MSRs), with one MSR

for measurement and one MSR for configuration. Each counter is configured to observe an event

through a two byte identifier: the first byte identifies the event, and the second byte identifies a

mask. The event value identifies a distinct, high level event that can take place within the archi-

tecture, e.g., branch instructions retired (Intel event 0xC4, mnemonic BR_INST_RETIRED), and the

mask specifies some subset of that behavior, e.g., near call branches that are taken (mask 0x20,

mnemonic BR_INST_RETIRED:NEAR_TAKEN). When enabled, the processor will increment the perfor-

mance counter whenever the configured event occurs. Additionally, the PMU offers a small collection

of fixed-function performance counters which measure specific events on each core, including instruc-

tions that retire execution (INST_RETIRED.ANY) and core cycles while the processor core is not in

a halt state (CPU_CLK_UNHALTED.THREAD, CPU_CLK_UNHALTED.CORE). The fixed-function and pro-

grammable counters operate independently of one another, freeing the user of using programmable

counters to measure instruction throughput (measured as Instructions per Cycle, or IPC).

In addition to measuring event counts directly, the PMU can also be used to facilitate instruction-

level profiling. In event-based sampling, a counter is configured to trigger an interrupt after a

fixed number of occurrences for a specified event. When that interrupt occurs, the performance

7



CHAPTER 2. BACKGROUND

monitor interrupt service routine will then record the PMU and processor state, including the current

instruction counter, to a buffer. The result is a sub-sample of instruction pointer values where the

sampling interrupt was triggered, which can, in turn, be used to identify code segments which

frequently trigger the event of interest. Practically, event-based sampling is accomplished by setting

the performance counter of interest to the maximum value, less the desired number of occurrences.

When the counter overflows, the PMU will trigger an overflow interrupt which can be used to record

the system state. Due to out-of-order execution and interrupt delays, the reported processor state

can suffer from “skid”: the reported state is several instructions offset from the instruction that

triggered the interrupt. Intel’s Precise Event-Based Sampling (PEBS) [66] and AMD’s Instruction-

Based Sampling (IBS) [6] provide low-latency event-based sampling directly in hardware, reducing

the frequency of hardware interrupts for collecting sampling results and allowing for a more rich

collection of processor state to be recorded (including branch status, data cache status, and load

latency). Both PEBS and IBS minimize and bound the potential skid in program state.

Over time, the number of exposed performance events has grown substantially, exceeding a thousand

available events on some recent Intel microarchitectures, while the number of performance counters

has remained consistent [14, 42, 149]. As a result, only a small number of performance events can be

sampled at any given time. Some performance events are limited to specific counter subsets. In many

cases, high-level metrics require the measurement of multiple events to calculate. Ratios of events,

such as the miss rate of a cache, are a common example which would require at least two events to

calculate. The result is an increased demand for the (already scarce) set of programmable counters.

Statistical sampling using time-based multiplexing is a common method for providing a larger set of

logical performance counters by measuring subsets of performance events on the physical counters

in shorter time slices [14]. However, multiplexing will omit some sampling error depending on the

number of performance events measured and the sampling period size. Even with multiplexing, it

is untenable to measure the full set of performance events simultaneously due to the resulting error.

Alternatively, multiple sets of performance events can be sampled over several program executions,

and the resulting traces can be merged. However, this is time-consuming of offline analysis and

ill-suited for online analysis. Asynchronous events, such as interrupts and I/O events, can cause

significant time drifts between individual runs, which, in-turn, complicates the process of merging

8



CHAPTER 2. BACKGROUND

offline traces.

Selecting meaningful performance events can itself be a challenge. The set of available events varies

substantially between vendors, and even between microarchitectures from the same vendor. Per-

formance events may also describe the behavior of components or operations that are specific to a

microarchitecture, and there are few events which are standardized across microarchitectures. Often,

there are complex interactions between architectural components which can obscure the meaning of

performance events. This is further complicated by poor, and in some cases incorrect, documenta-

tion. The terse event descriptions that are published are often difficult to dissect. Without ample

documentation (which is often unavailable), it can be challenging, even for a domain expert, to

understand the translate the meaning of low-level performance measurements to a high-level impact

on application and system behavior [96, 14, 40, 95, 143].

Nevertheless, the PMU is a popular tool for modeling and characterizing runtime system behavior,

and affecting system behavior at runtime. A large number of commercial and open source software

tools and APIs provide standardized cross-architecture interfaces for managing and operating the

PMU. Popular examples include Intel vTune [91], PAPI [27], Perfsuite [82], and Perfmon2 [47]. For

high-performance and parallel computing, specialized software suites, such as HPCTOOLKIT [2],

PerfExpert [31], and Periscope [53], address scalable performance measurement and analysis for

parallel systems and workloads.

Models for runtime modeling and prediction of performance [102, 18, 139, 49, 83] and energy con-

sumption [72, 68, 38, 120, 19, 97, 56, 139] are plentiful, and target a breadth of architectural tar-

gets, runtime environments, and workloads. Methods such as Bubble-Up [92, 81] and ADP [146]

characterize high-level performance descriptions by using low-level performance data obtained from

the PMU. These models assist in translating low-level performance data into high-level, user un-

derstanaable descriptions of program behavior. These descriptions can, in-turn, be used to affect

system configuration or program implementation in order to optimize performance or reduce energy

consumption. In addition to providing insight into the performance characteristics of software, the

ability to control the PMU at runtime allows software to self-assess performance and self-tune op-

eration. Runtime control, directed by performance measurement, is a common usage of the PMU

9



CHAPTER 2. BACKGROUND

with applications spanning hardware memory prefetcher control [70, 62], efficient bandwidth alloca-

tion [69, 141], cache partitioning [140, 100, 142], paging mode utilization in virtual machine memory

managers [15, 136, 80, 61], thread and data-center scheduling [120, 131, 41], and power consumption

control [38, 120].

2.2 Phase Detection

A program will experience phases—periods of execution in which hardware metrics, including cache

misses, branch mispredictions, energy consumption, and instruction throughput, are relatively stable.

A phase change is an instance in a program’s execution in which the behavior of a program undergoes

a significant and noticeable change. For example, a program may be I/O-bound during one period of

its execution, and once data has been serialized into memory, the program may become cpu-bound in

a subsequent phase. Program phases can be observed at multiple granularities, with metrics showing

stability over periods of tens of millions to tens of billions of instructions. Further, changes in phase

typically occur across several hardware metrics simultaneously, suggesting that the characteristic

behavior of the program is changing at those times. Phases can, and often will, reoccur multiple

times during a program’s execution [118]. Sherwood and Calder [114] illustrate that all but one

benchmark program from SPEC CPU95 [124] either exhibited constant behavior for a majority of

execution, or exhibited a cyclic, repeatable pattern of phases during that time.

Dhodapkar and Smith [43] identify phase changes by detecting changes in the instruction working

set (segments of utilized memory regions) between multiple periods of execution. Basic Block Distri-

bution Analysis (BBDA) (BBDA) [116, 117, 119] estimates the frequency in which each basic block

is executed during a period. The result is a Basic Block Vector (BBV) describing a fingerprint of

basic block utilization. By comparing the vector difference between BBVs in sequence over time,

discovering phase changes amounts to a signal processing problem. Further, BBVs can be clustered

in to identify repeated phase behavior. In addition to offline analysis and discovery, phase detection

can also be performed online [98].

Alternatively, phase detection can be formulated as change-point detection applied to a signal of

10



CHAPTER 2. BACKGROUND

performance characteristic sampling, such as IPC measurements at fixed intervals. A change-point is

a time at which the statistical properties of a signal change. The segments between change-points will

consist of stable periods of homogenous measurements corresponding to phase-like behavior. While

change-point detection can broadly identify phases as periods of stable performance characteristics,

further analysis would be required to identify periods corresponding to repeating or cyclic phase

behaviors.

Consider a sequence of performance measurements (y0:n) = y0, . . . , yn−1 and a sequence of ordered

indices τ0, τ1, . . . , τm−1 (τ0 = 0 and τm−1 = n). A common approach to change-point detection is to

determine the indices τ0:m which, when segmenting (y0:n), minimize the penalized cost

[

m−1
∑

i=1

C (yτi−1:τi)
]

+ fβ(m) (2.1)

where C is the cost function for a segment (statistical critera), and fβ(m) is a penalty to guard

against overfitting [78]. The cost function describes the statistical properties of a segment determined

by two change-points. The more probable that the distribution of the segment changed at some

internal point, the most costly the segment should be weighted. Common examples of cost functions

include the negative log-likelihood [64], cumulative sum of squares [65], and quadratic loss. The

penalty is typically linear with respect to the number of change points, fβ(m) = β m. The relative

weight of each change-point’s penalty, β, determined by some information-theoretic criterion based

on the number of parameters p which are introduced when a change-point is introduced: Akaike’s

Information Criterion (AIC) [5], β = 2p, Bayesian Information Criterion (BIC) [111], β = p log n,

Modified Bayesian Information Criterion (BIC) [150], β = 3
2 p log n+ 1

2n

∑m−1
i=1 (τi − τi−1).

Binary Segmentation [112] is an approximate recursive method with repeatedly considers the sin-

gle change-point form of Equation 2.1. Segment Neighborhood [13] and Pruned Exact Linear

Time (PELT) [78] solve Equation 2.1 exactly using dynamic programming. Segment Neighborhood

requires an upper limit on the maximum number of change-points, whereas PELT dynamically

determines the number of change-points. With regards to phase detection, there is a reasonable

expectation that for some programs the number of phase changes will depend on the execution time

11



CHAPTER 2. BACKGROUND

of the program. As such, PELT is well-suited to phase change detection.

2.3 Memory Virtualization

Virtualization technology is a key component for data center management which, by simulating

the functionality of hardware, allows multiple operating systems and applications to operate con-

currently on the same physical machine. A virtual machine (VM) is a software container which

provides hardware emulation. A virtual machine manager (VMM), or hypervisor, such as Xen [16]

or VMWare [133] manages a collection of independent VMs (guests) and facilitates the illusion of

direct native hardware access to each. Shadow structures are used to replicate the primary struc-

tures used by the guest, such as the page table; however, the additional layer of abstraction will

unavoidably introduce overhead compared to the performance of a native system. In fully virtual-

ized systems, the guests run without modification and with no knowledge that the guest is executing

on a VM. Privileged operations are “trapped” by the VMM, so that the VMM can gain control

of the system and emulate the operation before returning control to the guest. In paravirtualized

systems, the guests are modified to directly call VMM-specific code to facilitate operations that

require hardware emulation.

The memory management unit (MMU) is responsible for translating the virtual address space made

available to a process to the physical address space in the hardware. The virtual and physical

address spaces are divided into pages: fixed-size ranges of addresses, commonly 4KB. A page table

manages the mapping between virtual pages and physical pages, and the MMU consults the page

table in order to translate virtual addresses into physical addresses. Due to the cost of walking the

page table structure to find the desired mapping, the MMU will cache recent translations using the

translation lookaside buffer (TLB). With virtualization, the physical memory of the guest is itself a

virtual address space. The VMM must virtualize the MMU and facilitate a translation from either

the virtual or physical addresses of the guest into machine addresses for use on the hardware.

Both Shadow Paging (SP) and Hardware-Assisted Paging (HAP) are common memory virtualization

techniques for fully virtualized systems. Both techniques utilize an additional paging structure in

12



CHAPTER 2. BACKGROUND

the VMM which manages the mapping of guest addresses (virtual or physical) to machine addresses.

The performance of either paging mode is dependent on workload, as both are subject to different

types of overhead costs [24, 54, 1, 136].

In Shadow Paging, the VMMM maintains a shadow page table in parallel with the page table

maintained by the guest. The shadow page table maps virtual addresses in the guest directly to

machine addresses, bypassing the virtual to physical translation of the guest entirely. The shadow

page table maps virtual addresses in the guest directly to machine addresses, bypassing the virtual

to physical address translation of the guest all together. The shadow page table supersedes the

guest page table, and the VMM installs the shadow page table. As updates to the guest’s page

table must be reflected in the shadow page table, expensive VM exits are required to maintain page

table synchronization. This in turn increases the overhead of page table activity. This will have a

significant, negative impact on workloads which suffer from a large number of page faults.

In Hardware-Assisted Paging, the VMMM maintains an extended page table (EPT) [54] or nested

page table (NPT) [23] in sequence with the guest page table. Hardware support in the MMU

performs the sequential mapping, first by translating virtual addresses into physical addresses using

the guest page table, and then translating the physical addresses into machine addresses using the

the extended/nested paging table. Unlike SP, page table updates do not require synchronization

and expensive VM exits; however, the two-layer paging structure increases the cost of page table

walks which, in turn, increases TLB miss latency. This will have a significant, negative impact on

workloads with poor locality and a large working set (which exceeds the size of the TLB), as cached

mappings will be evicted from the TLB before they are reused.

2.4 Hardware Memory Prefetching

Hardware memory prefetching is an effective technique for mitigating memory access latency. By

observing and exploiting patterns in a program’s memory accesses at runtime, a hardware prefetcher

can generate memory requests ahead of the true request so that the desired memory is available

(in the cache) or in-flight when demanded by the program. Hardware prefetching effectiveness

13



CHAPTER 2. BACKGROUND

is determined by the coverage (proportion of misses that are eliminated because of prefetching),

accuracy (proportion of prefetch targets which resulted in a hit), and timeliness (the latency between

a prefetch targets availability vs reference) of the predicted prefetch targets. Inaccurate and untimely

prefetching can place undue stress on memory resources, increasing memory bandwidth utilization

and polluting the cache unnecessarily. It is also possible that untimely prefetch targets may be

evicted from the cache before their use, prompting the memory to be fetched an additional time.

Hardware prefetchers can struggle to obtain coverage in the presence of short streams, where the

prefetcher does not have the opportunity to detect the direction and distance of the stream or

stride, or when memory is accessed in irregular patterns [87]. While prefetchers are often effective in

predicting memory accesses in a single-threaded setting, the increased utilization of, and contention

for, shared memory resources such as memory bandwidth and the last-level cache can be destructive

to multi-core performance [77, 93].

Prefetcher aggressiveness prevents a tradeoff in coverage, accuracy, timeliness, and resource utiliza-

tion. An aggressive prefetcher will attempt to work well ahead of a detected memory access stream,

relying on speculation in order to hide as much access latency as possible. The result is a likely

increase in coverage and timeliness, at the expense of lower accuracy and an increase in memory

bandwidth utilization and cache pollution due to the traffic and cache allocation of the incorrectly

predicted prefetch targets. In contrast, a conservative prefetcher will attempt to operate with less

speculation and more directly in response to current memory accesses. The result is a likely increase

in accuracy, without the added cost of increased memory bandwidth utilization and cache pollution,

but at the expense of lower coverage and worse timeliness.

Broadly, hardware prefetchers exploit both spatial and temporal locality in order to determine

prefetch targets [94]. Stream prefetchers detect fixed-stride access patterns and on a cache miss

will fetch one or more subsequent blocks along that stride, under the assumption that those cache

lines will likely contain targets of future memory requests [73, 103, 35]. Correlation-based and

Markov prefetchers [71, 115, 123] predict targets that may be the result of complex array accesses

or pointer-chasing, allowing for a greater coverage on a broader set of memory access patterns.

Prefetcher aggressiveness can be dynamically directed in hardware using feedback regarding the

14



CHAPTER 2. BACKGROUND

accuracy, lateness, and cache pollution due to hardware prefetching [39, 123, 36, 106].

Since Nehalem (2008–), Intel microarchitectures have come equipped with four configurable prefetch-

ers which can be enabled or disabled at runtime [132, 67]. Each prefetcher is configured independently

of one another, and independently on each core, using the first four bits of each core’s Model Spe-

cific Register (MSR) 0x1A4, with 0 indicating the at the corresponding prefetcher should be enabled,

and 1 indicating that it should be disabled. By default, all four hardware prefetchers are enabled

across all cores. The first pair of prefetchers, the Data Prefetch Logic (DPL) and Adjacent Cache

Line (ACL) prefetchers, operate on the L2 cache. The DPL is a stream prefetcher which is capable

of detecting both ascending and descending sequences of accesses issued from the L1 cache within

4K page boundaries. The prefetcher is capable of detecting and maintaining up to 32 data access

streams, with up to one forward and one backward stream per page. Recent microarchitectures

have refined the operation of the prefetcher in order to better address memory contention concerns:

when there are few outstanding memory requests, the DPL will operate up to 20 lines ahead of the

most recent load request in the stream; when there are many outstanding memory requests, the

DPL will operate in a more restricted fashion and will only cache the prefetched memory in the

last-level cache. The ACL is a spatial prefetcher which fetches adjacent cache lines which form a

128-byte aligned pair. While more restrictive than the DPL, the ACL prefetcher does not require

a detected access stream to operate. The second pair of prefetchers, the Data Cache Unit (DCU)

and Instruction Pointer (DCU IP) prefetchers, operate on the L1 cache. The DCU is an ascending

stream prefetcher which reacts to ascending accesses in recently loaded data. The accesses are as-

sumed to be part of access stream and the immediately following line is prefetchers. The DCU IP is

an ascending/descending stride prefetcher which operates on half page (2K) limits. Both prefetchers

are only triggered under a restricted set of conditions, including a low load miss rate and the lack

of a memory barrier in the pipeline.

Since POWER7 (2011–), IBM POWER microarchitectures have come equipped with a highly con-

figurable hardware prefetching engine for an L1 stream prefetcher [121, 122, 58, 70]. The stream

prefetcher is capable of detecting and exploiting up to 16 independent data streams resulting from

memory requests in the L1 cache. Prefetching can be configured to enable or disable the detection

15



CHAPTER 2. BACKGROUND

of load and store streams, and can independently be configured to enable or disable the detection

of streams with non-unit strides. In addition, the depth of the stream buffer can be specified as

one of six broad categories, from “shallowest” to “deepest”. By default, load streams are enabled,

both store streams and non-unit stride streams are disabled, and the prefetcher depth is set to

“deep” (below “deeper” and “deepest”). Recent improvements in the POWER7+ and POWER8

microarchitectures have included configuration for prefetcher urgency to direct how aggressively the

prefetcher will operate to attain the specified depth when a stream is detected.

2.5 Multi-Armed Bandits

First developed in Robbins [107], the multi-armed bandit [107, 55, 33, 28] describes a sequential

decision process with limited feedback. The bandit selects some actions (or arms) to play in sequence,

and in response to each action the bandit receives a (potentially stochastic) reward for that action.

The rewards for the remaining actions are unobserved (so called “bandit feedback”). The goal of the

multi-armed bandit is to select actions which will maximize the cumulative reward received. To start,

the bandit has no knowledge of how rewarding each action will be, and must balance exploration

(selecting actions to model the rewards of each action) and exploitation (selecting actions which are

strongly believed to be optimal). The origin of the term multi-armed bandit comes from the slang

“one-armed bandit”, describing an old-style slot machine operated by pulling a long handle at the

side.

Clinical trials are a historical motivation for the multi-armed bandit. In a clinical trial, each patient

can be assigned only one treatment (action), and only the result of that treatment can be measured

for a particular patient (bandit feedback). There are two conflicting goals involved in this process:

first, to correctly identify the best treatment (requiring exploration), and second, to provide the best

standard of care to the patients in the trial (requiring exploitation). As the trial continues, there is

an obligation, especially in the case of a severe disease, to dynamically adjust treatment selection so

that the selections favor more rewarding options. However, less rewarding treatments must still be

utilized (with less frequency) to prevent the trial from greedily exploiting a suboptimal treatment

16



CHAPTER 2. BACKGROUND

due to non-representative samples early on.

Formally, the multi-armed bandit problem is defined by a set of K ≥ 2 possible actions and sequences

(Xa) = Xa,1, Xa,2, . . . of rewards for each action a. At each time step t = 1, 2, . . ., the bandit

will select some action at, and will collect reward Xat,t in response. The behavior of a bandit is

determined by the action selection strategy. The quality of a particular strategy is expressed in

terms of the regret, or lost reward, accumulated by selecting suboptimal actions,

Rn = max
a

(

n
∑

t

Xa,t

)

−

n
∑

t

Xat,t (2.2)

as the difference between the total reward of the best performed action (the optimal strategy) and

the total reward obtained by by the bandit over n selections. In practice, this from of regret is

not practical to estimate, as the reward may be chosen according to some stochastic or adversarial

process. Instead, the pseudo-regret,

Rn = max
a

E
[

n
∑

t

Xa,t −

n
∑

t

Xat,t

]

(2.3)

measures the regret compared to the action which has the optimal expected reward, as opposed to

measuring the regret over the selected rewards rewards. The goal is to determine a strategy which

minimizes the potential regret of the bandit.

The structure of the rewards will strongly influence action selection strategy. Rewards can be drawn

stochastically or adversarially. In the stochastic bandit case, the rewards for each arm, (Xa), are

independent and identically distributed (i.i.d.) according to some distribution νa. In the adversarial

(non-stochastic) bandit case, the rewards are assumed to be generated by some adversary. The

adversary is allowed to assign rewards with full knowledge of the bandit’s selection process, but

must make the reward assignments before the bandit selects and reveals its action (otherwise, the

adversary could simply assign an arbitrary reward to the selected action). The adversarial setting

illustrates the need for minimizing regret, as opposed to maximizing reward. If the adversary were

simply attempting to minimize the bandit’s accumulated reward, then it could simply set the poor

rewards for every action. Instead, like in a rigged casino, the adversary attempts to maximize the

17



CHAPTER 2. BACKGROUND

reward that the bandit could have accumulated with optimal selections.

Whereas the standard multi-armed bandit formulation considers an exploration-exploitation trade-

off, pure exploration bandits [29, 9, 30, 76] instead consider a distinct exploration phase which is

constrained to a fixed number of action selections. During the exploration phase, the bandit selects

actions and obtains bandit feedback in order to identify the optimal action with high confidence,

so that the recommended action can be exploited in the subsequent phase. Only the regret of the

recommended action is considered. An example application for pure exploration bandits, given in

Audibert and Bubeck [9], considers channel allocation in mobile networks. Before transmission, a

transmitter can first explore the set of (noisy) channels, for a brief period, to identify which channel

will be the best over which to communicate. Transmission is then performed over the channel that

the bandit believes to be the best.

2.5.1 Selection Strategies

Action selection strategies are responsible for carrying out the exploration-exploitation balance of a

bandit. Several actions election strategies appear commonly in the literature, introduced and mod-

ified to bound the regret of the bandit in some theoretical capacity. For the stochastic bandit, this

includes strategies such as ϵ-Greedy [129], upper confidence bounds [11], and Thompson Sampling [4];

for the adversarial bandit, the exponential-weight algorithm for exploitation and exploitation [12].

ϵ-Greedy

The ϵ-Greedy approach balances exploration and exploitation at random. The bandit tracks the

mean observed rewards for each action. Most of the time, the bandit selects the action with the

greatest mean reward. Otherwise, with some small probability ϵ, the bandit instead selects an action

to take at random. For the stochastic multi-armed bandit, in the case of a fixed ϵ, the regret of

18



CHAPTER 2. BACKGROUND

ϵ-Greedy is grows linearly with respect to the horizon:

Rn = max
a

E
[

n
∑

t

Xa,t −
n
∑

t

Xat,t

]

= nµ∗ −

n
∑

t

E
[

µat

]

= nµ∗ − n
[

(1− ϵ)µ∗ + (
ϵ

K
)
∑

a

µa

]

= n (
ϵ

K
)
∑

a

(µ∗ − µa)

(2.4)

where µa are the mean rewards drawn from νa and µ∗ = maxa µa. With careful annealing of the

ϵ value, by scaling ϵ inversely proportional to time, the regret can instead be bounded logarithmi-

cally [11].

Upper Confidence Bounds

Upper Confidence Bound (UCB) methods facilitate the exploration-exploitation tradeoff by selecting

actions according to bounds on each action’s reward which hold with high probability. The bandit

tracks the mean observed rewards, X̂a, and the total number of plays, Ta, for each action. With each

selection, the bandit strengthens the estimate of the selected action’s mean reward. In response, the

bound on the reward will shrink towards the estimate.

For the stochastic bandit, the reward observations for each action are i.i.d. random variables. When

the rewards are further bounded to the unit interval [0, 1], the difference between the estimated

and true mean reward of each action can be bounded probabilistically according to Hoeffding’s

inequality [63]:

P (µa ≥ X̂a + Ua) ≤ e−2Ta (Ua)
2

, (2.5)

where µa are the mean rewards drawn from νa, and Ua are upper bounds on the estimates for

each action. The probability is bounded by some small p = e−2Ta (Ua)
2 such that it is unlikely the

upper-bounded reward estimate exceeds the true reward. For any p ≪ 1, the reward estimate falls

19



CHAPTER 2. BACKGROUND

below the bound

X̂a + Ua = X̂a +
√

− log p/2Ta. (2.6)

almost always. A similar bound can be found for sub-Gaussian distributions. If the observed rewards

are not bounded, but instead are sub-Gaussian random variables with variance σ2, then the difference

between the estimated reward and the true reward can be bounded as

P (µa ≥ X̂a + Ua) ≤ e − t (Ua)2/2 σ2
, (2.7)

which produces the upper-bound reward estimate

X̂a + Ua = X̂a +
√

− 2σ
2
log p/Ta. (2.8)

UCB greedily selects the action a which maximizes the upper-bounded reward estimate X̂a + Ua.

When selected, the upper-confidence estimate of the action will shrink, as the estimate of the sample

mean is less likely to deviate from the true mean with the larger sample size. Actions with a smaller

estimated reward will be selected on occasion, after the most rewarding action is selected sufficiently

often to shrink the upper-bound estimate.

The UCB1 algorithm [11, 10] decreases the probability over time according to the schedule p = t−4,

which results in an upper confidence estimate of

X̂a + Ua,t = X̂a +
√

2 log t/Ta. (2.9)

Note that the upper-bound estimate is very generous, given the loose assumptions for Hoeffding’s

Inequality (bounded on [0, 1]). The pseudo-regret for UCB1 is bounded logarithmically:

Rn ≤ 8
∑

a :µa<µ∗

[ log n

µ∗ − µa
+
(

1 +
π2

3

)

(µ∗ − µa)
]

(2.10)

The first term indicates that each action will be selected a logarithmic number of times with respect

to the number of plays, and actions which are close to optimal will be selected more often. The

20



CHAPTER 2. BACKGROUND

second term indicates a small number of expected plays which are required to address unlikely cases.

The asymptotic behavior of the pseudo-regret for UCB1 is bounded sub-linearly:

Rn ∈ O(
√

K n log n). (2.11)

Thompson Sampling

Thompson sampling is a probability matching technique which models the prior distribution of

the mean rewards for each action. Actions are selected according to the corresponding posterior

distributions—the bandit samples from each action’s posterior distribution, and selects the action

with the greatest sample mean. After the reward is observed, the prior distribution for the selected

action is updated accordingly.

Consider a bandit with Bernoulli rewards, Xa,i ∼ Bernoulli(µa). After a sequence of actions, the

conjugate priors µa ∼ Beta(αa, βa) describe the distribution of the sample mean for action a, where

αa − 1 denotes the number of successes (reward = 1) and βa − 1 describes the number of failures

(reward = 0). To begin, before any actions have been selected, the priors for every action are

initialized to Beta(1, 1). This corresponds to the uniform case, where each value of the mean is

equally likely. The Bernoulli bandit generates samples of the mean from each action’s prior, and

chooses the action with the largest sample. The prior of the selected action is then updated according

to the reward, (αa, βa)← (αa+Xa,t, βa+(1−Xa,t)). The asymptotic behavior of the pseudo-regret

for Thompson sampling for the Bernoulli bandit is bounded sub-linearly:

Rn ∈ O(
√

K n log n). (2.12)

Exponential-Weight Algorithm for Exploration and Exploitation

In contrast to the previous selection strategies, the Exponential-Weight Algorithm for Exploration

and Exploitation (EXP3) [12] considers action selection for the adversarial bandit with bounded

rewards. Without loss, assume the actions are bounded to the interval [0, 1]. Instead of measuring

21



CHAPTER 2. BACKGROUND

regret in terms of the accumulated reward, the EXP3 strategy measures regret in terms of the

accumulated loss, la,t = 1 − Xa,t, inflicted by the adversary for choosing an action a. The bandit

incorporates randomness to the action selection strategy in order to subvert the adversarial selection

of rewards. With randomness, a sub-linear regret bound is achievable. Without randomness, the

adversary can perfectly emulate the selection strategy and maximize the loss for the predicted action.

The bandit tracks estimates of the cumulative loss for each action, L̂a. Actions are selected randomly

with probability proportional to an exponential weighting of the cumulative loss estimate,

pa ∝ e−ηt L̂a , (2.13)

where ηt is a non-increasing schedule of weights. Rather than use the losses imparted by the adversary

directly, the bandit accumulates the unbiased estimation of the loss, l̂at
= lat,t/pat

. For the decreasing

schedule ηt =
√

logK/tK, the asymptotic behavior of the pseudo-regret for EXP3 can be bounded

sub-linearly:

Rn ∈ O(
√

nK logK). (2.14)

2.5.2 Contextual Bandits

The contextual bandit [12, 22, 85, 89] (alternatively, the partial label problem [74], the associative

bandit problem [127], bandits with side information [134, 135, 147], bandits with a concomitant

variable [137], associative reinforcement learning [12]), extends the multi-armed bandit to include

side-informaation in the decision procedure. Prior to selecting an action, the contextual bandit first

perceives some information x⃗t about the environment (a context) in which the action will occur.

The resulting reward observed by the contextual bandit depends on both the action and the context.

A common application of the contextual bandit is the personalized selection of internet advertise-

ment. Websites have a wealth of logs which detail historical usage: observable quantities about

the user, such as the visiter’s history, queries, and provided personal data (context), the advertise-

ments served to the visiter (action), and whether or not the visiter clicked on the advertisement

(Bernoulli reward). The goal is to maximize the click-through rate of advertisements by selecting

22



CHAPTER 2. BACKGROUND

advertisements which are appropriate to the visiter and thus rewarding to the website.

In order to manage the complexity introduced by the addition of contextual information, assump-

tions on the context space and reward are introduced. In the simplest case, when the contextual

information specifies an element from a finite set of contexts, the contextual bandit can be inter-

preted as a set of independent, context-free bandits, indexed by the context [134, 135]. When the

context is drawn from a vector space, a common constraint is to assume that the reward is lin-

ear [37, 3] or Lipshitz [89] in expectation. Regardless of the constraints, the selection strategies

underpinning various solutions to the contextual bandit generally follow the selection strategies for

the multi-armed bandit: greedy [85], upper confidence bound [37], Thompson sampling [3], and

adversarial models [22].

Off-policy methods [86, 44] utilizes the partial-label results of a contextual bandit in order to con-

struct an action selection strategy from logged data. Similarly to pure exploration bandits in the

multi-armed case, exploration and exploitation are not interleaved; rather, exploration data is con-

structed from the exploration of a previous action selection strategy (as tuples of context, action,

and reward), and the resulting log data is used to construct a selection strategy which is then ex-

ploited. The advantage of using log data is its ubiquity—many selection strategies can be evaluated

against the logged exploration data without requiring in situ evaluation, which may be impractical

and costly. In contrast to pure exploration bandits, the exploration procedure is not the focus.

Due to the limitation of bandit feedback, log data is insufficient to directly simulate the result of

some new selection strategy. One alternative is to estimate the contextual reward function directly

using the available log data, and use the resulting regression model for simulating selection strate-

gies. Another alternative is to utilize inverse propensity scoring (IPS) [108] to shift the proportion

of actions between the log data and the selection’s actions [86]. Combining both the direct and

IPS methods addresses the deficiencies of each [44]. Instead of modeling the reward directly, the

Offset-Tree [21] instead maps the logged partial label data to a weighted classification problem.

The resulting weighted classification data is then amenable to a broad suite of machine learning

techniques for feature selection, dimension reduction, and classification.

23



CHAPTER 2. BACKGROUND

2.6 Supervised Learning and Classification

In machine learning, classification is the supervised learning task of categorizing new instances based

on a training set of data containing observations (or instances) whose category membership is known.

For example, determining a diagnosis for a patient given a set of diagnostic test results, categorizing

emails as either spam or not spam given the contexts of the email, or labeling an image according

to the object represented.

Consider a training set of labelled instances (x⃗1, y1), (x⃗2, y2), . . . , (x⃗n, yn), each described by a vector

x⃗i of quantifiable features, and a label (class) yi drawn from a finite set of categories. Each feature

may be nominal, ordinal, or numerical. A nominal feature takes the form of a set of options

which have no intrinsic ordering, e.g., sex, {male, female}, blood type, {A,B ,AB ,O}, or boolean-

valued sets, {true, false} or {spam,notspam}. This is sometimes also referred to as a categorical

feature. A ordinal feature takes the form of a set of options that have an intrinsic ordering, e.g.,

sizes, {small ,medium, large}, or letter grades, {F ,D ,C ,B ,A}. Numerical features are drawn from

(subsets of) some number space, e.g., integers, Z, or real numbers, R.

Classifiers attempt to select some function, or hypothesis, h(x⃗) which categorizes instances by map-

ping the feature vector x⃗ to a predicted category y. Ideally, the classifier attempts to maximize the

accuracy of the classes predicted by the hypothesis when presented with novel (unlabeled) instances.

Deterministic (non-probabilistic) classifiers, such as the support vector machine, separate the feature

space in to regions and associate each region with a class. When presented with a new instance,

the classifier returns the class associated with the region containing the instance. Probabilistic

classifiers, such as Logistic Regression and Naïve Bayes, instead generate a distribution describing

the probability that the instance is a member of each class. The instance can then be labelled

according to the class with the largest probability. Alternatively, the classifier can abstain from

providing a class if there is insufficient confidence for any of the classes. The collection of classifier

methods is rich and detailed, and can not be completely described here.

The Support Vector Machine (SVM) is a non-probabilistic, binary classifier which models the clas-

24



CHAPTER 2. BACKGROUND

sification boundary separating instances of the training data, according to class, with the largest

margin. Consider a binary classification problem with class labels {+1,−1} (positive and negative

labels, respectively). In the hard-boundary case, where training data instances of each class are

linearly separable, i.e., that there exists some linear hyperplane which separates the positive and

negative instances, the support vector machine can be modeled by the constrained optimization

problem

arg min
w⃗, b

1

2
∥w⃗∥2

subject to yi (w⃗ · x⃗i − b) ≥ 1,

(2.15)

where w⃗ · x⃗i − b ≥ 1 and w⃗ · x⃗i − b ≤ 1 represent the parallel linear functions comprising the margin

and separating the positive and negative instances of the training data. The instances which fall

directly on the margin, and thus constrain (or support) it, are referred to as support vectors. The

margin can be completely determined by these support vectors.

More generally, when the training data instances are not linearly separable, a collection of slack

variables can be added to allow for instances to violate the margin constraint at the expense of some

error. The soft-margin SVM is be modeled by the constrained optimization problem

arg min
w⃗, b, ξi

1

2
∥w⃗∥2 + C

n
∑

i=1

ξi

subject to yi (w⃗ · x⃗− b) ≥ 1− ξi,

ξi ≥ 0,

(2.16)

where ξ1, ξ2, …, ξn are slack variables, and C is a hyper-parameter representing the relative weight

between the margin size and slack variable error. The slack variables represent a form of hinge-loss,

max(0, 1− (yi w⃗ · x⃗I − b)). When the margin would lead to correctly classifying a training instance,

ξi = 0 and the instance contributes no additional loss to the optimization function. Otherwise, the

instance accumulates loss linearly with regards to it’s distance from the boundary.

As the soft-margin formulation satisfies the Karush-Kuhn-Tucker (KKT) conditions [], Equation 2.16

can be reformulated as the quadratic optimization problem (the so-called dual form),

25



CHAPTER 2. BACKGROUND

arg max
ci

n
∑

i

ci +
1

2

n
∑

i

n
∑

j

yici(x⃗i · x⃗j)cjyj

subject to
∑n

i ciyi = 0,

ci ≥ 0,

ci ≤
1

2nλ
,

(2.17)

where ci are Lagrange multipliers (or Kuhn-Tucker coefficients) [90]. Quadratic programming solvers

allow for the efficient optimization of Equation 2.17. When the margin would lead to correctly

classifying a training instance (ci = 0), the instance contributes no additional loss to the optimization

function. When 0 < ci <= 1
2nλ , the training instance exists on or across the margin and the resulting

instance is a support vector. The weight vector

w⃗ =
∑

i

ciyix⃗i (2.18)

can be computed as a linear combination of the support vectors (as ci = 0 for any training instances

that are not support vectors).

In some problems, training instances may not be of equal value. Prior knowledge might dictate that

the quality of instances differ in a quantifiable manner, or that the relative importance of instances,

and thus the weight those instances should impact on the classifier, can vary. In an instance-weighted

classification problem, each training instance is accompanied by a positive weight value. That weight

will scale the loss contributed by the corresponding instance. The meaning of that weight, and

whether that weight is constrained to a given range, will depend on the problem. Instance weights

can be directly incorporated into the formulation of a classification algorithm, by using weights as

coefficients in the classification loss (e.g., for SVMs [145]). Alternatively, the instance weights can be

used to sample instances from the training data set, resulting in higher weighted training instances

being selected with a proportionally higher probability than lower weighted training instances. The

resulting, unweighted training data set is then amenable to the full suite of classical, unweighted

classification methods. Typically, a collection of training data set samples are taken, and the resulting

26



CHAPTER 2. BACKGROUND

classifiers constructed for each set are combined in to an ensemble. The probability can be taken

as the normalized weight values. Zadrozny et al. [148] instead proportion the selection of weight

according to the maximum weight value.

Convex loss classifiers, such as Logistic Regression and SVMs, are popular due to the existence of

efficient numerical solvers. However, these methods are sensitive to the presence of class label noise.

The loss of mislabeled instances will increase with respect to the distance to the decision boundary

(e.g. logarithmically, or linearly with hinge loss). The result is a learned decision boundary which is

necessarily skewed towards the label outliers in order to minimize the loss of those outliers. Generally,

convex loss functions act as surrogates to the 0-1 misclassification loss, 1
n I

[

h(x⃗i) = yi
]

. While robust

to label outliers, optimizing the 0-1 misclassification loss directly is NP-Hard [17]. Label outliers

can be addressed by either using a classifier which is robust to label noise, perhaps accepting a

non-convex loss function which is less efficient to optimize, or filtering instances which appear to be

mislabeled [51].

2.7 Feature Selection

Feature selection is a technique for identifying and removing features which are redundant or irrele-

vant to an outcome [79, 57]. Focusing the attention of a supervised learning to the subset of useful

features has a number of advantages. Most notably, feature selection helps mitigate the effect of

the curse of dimensionality: the amount of training data needed to learn grows exponentially with

the number of features. There are also implications for training time, as fewer features reduces the

set of parameters which must be learned, and for data exploration, as the prominent features can

be more easily visualized and interpreted in a lower dimensional space. Feature selection methods

can broadly be categorized as filter methods, wrapper methods, and embedded methods:

Filter methods are a computationally efficient class of feature selection algorithms which operate

directly on the characteristics of the training data set, relating features to the corresponding classes.

As such, they can be thought of as a preprocessing step, first identifying the relevant features before

using just the selected features for the learning task. Filter methods typically rank and select features

27



CHAPTER 2. BACKGROUND

according to univariate and multivariate measures of those features. For example, Correlation-Based

Feature Selection (CFS) [59] selects feature subsets which maximize the heuristic of that subset’s

merit,

MeritS =
k rfc

√

k + (k − 1) rff
, (2.19)

where S is a subset of k features, rfc is the average correlation between the features of the subset

and the corresponding classes, and rff is the average correlation between each pair of features

in the subset. The merit heuristic rewards feature sets with a high average relevancy (feature-class

correlation), and penalizes feature sets with a high average redundancy (feature-feature correlation).

Features are selected through a search of the space of all possible subsets. A direct, combinatorial

search of the space of feature subsets is computationally intractable, even for a small number of

features. Instead, features are selected through greedy search maximizing the selection merit, either

through forward selection (starting with the empty set of features and adding new features), or

backward elimination (starting with the full set of features and removing features), until merit no

longer improves. The result is a nested subset of features, in the order of selection or elimination.

Wrapper methods use the supervised learning algorithm as a black-box method for scoring subsets

of features. A wrapper will perform an iterative search of feature subsets, evaluating and guiding

the search using the performance characteristics of the resulting models. As with CFS, wrapper

methods can make use of both greedy searches, forward selection and backward elimination, to

identify nested subsets. The result is a feature selection method which is simple, and incorporates

the characteristics of the learning algorithm in a ubiquitous fashion.

Embedded methods directly incorporate the task of feature selection in to the supervised learning

algorithm. Unlike both filter and wrapper methods, embedded methods permit alternatives to

nested subset searches, and unlike wrapper methods, embedded methods do not require repeated

model construction (as is the case with wrapper methods). The Least Absolute Shrinkage and

Selection Operator (LASSO) [130] is an example of an embedded method which directly affects the

optimization objective instead of performing a nested subset search. LASSO adds an additional L1

regularization penalty, ∥w⃗∥1, to the loss function based on the total weights of the resulting linear

model w⃗. This penalty will encourage coefficients w⃗ corresponding to unimportant features to drop

28



CHAPTER 2. BACKGROUND

to 0, and those features are effectively pruned from the resulting model.

29





Chapter 3

Paging Mode Selection

Virtualization technology is a key component for data center management which allows for multiple

users and applications to share a single, physical machine. Modern virtual machine monitors uti-

lize both software and hardware-assisted paging for memory virtualization, however neither paging

mode is always preferable. Previous studies have shown that dynamic selection, which at runtime

selects paging modes according to relevant performance metrics, can be effective in tailoring memory

virtualization to program workload. However, these approaches require low-level manual analysis,

or depend on prior knowledge of workload characteristics and phasing.

This chapter introduces the contextual bandit framework for dynamic system control, and considers

an application of the framework to dynamic paging mode selection. Paging mode selection presents

a controlled first step towards developing the framework, as the action space is binary and the

underlying, relevant features are well known and well studied in related work [15, 136, 80]. Tech-

nical challenges, such as changing performance characteristics (according to program phase), are

used to motivate off-policy contextual bandit methods. The Binary-Offset algorithm [21] and ran-

dom profiling are presented as effective techniques for constructing a dynamic selection model with

equivalent performance to the state-of-the-art ASP-SVM method [80], while requiring substantially

less profiling time (2.5 hours compared to over 24 hours) to achieve that performance.

The material contained in this chapter was previously published in the Proceedings of the 47th International Confer-
ence on Parallel Processing (ICPP ’18) [61].

31



CHAPTER 3. PAGING MODE SELECTION

3.1 Introduction

Virtualization is an essential technology for cloud computing, providing a mechanism for performance

isolation and resource utilization. A virtual machine monitor, such as Xen [16] or VMWare [133],

presents guest operating systems with a virtual abstraction of a physical machine, while providing

mappings between the virtual machine resources and actual hardware. The additional layer of

abstraction can introduce performance overhead in many ways. For memory virtualization, there

are two techniques taken by modern virtual machine managers: Hardware-Assisted Paging (HAP)

and Shadow Paging (SP). Whether HAP or SP performs better depends on the memory access

characteristics of a workload. Workloads with a large number of page faults will perform better

using HAP. Memory intensive workloads will perform better using SP.

Previous work has proposed dynamic methods for selecting between HAP and SP at runtime depend-

ing on workload performance characteristics, using manual analysis and a hand-tuned model [136] or

expensive enumerative profiling and machine learning [80]. Both cases show that dynamic selection

can improve performance by matching, and in some cases beating, the performance of a static paging

choice. While effective, both methods require time consuming data collection for model construction

as well as manual intervention and/or domain expertise.

In this chapter, we present a dynamic selection procedure, DSP-OFFSET, for the dynamic paging

mode selection problem. We map the problem of selective paging to the contextual bandit, a model

for sequential decision making under limited feedback. With a single, random profiling execution of

each benchmark in the SPEC INT2006 suite, using the Binary-Offset algorithm [21], we construct

an effective dynamic paging mode selection policy which is competitive with the state-of-the-art

ASP-SVM [80] while requiring substantially less profiling time. Unlike previous work, our profiling

requires no prior knowledge of workload structure or phasing, and does not require extensive domain

expertise or manual tuning. In addition, our dynamic selection framework has the potential to be

applied to other system configuration problems.

The chapter is organized as follows. In Section 3.2, we review memory virtualization and summarize

work related to dynamic paging mode selection. We also describe the contextual bandit and methods

32



CHAPTER 3. PAGING MODE SELECTION

for constructing selection policies from logged random data. Section 3.3 describes our application

of the contextual bandit to the dynamic paging mode selection problem. Section 3.4 presents our

methodology, experimental results, and analysis. Section 3.5 summarizes our conslusions, discusses

the general applicability of our method, and describes possible future research directions.

3.2 Background and Related Work

We first provide an overview of memory virtualization techniques, and describe prior work for select-

ing paging modes dynamically at runtime by observing workload characteristics. We then introduce

the contextual bandit, which will serve as the underlying model for dynamic paging mode selection.

Finally, we describe Binary-Offset and the Weighted Support Vector Machine, which we will use to

construct our dynamic selection model.

3.2.1 Memory Virtualization

In virtualized systems, the virtual machine memory manager (VMMM) is responsible for mapping

virtual and physical memory addresses of guest operating systems to hardware addresses. Fully

virtualized systems, which do not require modifications to guests, use either Shadow Paging (SP) or

Hardware-Assisted Paging (HAP) for address translation. In Shadow Paging, the VMMM maintains

a shadow page table in parallel with the page table maintained by the guest. The shadow page table

maps virtual addresses in the guest directly to machine addresses (V2M), bypassing the virtual to

physical address translation (V2P) of the guest all together. This requires updates to the guest page

table to be reflected in the shadow page table, which results in expensive virtual machine (VM) exits

and context switches in order to maintain the synchronization between the two tables. In Hardware-

Assisted Paging, an extended page table [54] (EPT) or nested page table [23] (NPT) is maintained

by the VMMM and maps a guest’s physical addresses to machine addresses (P2M). An overview of

the two methods is given in Figure 3.1. Page table updates in HAP do not require synchronization

and expensive VM exits; however, address translation must access both the guest page table and

the extended/nested page table, resulting in more memory accesses and longer latency.

33



CHAPTER 3. PAGING MODE SELECTION

Shadow Paging

virtual
addresses

shadow
page table

guest
page table

machine
addresses

synchronized

virtual to machine

Hardware-Assisted Paging

virtual
addresses

guest
page table

extended
page table

machine
addresses

virtual to physical physical to machine

Figure 3.1: A comparison of Shadow Paging and Hardware-Assisted Paging using extended/nested
page tables.

The performance of either paging mode is dependent on workload, and both SP and HAP have cases

in which they are preferable [24]. Gillespie [54], Adams and Agesen [1], Wang et al. [136] characterize

the advantages of SP and HAP according to workload behavior. Workloads which encounter a

large number of page faults, and thus a large number of page table updates, will favor HAP, as

hardware virtualization does not incur the penalty of page table synchronization. Workloads which

are memory intensive will favor SP, as page walk overhead is substantially reduced. This suggests

that VM exits, page faults, and translation lookaside buffer (TLB) misses are effective metrics for

quantifying workload behavior with regards to memory virtualization.

To address these trade-offs, a number of dynamic paging mode selection schemes have been proposed.

These methods choose to utilize hardware or software paging when appropriate based on runtime

performance metrics for the current workload. Bae et al. [15] present a heuristic model for the

Palacios [84] VM which selects between hardware and software paging at regular intervals according

to a pair of dynamic thresholds, for VM exits and for data TLB misses. Wang et al. [136] conduct an

extensive manual analysis of page fault and data TLB miss counts for workloads executed using the

Xen [16] VM, and present a set of hand-crafted and system-dependent thresholds for paging mode

selection. However, both of these methods involve subjective construction by domain experts.

Kuang et al. [80] describe a procedure for labeling program phases according the performance gain

34



CHAPTER 3. PAGING MODE SELECTION

associated with each paging mode, and utilize machine learning to construct a decision procedure.

They enumerate over each phase of a program, comparing the performance of selecting HAP for that

phase (and SP for the remaining phases) with the baseline performance of SP; similarly, they enu-

merate and compare SP with the baseline performance of HAP. This enumerative profiling approach

is effective, but requires extensive computation. The authors suggest that the profiling required for

the SPEC INT2006 [60] required over 24 hours.

3.2.2 Contextual Bandits

We model the dynamic paging mode selection problem as a contextual bandit. The contextual bandit

is a method for sequential decision making in environments which provide limited feedback [12, 86,

85, 44, 21, 128]. At each iteration, a contextual bandit observes some contextual information x⃗ ∈ X

and uses x⃗ and existing knowledge about the environment in order to select an action a ∈ A. In

response to taking action a, the bandit receives a reward r dependent on both the taken action and

the associated context; the rewards for actions not taken remain unobserved. This is referred to as

bandit feedback. The goal of the bandit is to learn some policy for action selection which maximizes

the cumulative reward earned by the learner.

Classic approaches to the contextual bandit are online and dynamically adjust the selection of

actions to adapt to both the estimates of each action’s reward and the confidence of those reward

estimates [12, 85]. These methods are said to balance exploration, selecting an action to improve the

estimate of its reward, and exploitation, selecting the action believed to be optimal. However, these

methods are generally not amenable to low-level implementation, e.g., in the Xen virtual machine

manager, because they require expensive numerical optimization, linear algebra, and statistical

procedures.

Alternatively, offline evaluation and construction for contextual bandits can be performed using

logged data [86, 44, 21, 128]. Here, exploration and exploitation are not interleaved; rather, explo-

ration occurs for a fixed duration during a training phase, and the resulting logged data is used to

construct a policy which is then exploited. The logged data can be obtained by selecting actions

uniformly at random, or from carefully constructed deterministic action selections. These methods

35



CHAPTER 3. PAGING MODE SELECTION

Algorithm 1 Binary-Offset [21]
Input set of contextual bandit instances S = {(x⃗, a, r)}
S′ = ∅

for each (x⃗, a, r) ∈ S do
(x⃗, y, w) = (x⃗, sign (a · r), |r|)
S′ = S′ ∪ (x⃗, y, w)

end for
return weighted classification instances S′

are also referred to as exploration scavenging [86], as they attempt to utilize the logged data gained

from executing some other policy as a form of exploration.

Here, we focus on the Binary-Offset algorithm [21], given in Algorithm 1, which requires binary

actions A = {−1,+1}. Binary-Offset is a method for transforming contextual bandit data (x⃗, a, r)

obtained from a random policy into weighted data (x⃗, y,W ), where the class y represents an estimate

of the better performing action and the weight W represents the degree to which that action improves

from the baseline. For paging mode selection, the context could take the form of relevant performance

metrics measured over a sampling period and the action would indicate whether SP or HAP should

be selected for the subsequent period. Workload throughput or speedup could both be considered

as useful reward metrics.

The resulting weighted classification instances are amenable to a broad suite of machine learning

techniques for feature selection, dimension reduction, and classifier construction. Classifiers which

directly incorporate instance weights exist in the literature [145, 46, 50, 104]. Alternatively, using

the ‘Costing’ method [148], weighted classification instances can be sampled in proportion to their

weight in order to construct a standard, unweighted labeled data set.

We use the Weighted Support Vector Machine (WSVM) [145] to construct a dynamic selection

model from the weighted classification instances generated by Binary-Offset. For a set of n weighted

instances of the form (x⃗i, yi,Wi), the (linear) WSVM attempts to find the classifier

f(x⃗) = sign(w⃗ · x⃗+ b) (3.1)

with the largest margin separating the positive and negative instances. This can be found using the

36



CHAPTER 3. PAGING MODE SELECTION

constrained optimization problem

arg min
w⃗, b, ξi

1

2
∥w⃗∥2 + C

N
∑

i=1

Wiξi

subject to yi f(x⃗) ≥ 1− ξi, ,

ξi ≥ 0,

(3.2)

where C is a hyper-parameter indicating the relative importance of the margin size and the weighted

misclassification error. This resulting linear classifier is simple to implement in a virtual machine

manager.

3.3 Dynamic Paging Mode Selection

We formulate dynamic paging mode selection as a contextual bandit, wherein the virtual machine

monitor selects between Shadow Paging (SP) and Hardware-Assisted Paging (HAP) at regular in-

tervals depending on relevant performance metrics in order to optimize workload performance. The

contextual information will take the form of page fault and data translation lookaside buffer (DTLB)

miss counts, as they characterize the performance of the two paging modes. The action space con-

tains both SP and HAP. The reward will be a measure of workload performance, based on the

number of instructions retired per cycle count (IPC) over an observation interval, for the selected

paging mode.

Here we present two methods. The first is a simple, context-less bandit model, DSP-SAMPLE,

which selects paging modes by comparing the IPC of HAP and SP directly at runtime without

taking advantage of page faults, DTLB misses, or any other performance metrics. The second is a

contextual bandit model, DSP-OFFSET, which exploits both page fault and DTLB miss counts in

order to select paging modes which provide a speedup compared to a random baseline. However,

unlike DSP-SAMPLE, DSP-OFFSET requires offline profiling and training.

37



CHAPTER 3. PAGING MODE SELECTION

//… …

HA
P SP HA
P SP HA
P SP HA
P SP

decision
point

decision
point

exploration exploitation exploration

Figure 3.2: Design and parameters of DSP-SAMPLE.

3.3.1 Direct Sampling (DSP-SAMPLE)

DSP-SAMPLE is a simple, direct sampling approach which operates in two stages. The first stage

alternates between selecting HAP and SP several times in order to discover which paging mode

provides the highest IPC. The second stage selects the paging mode which was found to provide the

best performance on average and utilizes that paging mode for a time. The two stages alternate,

timed appropriately to balance constructing a confident estimate of performance, utilizing the best

identified paging mode, and adapting to changing workload characteristics. This can be described

as a method which balances exploration (sampling the performance of each paging mode), and

exploitation (utilizing the best performing paging mode) — similar to the contextual bandit, but

without contextual information. A similar model is used in Jiménez et al. [70] for dynamic hardware

memory prefetcher utilization.

The design of DSP-SAMPLE is summarized in Figure 3.2. This method is parameterized by the

length of the observation interval, as well as the number of intervals in both the exploration and

exploitation periods. A longer exploration period can provide a better estimate of performance,

which can lead to fewer poor exploitation period selections. However, a longer exploration period

will also incur more overhead from paging mode switching. A longer exploitation period will reduce

the frequency of exploration, but shifting workload characteristics can cause the selected paging

mode to no longer be desirable. Parameter tuning is required for DSP-SAMPLE to be effective.

38



CHAPTER 3. PAGING MODE SELECTION

Random Profiling

Phase Detection

Reward Calculation

Binary-Offset

Logged Performance Data
(x⃗i, ai, IPCi)

Contextual Bandit Data
(x⃗i, ai, ri)

Weighted Classification Data
(x⃗i, ci,Wi)

WSVM Selection Model
f(x⃗)

Evaluation

Offset

Figure 3.3: Overview of the Binary-Offset model construction and Binary-Offset model evaluation
workflows for paging mode selection and the associated data transformations.

3.3.2 Contextual Bandit Model (DSP-OFFSET)

To construct the DSP-OFFSET model, we first must obtain logged data from random paging mode

selections for workloads of interest. Next, the logged data must be converted into a form which is

usable to Binary-Offset. This includes identifying phasing structure and defining a useful reward

function. Finally, we transform, via Binary-Offset, the logged data into weighted data and use the

WSVM in order to construct the DSP-OFFSET model. This construction is illustrated in Figure 3.3.

As with previous work [136, 80, 1], we rely on page faults and DTLB miss counts to characterize the

relative performance of HAP and SP. The frequency of DTLB misses is correlated with the frequency

of page walks, and the frequency of page faults is correlated with page table updates; therefore, we

expect HAP to outperform SP during periods of frequent page faults and SP to outperform HAP

during periods of frequent DTLB misses. However, effective switching requires determining the

trade-off for workloads with mixed characteristics. As page faults and DTLB misses characterize

the relative performance of HAP and SP, we assume that the relative performance of the two paging

modes otherwise remains unchanged by other, unobserved performance characteristics, as well as

from the historical behavior of both page faults and DTLB misses. As we find that the distribution

of both page fault and DTLB miss counts over fixed sampling intervals are heavy tailed, we consider

39



CHAPTER 3. PAGING MODE SELECTION

the binary logarithm of both counts instead of using the counts directly. This has the effect of

leveling out the distribution of each metric and reducing the effect of outlier behavior.

Training data is obtained from workloads by executing a random paging mode policy. At regular

sampling intervals, Xen measures relevant performance metrics, including page faults, DTLB misses,

and IPC, and selects HAP or SP uniformly at random for use during the next sampling interval. If

the system is already using the selected paging mode, no change happens. Otherwise, the system

switches to the new paging mode, incurring the associated cost. We associate the performance

characteristics used to make a selection (page fault and DTLB miss counts over the interval which

just ended) with the performance resulting from that selection (IPC of the following interval).

The logged training data must now be transformed into contextual bandit data, i.e., context, action,

and reward. We consider the speedup of a paging mode selection compared to average workload

performance as a reward. However, many applications exhibit phasing behavior [113, 116, 118].

Shifting performance characteristics, either between workloads or between phases of a workload,

can skew the weighting of our instances toward certain phases. Both milc and xalancbmk from

the SPEC CPU2006 [60] suite skew our results if we consider IPC as a reward directly, as both

contain small phases of high IPC that would be more strongly weighted towards despite providing

little opportunity for improved performance. Any possible imbalance between HAP and SP due to

random sampling during these phases can amplify the effect.

To account for these extraneous effects, we consider phases of the logged performance data. Using

the change-point detection algorithm PELT [78], we partition each random profiling execution into

a set of phases based on the sequence of IPC values. PELT is an efficient dynamic programming

algorithm for identifying changes in the distribution of a time series, such as identifying changes to

the mean and variance of a workload’s IPC over time. PELT optimizes the number and position

of the change points given an information criterion penalty. Given a set of change-points cj , we

segment our training data into phases [cj , cj+1]. These phases simply represent periods of consistent

workload performance. An alternative would be to specify these phases manually, however we find

that PELT is sufficient for identifying meaningful periods and does not rely on domain expertise.

40



CHAPTER 3. PAGING MODE SELECTION

Reward Functions

The reward is calculated based on the logarithmic speedup of each instance’s performance (IPC)

against the average performance of the phase containing that instance. Instances which cause a

speedup in comparison to random are given a positive reward. Instances with no speedup or slow-

down compared to the average performance of the random selections have a zero reward as they

represent the baseline behavior. For Binary-Offset, instances which cause a slowdown compared to

random should be treated as instances of the opposite paging mode with the reciprocal speedup.

Therefore, for a instance i ∈ [cj , cj+1], we calculate the reward as

ri = log
IPCi

IPC [cj ,cj+1]

, (3.3)

where IPC [cj ,cj+1] is the average IPC for the phase containing instance i. Measuring speedup (per

phase) avoids the problem of high IPC phases having a stronger weighting, as the weighting is

now relative to the average performance of the phase. Figure 3.4 (top and middle) illustrates the

transformation from IPC to reward.

Learning Methods

Using the contextual information x⃗i (page fault and DTLB miss counts), actions ai (SP and HAP,

mapped to +1 and -1 respectively), and rewards ri calculated according to Equation 3.3, we trans-

form the contextual bandit data (x⃗i, ai, ri) into weighted data (x⃗, yi,Wi) using Algorithm 1. This

transformation is illustrated in Figure 3.4 (middle and bottom). The weighted data describes, for

some set of performance metrics x⃗i, which paging mode yi is expected to provide a speedup and

how strongly it is expected, i.e., the weight Wi. We apply a linear WSVM (Equation 3.2) to the

weighted instance data in order to construct a linear decision function which maps page fault and

DTLB miss measurements to a paging mode selection. Other algorithms (e.g., weighted logistic

regression, weighted sampling [148]) were considered but WSVM provided the best performance.

To prevent rapid switching between SP and HAP, a potential source of performance loss due to

the switching overhead, we define a margin around the decision function. Any workload which is

41



CHAPTER 3. PAGING MODE SELECTION

IP
C

R
e
w

a
rd

W
e

ig
h

ts

astar libquantum mcf xalancbmk

0.5

1.0

1.5

−0.10
−0.05

0.00
0.05
0.10
0.15

0.00

0.05

0.10

0.15

Hardware−Assisted Paging Shadow Paging

Figure 3.4: IPC to instance weight transformation: Top; traces of IPC and paging mode using
a random selection policy for a subset of select workloads. Middle; IPC transformed to reward.
Bottom; Binary-Offset transformation to weights.

42



CHAPTER 3. PAGING MODE SELECTION

Table 3.1: Hardware Configuration

CPU Memory Cache DTLB
L1 L2 L3 L1 L2

2.8GHz 4GB 64KB
4-way

512KB
8-way

8192KB
16-way

64 entries
4-way

512 entries
4-way

operating inside of the margin does not trigger a switch, as we assume that the potential performance

advantage will not outweigh the cost of switching. We find that a quarter of the WSVM margin

results in good performance:

w⃗ · x⃗+ b > +0.25: if necessary, switch to SP,
w⃗ · x⃗+ b < −0.25: if necessary, switch to HAP.

Thrashing behavior which occurs because a workload alternates between two extremes, and thus

alternates outside of the margin, would not be prevented. However, this does not happen in practice

for the workloads we investigated.

3.4 Evaluation

This section describes our experimental methodology and presents our results. We evaluate the

performance of both DSP-SAMPLE and DSP-OFFSET, and compare both models against the state-

of-the-art ASP-SVM [80]. To conclude, we discuss the advantages of DSP-OFFSET with respect to

profiling cost (Section 3.4.4).

3.4.1 Experimental Environment

Experiments are conducted on a 1st generation Intel Core i5 processor (Nehalem microarchitecture),

running at 2.8GHz, with Intel Turbo Boost and other adaptive clock cycle technology disabled. The

hardware configuration is summarized in Table 3.1. A 64-bit host OS running Linux 2.6.18 (CentOS

5.4) is configured to run a modified version of Xen 3.3.1 which implements the paging mode selection

mechanism for the Xen hypervisor as described in [136]. A 32-bit guest OS, also running Linux

43



CHAPTER 3. PAGING MODE SELECTION

2.6.18 (CentOS 5.4), is provided with 3GB of memory and is constrained to a single core, for which

it has sole affinity. Policies are evaluated using the SPEC CPU2006 [60] benchmark suite as the

benchmarks show a variety of memory behavior. The benchmarks are compiled for the guest OS

using GCC 4.1.

At regular intervals, Xen measures relevant performance metrics, including page faults and DTLB

misses, and identifies if the system should utilize SP or HAP for the following interval according

to the current policy. To measure page faults, a kernel module in the guest OS notifies the Xen

hypervisor of a shared memory address in which the guest OS records the page fault count. To

measure DTLB misses, instructions retired, and clock cycles, the Xen hypervisor configures and

accesses the Performance Monitoring Unit [66] directly. A programmable counter is configured to

measure DTLB misses (mnemonic DTLB_MISSES.WALK_COMPLETED) and IPC is measured using the

fixed-function counters for retired instructions and core clock cycles. The page fault and DTLB miss

counts are transformed using a simple fixed-point arithmetic binary logarithm; alternatively, these

features could be approximated by identifying the number of leading zeros in the counts.

3.4.2 Experimental Design

We evaluate DSP-SAMPLE with a sampling rate (observation interval length) of 100ms. For the

exploration period, the algorithm measures the IPC of SP and HAP three times each (for a total of

0.6 s), and then selects the better performing paging mode to exploit for 50 observation intervals (for

a total of 5 s). This is approximately a 1:10 exploration to exploitation ratio. We also attempted

other possible parameter settings, but found no particular setting which was effective in all cases.

We evaluate DSP-OFFSET for both a benchmark-specific and benchmark-agnostic setting. In the

benchmark-specific case, we train a DSP-OFFSET model for each benchmark using a single random

profiling execution from that benchmark. Each model is then evaluated on the benchmark for which

it was trained. This evaluates the performance of DSP-OFFSET when constructed on a wide range

of training data sizes with varying workload characteristics. In the benchmark-agnostic case, we

construct a single DSP-OFFSET model by aggregating data from the SPEC INT2006 benchmarks.

This evaluates the effectiveness of DSP-OFFSET to model a broad range of workload characteristics

44



CHAPTER 3. PAGING MODE SELECTION

0.8

1.0

1.2

1.4

a
s
ta

r

b
z
ip

2

g
c
c

g
o

b
m

k

h
m

m
e

r

h
2

6
4

re
f

lib
q

u
a

n
tu

m

m
c
f

o
m

n
e

tp
p

p
e

rlb
e

n
c
h

s
je

n
g

x
a

la
n

c
b

m
k

IN
T

Benchmark

M
e

a
n

 E
xe

c
u

ti
o

n
 T

im
e

Shadow Paging

Hardware−Assisted Paging

DSP−SAMPLE

DSP−OFFSET, Benchmark−Specific

DSP−OFFSET, Benchmark−Agnostic

ASP−SVM

Figure 3.5: Mean normalized execution time for Hardware-Assisted Paging, Shadow Paging,
and dynamic selections including DSP-SAMPLE, DSP-OFFSET (benchmark-specific, benchmark-
agnostic), and ASP-SVM [80] on SPEC INT2006. Error bars indicate minimum and maximum
normalized times.

45



CHAPTER 3. PAGING MODE SELECTION

0.8

1.0

1.2

1.4

b
w

a
ve

s

c
a

lc
u

lix

c
a

c
tu

s
A

D
M

d
e

a
lII

g
a

m
e

s
s

G
e

m
s
F

D
T

D

g
ro

m
a

c
s

lb
m

le
s
lie

3
d

m
ilc

n
a

m
d

s
o

p
le

x

s
p

h
in

x
3

to
n

to

w
rf

z
e

u
s
m

p

F
P

Benchmark

M
e

a
n

 E
xe

c
u

ti
o

n
 T

im
e

Shadow Paging

Hardware−Assisted Paging

DSP−SAMPLE

DSP−OFFSET, Benchmark−Specific

DSP−OFFSET, Benchmark−Agnostic

ASP−SVM

Figure 3.6: Mean normalized execution time for Hardware-Assisted Paging, Shadow Paging,
and dynamic selections including DSP-SAMPLE, DSP-OFFSET (benchmark-specific, benchmark-
agnostic), and ASP-SVM [80] on SPEC FP2006. Error bars indicate minimum and maximum
normalized times.

and to generalize to other workloads not included as part of the training data. In both cases, we use

a sampling period of 1 s for both random profiling and evaluation, and we select the hyper-parameter

C for the WSVM (Equation 3.2) using a simple grid search. We considered sampling periods of 2 s,

1 s, and 100ms and found that the differences in the resulting policies and performance were small.

3.4.3 Results

Figures 3.5 and 3.6 summarize the mean execution times of the static HAP and SP policies and the

dynamic DSP-SAMPLE, DSP-OFFSET, and ASP-SVM policies, normalized to the mean execution

time of HAP, for the SPEC INT2006 and FP2006 benchmark suites, respectively. For HAP, SP,

DSP-SAMPLE, and DSP-OFFSET, we report the min, mean, and max ratios of three runs. For

ASP-SVM, we report the mean of five runs. The results for povray are omitted for ASP-SVM, as

they were not reported in [80].

46



CHAPTER 3. PAGING MODE SELECTION

Several benchmarks have notable differences in performance between SP and HAP: cactusADM and

mcf favor SP (13%, 12% gain); gcc and tonto favor HAP (46%, 21% loss with SP, respectively).

On average, SP presents a performance loss of 1.6% compared to HAP (1.6% for SPEC INT2006

and 1.5% for FP2006), and many benchmarks show no difference in performance between the two

static policies.

Direct Sampling

DSP-SAMPLE presents an overall performance loss of 0.2% compared to HAP (0.5% gain for SPEC

INT2006 and 0.7% loss for PF2006). While the performance of DSP-SAMPLE can be similar to the

performance of the best static policy, as is the case for gcc, tonto, cactusADM, and mcf, there are

some cases for which the performance of the dynamic procedure is no better than the worst static

policy. For bwaves, milc, and wrf, DSP-SAMPLE has roughly an equivalent average performance

loss to SP (3.5%, 7.3%, 3.8% loss, respectively) and for milc and wrf there is significant variability in

the performance across multiple runs. The performance of DSP-SAMPLE may be tailored, through

careful parameter selection, to better suit certain types of workloads. However, this can in turn

negatively affect other workloads.

Benchmark-Specific Models

As DSP-OFFSET utilizes the contextual information (performance metrics) available, we anticipate

that each benchmark-specific model should provide effective performance on the workload in which

it was trained. For nearly all benchmarks, the performance of the benchmark-specific DSP-OFFSET

model constructed from a single random profiling execution matches the performance of the best

static policy. The notable exception to the favorable performance of DSP-OFFSET is bwaves, which

performs 2.1% worse than the static HAP policy but on average better than the static SP policy.

On average, the DSP-OFFSET models present a 1.1% performance gain (1.6% for SPEC INT2006

and 0.8% for SPEC FP2006).

47



CHAPTER 3. PAGING MODE SELECTION

zeusmp

xalancbmk

wrf

tonto

sphinx3

soplex

sjeng

povray

perlbench

omnetpp

milc

mcf

libquantum

leslie3d

lbm

gobmk

GemsFDTD

gcc

dealII

calculix

cactusADM

bzip2

bwaves

astar

Time

Hardware−Assisted Paging Shadow Paging Margin Behavior

Figure 3.7: Paging modes selected over time for SPEC CPU06 benchmarks using the benchmark-
agnostic DSP-OFFSET constructed on SPEC INT06.

Benchmark-Agnostic Model

Whereas in the benchmark-specific case we constructed separate models for each benchmark, here

we construct a single benchmark-agnostic model for the full suite. The benchmark-agnostic DSP-

OFFSET model presents a 1.2% performance gain compared to HAP (1.4% for SPEC INT2006

and 1.0% for FP2006). In comparison, ASP-SVM presents a 1.3% performance gain (1.6% for

SPEC INT2006 and 1.1% for FP2006). Overall, both DSP-OFFSET and ASP-SVM have similar

performance gains over the static policies. Again, we stress that the aggregate data used to train

DSP-OFFSET contains only a single random execution for each integer benchmark.

48



CHAPTER 3. PAGING MODE SELECTION

The paging mode selections for the benchmark-agnostic DSP-OFFSET model are summarized in

Figure 3.7, including periods in which the model would have triggered a switch but did not due

to the margin. Workloads for most benchmarks cause a single paging mode to be selected almost

always during the course of the benchmark’s execution. For benchmarks which execute primarily in

SP, we observed periods at the beginning and end of the profiling run in which HAP was utilized.

These periods coincide with the initialization and tear-down of the SPEC tools as well as with the

start and end of program execution. A larger than average number of page faults are to be expected

during these periods, and thus these periods would favor HAP as hardware paging avoids the cost

of page table synchronization. Margin behavior only affects bwaves and zeusmp. For zeusmp, the

margin prevents thrashing behavior that would otherwise cause the model to switch between HAP

and SP every two or three seconds. For bwaves, we observe that the benchmark’s workload is

predominantly inside of the margin.

3.4.4 Profiling Cost

Collecting training data using random selection is no more expensive than running the benchmarks

using the worst of their static paging modes. Moreover, a single random evaluation for each bench-

mark is sufficient to obtain performance equivalent to ASP-SVM. In contrast, ASP-SVM requires

an average of six separate executions of each benchmark in the collection of the training data. The

reported data collection time for ASP-SVM was over 24 hours; in comparison, random profiling for

SPEC INT2006 requires less than 2.5 hours for DSP-OFFSET, and the full SPEC CPU2006 suite

requires less than 6.5 hours.

While our profiling time is reduced in comparison to ASP-SVM, the dataset for DSP-OFFSET

is several orders of magnitude larger. For DSP-OFFSET, with a 1 s sampling period, there are

approximately 25000 data samples across the twelve integer benchmark executions (one data sample

per sampling period); for ASP-SVM there are 60–67 samples. This is noisy data, both due to variable

workload characteristics as well as the random selection of paging modes. There are periods of a

benchmark’s execution which will be under-sampled. In some cases, random selection may also lead

to periods where one paging mode is sampled almost always. This leads to outliers in the contextual

49



CHAPTER 3. PAGING MODE SELECTION

measurements (page fault and DTLB miss counts) as well as in the labels and weights we eventually

generate using Binary-Offset. The enumerative profiling approach taken in [80] encodes knowledge

and assumptions regarding workload structure in order to address this noise/variation, which is the

source of their profiling cost. We instead compute this structure after the fact using the random

logged data.

3.5 Discussion and Conclusion

In this chapter, we present DSP-OFFSET, an effective procedure for dynamic paging mode selec-

tion which utilizes a simple, random profiling method. Dynamic paging mode selection policies are

capable of balancing the trade-off between Hardware-Assisted Paging and Shadow Paging at run-

time by dynamically switching the paging mode at runtime according to performance metrics. We

evaluate our approach on the SPEC CPU2006 benchmark suite and compare our approach with an

existing machine learning method. DSP-OFFSET achieves speedups up to 44% compared to static

paging mode selections and matches state-of-the-art performance. In addition, our method requires

substantially less profiling, an 90% reduction in profiling time.

While we chose to apply our method specifically to paging mode selection, the framework we present

is generally applicable to a range of dynamic configuration problems for computer systems. One

particular example is that of hardware prefetching. Modern Intel systems are equipped with four

hardware prefetchers which can be enabled or disabled at runtime [132]. IBM POWER7 systems

are equipped with a highly configurable prefetch engine that allows prefetchers to be parameterized

(e.g., prefetching depth and stride) [121]. Liao et al. [88], Rahman et al. [105] propose prefetcher

configuration recommendation methods; however, these are static, and not dynamic approaches. A

single, fixed configuration is selected for a given program after a window of profiling. Jiménez et al.

[70] propose a direct sampling method, similar to the DSP-SAMPLE approach given in Section 3.3.1,

without using contextual information to guide their selection.

Paging mode selection can be seen as a small and well understood instance of a dynamic configu-

ration problem. Performance can be described by a small number of features identified by domain

50



CHAPTER 3. PAGING MODE SELECTION

knowledge (page faults, DTLB misses), with only two configurations (Hardware-Assisted Paging,

Shadow Paging). Hardware prefetching is an interesting application as it presents the challenge of

larger action sets (16 in total for Intel systems) and action sets which are combinatorial in nature

(4 independent hardware prefetchers). The Binary-Offset method can be expanded into an Offset-

Tree [21], providing for larger action spaces. Hardware prefetching can also present the opportunity

to expand the contextual information used to include additional performance metrics (our framework

has no explicit limit on the number of attributes).

While our application of Binary-Offset substantially reduces profiling time for training, validation of

the resulting dynamic selection procedures still requires execution of the model in situ. Methods for

evaluating deterministic policies, using random or deterministic data, are available for the contextual

bandit [86, 44], and may be amenable to the problem setting. We hope to apply these methods in

order to provide offline evaluation, in addition to offline model construction.

Finally, we note that the application of Binary-Offset still required careful attention in order to

address problems such as label noise. Standard convex-loss methods are sensitive to label outliers in

the data [144, 99]. We hope to investigate the use of more robust machine learning methods which

are capable of addressing this problem.

51





Chapter 4

Hardware Memory Prefetcher
Utilization

Modern architectures provide hardware memory prefetching capabilities which can be configured at

runtime. On Intel microarchitectures, this control takes the form of four hardware prefetchers which

can be enabled or disabled independently of one another, independently on each core. While hard-

ware prefetching can provide substantial performance improvements for many programs, prefetching

can also increase contention for shared resources such as last-level cache and memory bandwidth.

The interaction in memory resource utilization across multiple cores, and the corresponding cross-

core contention, can degrade system-wide performance in multi-core workloads.

This chapter considers an application of the contextual bandit framework to dynamic hardware

memory prefetcher utilization. Hardware prefetcher control introduces a potential combinatorial

growth in action space size compared to paging mode selection—the binary state of each hardware

prefetcher on each core can be controlled independently. System-wide prefetcher control is achieved

by utilizing a set of identical and cooperating binary-action controllers each operating one prefetcher

on one core. The controllers are presented with cross-core workload behavior statistics, and the

reward for each hardware prefetcher configuration accounts for both local and cross-core effects

on system-wide performance. The Binary-Offset algorithm [21] and random profiling are again

presented as effective techniques for constructing dynamic selection models. In addition, Smooth

0-1 Loss Approximation (SLA) [99] is introduced to address the challenges of label noise in the

resulting data.

The material contained in this chapter was previously published in the Proceedings of the 48th International Confer-
ence on Parallel Processing (ICPP ’19) [62].

53



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

4.1 Introduction

Hardware memory prefetching is an effective way to ameliorate memory latency. While hardware

prefetching is productive for single-threaded programs, added memory requests due to prefetching

can pollute or saturate shared resources such as the last-level cache and memory bandwidth. On

multi-core workloads, the increase in resource contention can cause hardware prefetching to be

contraindicated. Modern microprocessors expose runtime controls of certain hardware prefetchers.

These runtime controls offer users and administrators the opportunity to tailor prefetcher usage to

workload behavior.

Examples of existing frameworks for runtime hardware prefetcher control include course-grained

recommendation systems and fine-grained enumerative sampling. In the former, workload charac-

teristics are mapped to a prefetcher configuration which is utilized over the course of a full workload

execution [88, 105]. In the later, prefetcher configurations are sampled regularly and the best per-

forming configuration is exploited for a period of time [70].

In this chapter, we describe a method for learning per-core hardware prefetcher control policies which

provide prefetcher configuration recommendations for multi-tenant workloads on a fine-grained scale.

These dynamic control policies are reflexive, in that a policy responds directly to the performance

characteristics of the currently executing workload in order to select a prefetching configuration. We

construct policies for systems with a range of memory characteristics in order to verify the efficacy

of our approach. Our models outperform a typical baseline, which leaves all prefetchers enabled

system-wide, by up to 4.3% on average for a system with limited memory bandwidth. By utilizing

workload-specific policies, tailored to the performance characteristics of individual workloads, our

models outperform the same baseline by up to 5.1% on average for the same system.

The chapter is organized as follows. Section 4.2 reviews hardware memory prefetching and summa-

rizes work related to software control of hardware prefetchers. Section 4.3 describes the contextual

bandit model, and formalizes the application of the contextual bandit to the problem of prefetcher

control. Sections 4.4 and 4.5 discuss our methodology, experimental results, and analysis. Section 4.6

summarizes the framework, describes our conclusions and motivates future work.

54



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

4.2 Background and Related Work

Modern microprocessors utilize hardware memory prefetching in order to reduce memory access

latency. Hardware prefetching predicts cache lines which are likely needed by the processor in the

near future, and fetches that data into the cache early. While prefetching can be effective in reducing

memory latency, it can be contraindicated in multi-core systems due to the increased contention for

shared memory resources, e.g., last-level cache and off-chip memory bandwidth [75]. Prefetching

misprediction further pollutes the shared cache and wastes memory bandwidth.

Hardware prefetchers can often be configurable in software. Intel microarchitectures are equipped

with four independent and configurable hardware prefetchers which can be enabled or disabled on a

per-core basis [132]. Prefetcher configuration is controlled by the first four bits (bits 0–3) of Model-

Specific Register (MSR) 0x1A4 on each core. Each bit controls the state (enabled or disabled)

of the four exposed prefetchers: (0) Data Prefetch Logic (DPL), which detect streaming requests

and fetches streams of instructions and data from memory to the L2 cache; (1) Adjacent Cache

Line (ACL), which fetches a paired cache line to form a 128-byte aligned chunk; (2) Data Cache

Unit (DCU), which attempts to recognize streaming access due to multiple loads from the same

cache line and will fetch the next cache line into the L1 data cache; and (3) Instruction Pointer

(DCU IP), which attempts to detect stride accesses in a fixed memory window for L1 data cache

prefetching [88, 105, 66, 132]. Both the DPL and APL prefetchers are associated with the L2

cache, whereas the DCU and DCU IP prefetchers are associated with the L1 cache. Likewise, IBM

Power systems feature a hardware prefetching engine which supports rich software configuration

support [121].

In addition to hardware-based solutions [123, 45], a number of approaches have been proposed to

mitigate the destructive effects of hardware prefetching in multi-core workloads through software

control of hardware prefetchers. Liao et al. [88], Rahman et al. [105] construct recommendation

systems for hardware prefetcher configurations. Both methods utilize an understanding of workload

characteristics, and relate those workload characteristics using machine learning to a static con-

figuration which is likely to perform best for that workload on future executions. Rahman et al.

55



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

[105] utilize a feature extraction technique in order to identify relevant performance measures for

hardware prefetcher recommendations; Liao et al. [88], on the other hand, utilize domain expertise

to identify these measures.

In contrast to static prefetcher configuration recommendations, Jiménez et al. [70] describe a method

for dynamic prefetcher configuration by periodically sampling workload performance directly for a

variety of different configurations and exploiting the best performing configuration for a period of

time. Their method is applied to IBM POWER7 systems, which are equipped with a highly config-

urable prefetch engine that allows prefetchers to be parameterized (e.g., for prefetching depth and

stride) [121]. As sampling the full set of configurations is not generally feasible for the POWER7

prefetching engine, the authors identify a subset of configurations that cover a broad range of work-

load behavior characteristics. Jiménez et al. [69] present a similar dynamic scheme for the POWER7

system by directly incorporating memory bandwidth measurement, adjusting the aggressiveness of

prefetching on cores which inefficiently utilize a significant amount of added bandwidth due to

prefetching compared to the corresponding increase in performance.

Ortega et al. [101] exploit runtime systems for shared memory programming models in order to

directly configure hardware prefetchers for software-defined parallel regions. Similarly to Jiménez

et al. [70], Jiménez et al. [69], this approach samples hardware prefetcher performance and exploits

the configuration with the best performance. However, instead of an uninformed approach which

polls the system periodically, this approach is informed by software constructs.

4.3 Contextual Bandit Framework

In this work, we consider the problem of constructing decision policies for fine-grained hardware

prefetcher control. At short, regular intervals, a controller observes system behavior (using per-

formance monitoring). In response to the performance characteristics of the current workload, the

controller then decides according to some policy function which hardware prefetcher configuration

to use during the following interval. An effective policy will tailor the use and aggressiveness of

prefetching to the workload, disabling prefetching on one or more cores when the added resource

56



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

Table 4.1: Performance Monitoring Events for Contextual Information

Mnemonic Architectures Description [66]
L1D:ALLOCATED_IN_M SB allocations of modified L1D cache lines
L1D:M_EVICT SB modified lines evicted from the L1 data

cache due to replacement
L1D:REPLACEMENT KL BW lines brought into the L1 data cache
L2_LINES_IN:ANY SB KL BW lines allocated in the L2 cache
LD_BLOCKS:STORE_FORWARD KL BW loads blocked by store buffer overlapping

that cannot be forwarded
LD_BLOCKS:NO_SR KL BW split load operations blocked temporarily

due to all resources for handling the split
accesses being in use

LD_BLOCKS:ALL_BLOCK SB loads blocked (without DCU miss)
DTLB_LOAD_MISSES:WALK_COMPLETED SB KL BW miss count in all translation lookaside buffer

levels which results in a completed page
walk of any page size

L3_LAT_CACHE:MISS SB KL BW cache miss condition count for references to
the last level cache

OFFCORE_REQUESTS:DEMAND_DATA_RD SB KL BW demand data read requests set to uncore
BR_MISP_RETIRED:ALL_BRANCHES SB KL BW mispredicted branch instructions at retire-

ment

contention is destructive. We relate the problem of fine-grained control to the contextual bandit,

and describe a method for learning decision control policies from the contextual bandit model.

The contextual bandit [12, 85] is a form of sequential decision process. At each time step t, an agent

is presented with a context x⃗t describing the state of the world. The agent selects an action at,

given the context, according to some policy function π(x⃗t). Then, the agent receives a (potentially

stochastic) reward rt as feedback for taking action at with context x⃗t. It is important to note that

the agent is limited to the feedback for the selected action (“bandit” feedback) and the rewards for

actions not taken are not revealed. The goal of the bandit model is to maximize the total reward

over a sequence of interactions.

The contextual bandit is typically evaluated in sequence, with the agent selecting an action and then

directly refining the policy function according to the feedback. Alternatively, the policy function

can also be learned using log data [21, 86]. Log data is composed of context-action-reward tuples

(x⃗t, at, rt) generated on past decisions according to some fixed, known action selection policy (e.g.,

uniformly random selection). The advantage of using log data is two-fold: the availability of log

57



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

data is often ubiquitous, and non-adaptive methods built and evaluated offline may be preferable to

adaptive methods on production systems.

To effectively apply contextual bandit methods, one needs to identify the set of actions, select the

relevant contextual information, and construct a reward function. Additionally, with the use of log

data we must select a classifier with which to learn a decision policy.

4.3.1 Action Selection

Across N cores, there are a total of 24N possible system-wide prefetcher configurations on Intel

microarchitectures. Naively, each system-wide prefetcher configuration could represent a distinct

action, however, the exponential growth limits the application of this method to many-core systems.

In order to reduce the complexity of system-wide configuration, we instead consider per-core and

per-prefetcher decisions independently. Per-core control of prefetchers can be myopic compared to

coordinated, system-wide control over all cores [45]. However, the inclusion of system-wide metrics

as part of the contextual information will allow for indirect cooperation between cores and can

mitigate potential performance loss due to decoupled decision making.

4.3.2 Context Selection

We utilize the Performance Monitoring Unit (PMU) [66] to obtain contextual information relevant

to prefetching performance, including translation look-aside buffer, cache, memory, and branch pre-

dictor behavior. Selected events, detailed in Table 4.1, are drawn from domain knowledge and used

to good effect in related work [88, 138]. As performance events can vary across different architec-

tures, we include similar events where available. Each event is measured on each core independently

while several programs, each isolated to a core, are executed. These measurements form the basis of

the contextual information. In addition to per-core measurements, we provide additional contextual

information measuring off-core behavior. Off-core measurements include aggregate measures of each

performance event across all other cores as a measure of global system behavior.

Absent from our list of performance measures is memory bandwidth. While memory bandwidth is

58



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

strongly related to hardware prefetching performance, direct bandwidth measurement is only avail-

able on recent Intel Xeon microprocessors, and bandwidth measurement is per-socket, as opposed

to per-thread or per-core. To facilitate prefetcher configuration on a wide range of architectures,

we instead rely on OFFCORE_REQUESTS:DEMAND_DATA_RD as a surrogate measure, which measures a

subset of memory bandwidth behavior.

We also omit any performance measurements which directly describe hardware prefetcher behavior.

Many microarchitectures expose performance events which directly measure the behavior and efficacy

of hardware prefetchers at various cache levels. While it may be tempting to incorporate these events

as contextual information, these events will be zero when the associated prefetcher(s) are disabled

(will not provide meaningful response) and non-zero otherwise.

4.3.3 Reward Function

Consider the log data for execution of a workload W of n programs, each executing on isolated

cores c1, c2, . . . , cn, using random prefetcher configuration selections. The log data is generated by

a controller which, independently on each core, measures the contextual information for prior sam-

pling periods, randomly selects between two prefetcher configurations, and associates the resulting

performance (Instructions per Cycle, IPC) to the selected configuration.

We measure workload performance for a prefetcher configuration policy π as the average speedup of

each core’s performance compared to the performance of the baseline policy 0 (enabling all prefetch-

ers on all cores):

R(W,π) =
1

n

∑

i

IPCπ
i

IPC0
i

(4.1)

where IPCπ
c and IPC0

c denote the IPC over the entire program execution running on core c using

the specified policy.

We translate the logged performance data for each core by estimating the average performance each

prefetcher configuration has system-wide. This includes the direct effect a configuration has on the

core it was taken, as well as the indirect effect on all other cores. In order to establish meaningful

59



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

measures of average performance, we first partition traces into periods of consistent performance

(program phases), and estimate average performance over those phases (as program behavior can

vary greatly over time due to phasing behavior). Estimating speedup per-phase normalizes mea-

surement across different phases — the reward will be relative to the average performance of the

phase.

Phase Detection

From log data, we apply Pruned Exact Linear Time [78] (PELT) change-point detection, indepen-

dently for each core, on the IPC trace for that core. PELT determines change points, i.e. points in

which the distributional properties of the data change, in sequence data. While IPC measurements

for a given program will depend on the prefetcher configurations used both on that core and system-

wide, and while there may be drastic differences in performance due to those configuration changes,

a visual inspection suggests that PELT is effective in discovering meaningful change-points in a

program’s performance. We consider the periods between change-points to be independent phases

of program behavior.

Reward Calculation

A simple definition of reward could be defined as the speedup of an action (prefetcher configuration)

against the the estimated average performance over the current program phase pi,t,

Ri,t =
1

n

∑

i

IPCπ
i,t

IPC0
i,pi,t

− 1, (4.2)

where IPCπ
i,t is the IPC of the chosen action and IPC0

i,pt
is the average performance on core ci

for every instance of action 0 during the phase. However, there are two unfortunate side-effects

to using Equation 4.2 as the reward function. First, the reward function does not categorize the

individual effect each core’s configuration has on performance. Instead, the reward categorizes

the performance effect of the system-wide prefetcher configuration, to which each particular core’s

configuration contributes, and assigns that same reward to each core’s configuration for that sampling

60



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

IP
C

 (
C

o
re

 0
) Prefetcher

(Core 0)

0

1

● ● ●
●

●
●

●

●
●

●

●

●

● ●

●

●

●
●

●
●IP

C
 (

C
o

re
 1

)

Prefetcher
(Core 0/1)

●

●

0/0

0/1

1/0

1/1

t

p0,t

p1,t

Figure 4.1: A small sample segment of log data from a random execution of a two-core workload.

period. Second, configurations which are close to the baseline will receive (approximately) no reward.

Instead of rewarding the use of the baseline, when desirable, this reward function effectively indicates

that these samples should be ignored.

In order to address these two problems, we consider the following two modifications to our reward

calculation. First, we calculate the reward of each core’s configuration independently, as an estimate

of the average speedup that a particular core’s configuration will cause system-wide. Second, instead

of comparing the performance to a fixed baseline, we compare against the average performance of

the random data.

To calculate the effect an action ai,t has on core ci, we measure the speedup of that action against

the average IPC over the phase pi,t containing ai,t,

R(i),t =
IPCi,t

IPCi,pi,t

, (4.3)

where IPCi,t is the IPC of the action on core ci at time t and IPCi,pi,t
is the average IPC of all

actions on core ci during the phase containing time t. Figure 4.1 (Core 0) illustrates this calculation.

At time t, we calculate the effect of action a0,t = 1 (disable prefetching) by comparing its IPC with

the average IPC on core c0 of all actions in the phase containing t.

To calculate the effect an action ai,t has on some other core cj , where i ̸= j, we measure the speedup

61



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

Random Profiling

Phase Detection

Reward Calculation

Binary-Offset

Offset

Model Construction

Evaluation

Figure 4.2: Overview of the Binary-Offset model construction and model evaluation workflow for
hardware memory prefetcher utilization.

of that action on core cj against the average IPC over the phase pj,t containing aj,t, for all samples

sharing that action aj,t,

R(i,j),t =
IPCj,t

IPCj,pj,t|aj,t

. (4.4)

where IPCj,pj,t|aj,t
is the average IPC of all actions on core cj during the phase containing time t

that used action aj,t. Figure 4.1 (Core 1), we illustrates this calculation. At time t, the observed

IPC on core c1 indicates the performance of taking a0,t = 1 and a1,t = 0. This is divided by the

average IPC on core c1 of all actions in phase containing t that are identical to action a1,t.

The calculated reward for each action ai,t is then the average estimated speedup that action has

locally on the core it was taken (Equation 4.3) and remotely on all other cores (Equation 4.4),

Ri,t =
1

n



R(i),t +
∑

i ̸=j

R(i,j),t



− 1. (4.5)

If action ai,t shows an average speedup across all four cores, then the reward is positive; if the action

provides an average slowdown across all four cores, then the reward is negative.

62



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

4.3.4 Policy Construction

Figure 4.2 summarizes the workflow for constructing decision policies from log data. Log data is

generated from profiling executions which select hardware prefetcher configurations randomly over

time and record system behavior (context), prefetcher configuration (action), and system perfor-

mance (reward). The log data is transformed using the Binary-Offset algorithm [21], summarized

in Algorithm 1, and a policy is constructed from the transformed data using machine learning. The

result is a policy which classifies system behavior measurements according to the prefetching con-

figuration which is predicted to provide optimal performance. Binary-Offset has been successfully

applied to fine-grained paging mode selection in virtual machines [61], although that application

focused on single core workloads.

At a high level, Binary-Offset can be described as a transformation procedure which maps the

context-action-reward tuples (x⃗, a, r) of log data for random action selections to weighted classifica-

tion tuples (x⃗, ŷ, w) where ŷ is the expected superior action and w is the weight of that expectation.

When an action has a positive reward, the chosen action a becomes the label ŷ and is weighted

according to the reward. When an action has a negative reward, the opposing action becomes the

label ŷ and is weighted according to the opposite of the reward. A weighted classifier uses the trans-

formed dataset to generate a policy function π(x⃗) which describes which action is preferred given

an observed context. Alternatively, the data can be resampled according to its weight [148], which

allows standard, non-weighted classifiers to also be used.

Due to noise and unobserved system phenomenon, variation in system performance measurements

can lead to substantial noise in the labels assigned by Binary-Offset. These label outliers can

be problematic for standard, quadratic error classifiers such as logistic regression, Support Vector

Machines, etc., and their weighted counterparts. To that end, we use a weighted variant of the

Smooth 0–1 Loss Approximation (SLA) algorithm [99], which is robust to label outliers, to construct

a classifier from the weighted classification data resulting from Binary-Offset. SLA refines the

(linear) classifier from a (weighted) Support Vector Machine (SVM) using a mixture of gradient

decent, pattern search, and hill-climbing according to a differentiable approximation of the robust

63



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

Table 4.2: Hardware Configuration

CPU Cores Memory Cache
L1 L2 L3

Broadwell
Xeon E5-2620
v4

2.1GHz 8 4x32GB
DDR4-2400

32K
8-way

256K
8-way

20M
16-way

Sandy Bridge
Core i5-2500

3.3GHz 4 2x2GB
DDR3-1333

32K
8-way

256K
8-way

8M
12-way

Kaby Lake
Core i7-7700

3.6GHz 4 4x8GB
DDR4-2400

32K
8-way

256K
8-way

8M
16-way

0–1 loss. As SLA is a linear classifier, we expand the context vector to include pairwise interaction

terms in order to capture some non-learner interactions between system behaviors. Using the SLA

classifier, a policy can direct hardware prefetcher configuration on each core according to per-core

and system-wide performance measures.

4.4 Methodology

We evaluate our method for constructing prefetching control policies on three machines, as detailed

in Table 4.2. These three environments present a broad range of system configurations which in turn

present a broad range of hardware prefetcher performance on multi-core workloads. For convenience,

we refer to each machine according to its microarchitecture code-name: Broadwell, Kaby Lake, and

Sandy Bridge. In all cases, we disable turbo boost and energy saving features. We additionally

disable hyper-threading, as hardware prefetchers are shared between virtual cores.

4.4.1 Workload Selection

In order to evaluate the effect of our dynamic hardware prefetcher controller, we generate 60 four-core

workloads by combining selected benchmarks from the SPEC CPU2006 [60], SPEC CPU2017 [126],

and PARSEC [25] benchmark suites. In order to generate workloads which exhibit a variety of

performance characteristics due to hardware prefetcher configurations, we limit our consideration to

64



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

DPL ACL DCU DCU IP

0.0% 10.0% 20.0% 30.0% 40.0% 0.0% 10.0% 20.0% 30.0% 40.0% 0.0% 10.0% 20.0% 30.0% 40.0% 0.0% 10.0% 20.0% 30.0% 40.0%

0.6

0.8

1.0

Bandwidth Reduction

S
p

e
e

d
u

p

Figure 4.3: Change in prefetcher performance and memory bandwidth utilization for benchmarks
from SPEC CPU2006, SPEC CPU2017, and PARSEC.

a subset of exemplars which are sensitive to hardware prefetching. Our selection criterion include

substantial changes in performance and memory bandwidth consumption when prefetching is en-

abled or disabled. As such benchmarks should exhibit noticeable trade-offs in multi-core, co-tenant

environments with shared memory resources.

Bandwidth and performance sensitivities for each hardware prefetcher and benchmark are given

in Figure 4.3. For each hardware prefetcher, we execute each benchmark in isolation with that

hardware prefetcher enabled and disabled (while the remaining prefetchers are enabled). Using

Memory Bandwidth Monitoring (MBM) tools available on recent Xeon microprocessors, we measure

performance sensitivity as the speedup of the benchmark when prefetching is disabled and bandwidth

reduction as the change in memory bandwidth usage between the enabled and disabled cases as a

percentage of total available memory bandwidth. On Broadwell, benchmarks are most sensitive to

the usage of the DPL prefetcher in terms of both performance and memory bandwidth usage, with

benchmarks such as libquantum and fotonik3d_r exhibiting significant performance loss (41%,

29%) and reduced memory bandwidth (37%, 27%), respectively, when L2 stream prefetching is

disabled. In contrast, the ACL, DCU, and DCU IP prefetchers do not have as prominent of an effect

on any benchmark in any benchmark suite. As MBM is unavailable on the remaining evaluation

environments, we utilize the Broadwell measurements exclusively to conduct benchmark selection.

A subset of 20 benchmarks, detailed in Table 4.3, are selected according to the performance and

memory bandwidth changes for the DPL prefetcher. A benchmark is selected if there is more than

a 1% reduction in bandwidth usage when the DPL prefetcher is disabled. A total of 60 workloads

65



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

Table 4.3: Benchmark Selections by Suite

SPEC CPU2006 bwaves, gcc, GemsFDTD, lbm, leslie3d, libquantum, mcf, milc,
omnetpp, soplex, wrf, xalancbmk

SPEC CPU2017 bwaves_r, fotonik3d_r, gcc_r, lbm_r, mcf_r, omnetpp_r, roms_r
PARSEC fluidanimate

are constructed by selecting, with replacement, four benchmarks from the set of exemplars. The 60

workloads are shared across all three experimental machines.

4.4.2 Workload Execution

Workloads are executed by repeatedly executing their constituent programs, each isolated on a

distinct core, until each program has completed execution at least once. A simple Python controller

orchestrates the execution, performance monitoring, and hardware prefetcher configuration. The

controller measures performance events (contextual information) over short sampling periods. At

the end of each sampling period, the controller updates the prefetcher configuration according to

some policy using the collected contextual information. This includes static policies which fix each

prefetcher to a predetermined state during the workload’s execution, or dynamic policies which adjust

the prefetching configuration according to the workload characteristics described by the context.

While we utilize a user-space controller for convenience, a kernel-space implementation is also viable

within the constraints of our framework.

We restrict our evaluation to 1 s sampling periods, however any small period should be sufficient;

in practice, we find similar results utilizing 10ms and 2 s sampling periods. Contextual information

is obtained using libpfm4 and hardware prefetchers are configured by directly writing MSR 0x1A4

on each core. Due to a lack of availability for certain performance events on some architectures,

the event sets for each evaluation machine differ slightly (see Table 4.1). However, the underlying

structures described by the chosen events remain the same across all three machines. In all cases,

each performance event is normalized per the number of instructions executed during the same

interval.

66



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

4.4.3 Experimental Design

To establish baseline performances, we evaluate each workload by enabling and disabling a prefetcher

of interest on all cores (while the remaining prefetchers are enabled). On both Sandy Bridge and

Kaby Lake, there is at most a 6% difference between the enabled and disabled performance for the

APL and DCU prefetcher across all 60 workloads. In comparison, there is up to a 30% difference

between the enabled and disabled performance for the DPL prefetcher on Sandy Bridge and up to a

12% difference for the DCU IP prefetcher. As such, we choose to focus our evaluation on the DPL

and DCU IP prefetchers where the performance change is marked. On Broadwell, disabling any

prefetcher across all cores leads to a performance loss on the selected workloads. The same is true

for eight-core workloads, chosen from the same set of exemplar benchmarks.

We consider the performance of executing the workloads using the following static policies:

All Enabled All four prefetchers are enabled on all cores.

[Prefetcher] Disabled The given prefetcher, DPL or DCU IP, is disabled on all cores; the re-

maining prefetchers are enabled on all cores.

Best Static The given prefetcher is either enabled or disabled on all cores, so as to give the best

static performance.

We assume that All Enabled is a sensible default configuration, although this designation depends

on workload characteristics and is often contraindicated by vendors for virtual environments [75].

The Best Static policy is a baseline measure of improvement, as it indicates the performance of

an oracle which is limited to utilizing either the All Enabled or the Disabled policy for specific

benchmarks.

Dynamic prefetcher configuration policies are constructed independently for the DPL and DCU IP

prefetchers using Binary-Offset on small subsets of training workloads (this process was detailed in

Section 4.3). Training workloads are selected uniformly according to the performance of the DPL

Disabled and DCU IP Disabled policies, respectively. The training dataset is constructed by

compiling the Binary-Offset transformations for exactly one random execution (randomly enabling

67



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

or disabling the hardware prefetcher of interest at each sampling period) of each training workload.

To measure the effect of training workload size and specificity, we consider three training cases for

policy construction:

Binary-Offset (Ind) Policies are constructed specific to each workload using only a given work-

load’s training data and each policy is evaluated only on the training workload.

Binary-Offset (5) A single, general-purpose policy is constructed using the profiling data from

5 training workloads and is evaluated on the full workload suite.

Binary-Offset (10) A single, general-purpose policy is constructed using the profiling data from

10 training workloads and is evaluated on the full workload suite.

4.5 Results

We first examine the performance of the static and learned, dynamic Binary-Offset policies for the

DPL prefetcher. Figure 4.4 details the average speedup of the DPL Disabled and Binary-Offset

policies on Sandy Bridge and Kaby Lake. In both cases, the All Enabled static policy is used as

the baseline against which all four policies are compared. With the exception of Binary-Offset

(5) on Kaby Lake, the Binary-Offset policies outperform both the All Enabled and DPL

Disabled static policies on a majority of workloads (up to 11% on Sandy Bridge and 14% on Kaby

Bridge). In all but a small handful of workloads, the Binary-Offset policies never perform worse

than both the All Enabled and DPL Disabled static policies, and the performance loss is no

greater than 1% in all cases. On Broadwell (not shown), the Binary-Offset policies enable the

DPL prefetcher almost always, likely due to the lack of resource contention.

The average performance for each policy across the full workload suite is detailed in Figure 4.5.

On Sandy Bridge, disabling the DPL prefetcher produces better average performance (1.2%) across

all 60 workloads; on Kaby Lake, disabling the DPL prefetcher substantially degrades performance

(−8.5%). With the exception of Binary-Offset (5) on Kaby Lake, the Binary-Offset policies

outperform not only the All Enabled and DPL Disabled policies, but the Best Static policy

68



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

0.9

1.0

1.1

1.2

Workload

S
p

e
e

d
u

p

(a) Sandy Bridge

●

●

●●

●
●

●

●
●

● ●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

0.8

0.9

1.0

1.1

1.2

Workload

S
p

e
e

d
u

p

(b) Kaby Lake
● DPL Disabled Binary−Offset (Ind) Binary−Offset (5) Binary−Offset (10)

Figure 4.4: Workload performance for DPL prefetcher related policies on Sandy Bridge and Kaby
Lake experimental environments, relative to baseline All Enabled (all prefetchers enabled on all
cores).

1.043
1.036

1.051

1.033

1.012 1.010

0.990

1.017
1.004

0.915

0.90

0.95

1.00

1.05

Sandy Bridge Kaby Lake

A
ve

ra
g

e
 S

p
e

e
d

u
p

DPL Disabled

Best Static

Binary−Offset (Ind)

Binary−Offset (5)

Binary−Offset (10)

Figure 4.5: Comparison of (geometric) mean policy performance on both the Sandy Bridge and
Kaby Lake for the DPL prefetcher.

69



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

as well. The Binary-Offset (10) policies improve upon the baseline All Enabled policy by

4.3% and 1.0% on Sandy Bridge and Kaby Lake, respectively, and improve upon the Best Static

policy by 1.0% and 0.6%, respectively. Generating policies with increased specificity, as in the

Binary-Offset (Ind), further improves average performance by tailoring prefetcher configuration

to a narrower set of characteristics.

To better understand the behavior of policies resulting from Binary-Offset, we examine a workload

consisting of benchmarks libquantum, wrf, and two instances of lbm_r, which achieves an average

performance increase of over 10% when using either the Binary-Offset (Ind) or Binary-Offset

(10) model. When executed on Kaby Lake, disabling the DPL prefetcher across all cores causes

libquantum to receive a small (3.5%) performance gain, while the remaining programs each suffer

a substantial (20%) performance loss. In contrast, the Binary-Offset policies enable the DPL

prefetcher for libquantum and wrf (gaining 65% and 20% performance, respectively) while disabling

the DPL prefetcher for the both lbm_r instances during a majority of the execution (losing 25%

performance for both). As libquantum is a significant consumer of memory bandwidth and is

very sensitive to DPL prefetch usage, enabling prefetching while eliminating contention for the less

sensitive lbm_r instances provides a substantial increase in average workload performance.

Figure 4.6 details the average speedup of the DCU IP Disabled and Binary-Offset (10) policies

on Sandy Bridge and Kaby Lake. As with the DPL prefetcher case, we use the All Enabled static

policy as a baseline against which the other policies are compared. While the DCU IP prefetcher is

less impactful on performance, we observe similar characteristics to the DPL prefetcher with regards

to the Binary-Offset (10) policy performance. In over 55% of workloads on Sandy Bridge and

40% of workloads on Kaby Lake, the Binary-Offset learned policy outperforms both the All

Enabled and DCU IP Disabled static policies. In all by a small handful of workloads, the

Binary-Offset (10) policy never performs worse than both the All Enabled and DCU IP

Disabled static policies, and the performance loss is no greater than 1% in all cases.

The average performance for each policy across the full workload suite is detailed in Figure 4.7. On

Sandy Bridge, disabling the DCU IP prefetcher produces better average performance (0.9%). On

Kaby Lake, there is little difference in average performance, as the number of cases which favor

70



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

● ● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●●
●

0.95

1.00

1.05

1.10

Workload

S
p

e
e

d
u

p

(a) Sandy Bridge

●

● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

● ●

●

●

●

●

0.96

0.98

1.00

1.02

1.04

Workload

S
p

e
e

d
u

p

(b) Kaby Lake
● DCU IP Disabled Binary−Offset (10)

Figure 4.6: Workload performance for DCU IP prefetcher related policies on Sandy Bridge and Kaby
Lake experimental environments, relative to baseline All Enabled (all prefetchers enabled on all
cores).

1.0141.013

1.009

1.0061.007

1.001

0.98

0.99

1.00

1.01

1.02

Sandy Bridge Kaby Lake

A
ve

ra
g

e
 S

p
e

e
d

u
p

DCU IP Disabled

Best Static

Binary−Offset (10)

Figure 4.7: Comparison of (geometric) mean policy performance on both the Sandy Bridge and
Kaby Lake for the DCU IP prefetcher.

71



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

enabling and disabling the prefetcher are relatively balanced. On both Sandy Bridge and Kaby

Lake, the Binary-Offset (10) policy improves performance compared to both baselines, and has

similar performance to the Best Static policy. While there are many instances, especially on

Sandy Bridge, in which performance can be substantially improved compared to both the All

Enabled and DCU IP Disabled policies, there are many cases in which disabling the prefetcher

is advantageous yet the Binary-Offset policy enabled the prefetcher across all cores.

4.6 Discussion and Conclusion

For our contextual bandit model of fine-grained hardware prefetching control, we focused on sim-

plified selections for actions and contextual information, and focused our attention to a particular

reward function and training methodology. However, each of these aspects can be relaxed accord-

ingly. For action selection, our approach focused on prefetcher control for independent hardware

prefetchers and cores, operating in concert on a multi-core system. Preliminary results suggest that

policies for both the DPL and DCU IP hardware prefetchers can likewise be applied in concert with

a synergistic effect, providing independent but simultaneous control of the two prefetchers on all

cores. In the future, methods to support a larger sets of actions could be applied, allowing for joint

control of a prefetcher over a set of cores, or joint control of all prefetchers on a specific core.

Context selection remains an open question. As the performance events exposed by the PMU can

differ between manufacturer and microarchitecture, it can be difficult to establish a consistent set

of relevant performance events for prefetching behavior. Due to terse official documentation, and

potentially buggy hardware implementations which contradict documentation, choosing appropriate

events is a challenging task even for domain experts. Further, an overly broad selection of events

can impact classification accuracy. As such, incorporating automatic context selection would be a

valuable addition to our framework.

The reward function derived here is motivated by the use of average speedup as an optimization tar-

get. However, there are several metrics which summarize the performance of a multi-core workload,

including total throughput (
∑

i IPCπ
i ), which seeks to optimize aggregate system IPC (often at the

72



CHAPTER 4. HARDWARE MEMORY PREFETCHER UTILIZATION

expense of low IPC applications), and fair speedup (n
∑

i
IPC0

i/IPCπ
i ), which rewards a uniform

improvement in application speedup. In either case, a new reward function derivation would be

required to target these metrics.

Selecting an informative set of benchmarks as training workloads is a difficult problem. While our

approach utilizes workload profiling of static hardware prefetcher configurations to make an informed

decision, the uniform selection of training workloads given static prefetcher performance is a safe

but uninformed choice. In practice, it may be possible to tailor the training workloads to account

for expected workload types. Ideally, one would construct several models using different training

workload sets and evaluate each to determine which model provides the best performance on a

general testing workload set. However, such an approach requires a significant time cost to perform

random profiling across each training workload set and to evaluate each resulting model on a broad

set of testing workloads.

Leveraging this contextual bandit model, we describe a method for learning control policies for

hardware prefetching in multi-core systems using profiling data obtained through random prefetcher

configuration selections. Despite operating independently, per-core, the resulting prefetcher control

policies are capable of tailoring prefetcher usage which is advantageous system-wide, disabling or

enabling to reduce resource contention and improve system performance. We evaluate our approach

on multi-core workloads constructed from prefetching sensitive SPEC CPU2006, SPEC CPU2017,

and PARSEC benchmarks. On a system with limited memory bandwidth, our learned L2 stream

prefetching control policy outperforms a typical baseline, which leaves prefetching enabled on all

cores, by up to 19% and by 4.3% on average across our workload suite. Using control policies

tailored to specific workloads, the same baseline is outperformed by up to 24% and by 5.1% on

average.

73





Chapter 5

Performance Event Selection

While modern microarchitectures expose access to hundreds of performance events, the number of

events which can be simultaneously monitored is limited by the number of available measurement

registers (typically four or eight). It is not practical to measure the full set of performance events

without substantial error; instead, a subset of events must be identified for sampling. Manual

event selection adds a substantial human cost to model construction, requiring domain expertise

to identify which events are relevant to the control problem. This cost is compounded by poor

documentation of performance events, and an event availability which changes substantially between

microarchitectures.

This chapter presents Correlation-Based Feature Selection (CFS) as a method for identifying relevant

performance events, and evaluates CFS for hardware memory prefetching control. Filter methods,

such as CFS, identify relevant features through statistical relationships in training data. As such,

these methods are immediately applicable to the (transformed) random profiling data generated by

the off-policy contextual bandit. The effectiveness of the CFS event selections and the domain-expert

event selection (of Chapter 4) are evaluated according to the performance of the models that result

from using the respective features. In addition, the validity of the CFS event selections for hardware

memory prefetcher control are analyzed using available microarchitecture documentation.

5.1 Introduction

Hardware memory prefetching can be an effective tool for mitigating the cost of memory latency

by anticipating future memory accesses and requesting that memory in advance. While hardware

75



CHAPTER 5. PERFORMANCE EVENT SELECTION

prefetchers are largely effective in single-threaded applications, prefetching can be detrimental for

multi-tenant workloads as it can increase demand for shared memory resources such as a shared last-

level cache or memory bandwidth. Inter-core contention for shared resources can have a destructive

effect on performance, by evicting useful cache lines with prefetched memory, or by increasing

pressure on memory bandwidth with additional traffic for prefetching.

On many microarchitectures, hardware memory prefetching can be controlled at runtime. Recent

Intel microarchitectures expose controls for four hardware prefetchers, allowing each prefetcher on

each core to be enabled or disabled at runtime. A number of prefetcher control schemes [105, 88,

62, 70] have been designed to take advantage of these mechanisms in order to optimize performance

by affecting prefetcher usage beneficial to current workload behavior.

The Performance Monitoring Unit (PMU) is a common mechanism available on modern microar-

chitectures for measuring the behavior of hardware components [66, 105, 88, 62]. However, the

capabilities of the PMU are limited. The number of events available for measurement has far out-

paced the number of events which can be measured simultaneously [149]. Recent microarchitectures

expose thousands of unique events, but allow for the simultaneous measurement of only a few events

(4 or 8). Measuring the full suite of events is impractical, as multiplexing will introduce a source

of measurement error [14], and unnecessary, as a substantial number of events will be irrelevant or

redundant to the application or domain.

Relying on domain expertise to select relevant performance events places a significant human cost

on developing effective, informed models for system characterization and optimization. Performance

event availability depends on the microarchitecture and vendor. Many events describe components

which are specific to the microarchitecture, and there are few events which are standardized across

microarchitectures. This is further complicated by poor, and in some cases incorrect, documenta-

tion for performance events. The terse event descriptions that are published are often difficult to

dissect. Without ample documentation (which is often unavailable) and domain expertise, it can

be challenging to understand the relationships between performance events and the effects of these

events to a given problem.

76



CHAPTER 5. PERFORMANCE EVENT SELECTION

In this chapter, we evaluate Correlation-Based Feature Selection (CFS) as a method for selecting

performance events which are relevant to dynamic hardware prefetching control [59]. For two sys-

tems, offering stark differences in performance event availability and memory resources, we use CFS

to identify performance event selections which are effective for determining hardware prefetcher

usage in the presence and absence of contention for the shared last-level cache and memory band-

width. On a memory-limited system, dynamic hardware prefetcher control using CFS selected events

improves performance by 5.6% compared to the baseline which enables hardware prefetching system-

wide. Compared to the domain-expert selected events, the CFS selected events improve dynamic

prefetcher control performance by up to 1.2% on both a memory-limited system and a system with

ample memory resources.

The chapter is organized as follows. Section 5.2 reviews hardware memory prefetching and summa-

rizes work related to software control of hardware prefetchers. Section 5.3 reviews feature selection

and introduces Correlation-Based Feature Selection. Sections 5.4 and 5.5 discuss our methodology,

experimental results, and analysis. Section 5.6 details work related to hardware memory prefetcher

utilization and the selection of relevant performance events for that purpose. Section 4.6 summarizes

the framework and describes our conclusions.

5.2 Dynamic Hardware Prefetcher Control

Intel microarchitectures expose four prefetchers for runtime control [132, 67]. Two prefetchers operate

on the L2 cache and respond to memory requests from the L1 data and instruction caches: the Data

Prefetch Logic (DPL) prefetcher will fetch anticipated cache lines for ascending and descending

streams of memory accesses; the Adjacent Cache Line (APL) prefetcher will fetch cache lines which

complete a 128 byte aligned cache line pair. Two prefetchers operate on the L1 cache and respond

to memory requests from the execution engine: the Data Cache Unit (DCU) prefetcher will fetch

anticipated cache lines for ascending (but not descending) streams of memory access; the DCU

Instruction Pointer (DCU IP) prefetcher will track loads and fetch anticipated cache lines which

comprise ascending or descending stride accesses of up to 2K bytes. Prefetchers can be independently

77



CHAPTER 5. PERFORMANCE EVENT SELECTION

enabled or disabled at runtime, independently on each core. Model Specific Register (MSR) 0x1A4

takes a binary mask indicating the state, either enabled or disabled, for each of the four prefetchers

on a core. A typical system-wide default enables all four prefetchers on all cores.

While hardware memory prefetching can be effective at mitigating the cost of memory accesses and

ameliorating the memory wall effect, the added contention for shared memory resources can cause

a destructive performance effect in multi-core systems. When memory bandwidth is constrained

and several benchmarks must contend for that bandwidth, the DPL prefetcher is contraindicated.

For example, the SPEC CPU2017 [126] benchmark fotonik3d is very sensitive to DPL prefetcher

usage. When executed in isolation, disabling the DPL prefetcher can cause a substantial decrease in

program throughput with a corresponding decrease in memory bandwidth usage [62]. In contrast,

omnetpp has little sensitivity to DPL prefetcher usage. When executed together using the DPL

prefetcher, the memory pressure of fotonik3d can have a substantive negative effect on omnetpp

performance. In contrast, when memory bandwidth is plentiful, there is insufficient contention to

negatively affect performance.

Runtime control of hardware prefetchers allows for dynamic prefetcher usage which responds to

changes in system behavior and performance over time [70, 62]. Hiebel et al. [62] model dynamic

prefetcher control as a sequential decision process, measuring workload behavior at regular intervals

and choosing to enable or disable each prefetcher in response. Workload behavior is characterized by

a number of metrics exposed by the PMU. This includes branch predictor, cache, translation look-

aside buffer (TLB) and memory bandwidth behavior, identified as relevant to hardware prefetcher

performance according to domain knowledge. The effectiveness of the model depends on the iden-

tified PMU events being sufficient to distinguish when prefetcher utilization is advantageous for

system-wide performance.

5.3 Correlation-Based Feature Selection

Performance events are broadly used for the control and characterization of computer systems.

However, limitations in design, lacking documentation, and complex inter-relationships between

78



CHAPTER 5. PERFORMANCE EVENT SELECTION

hardware components complicate the effective use of performance event measurement for these

outcomes. Identifying subsets of predictive events and filtering out irrelevant and redundant events

can help mitigate PMU measurement error due to multiplexing [14].

Feature selection is a technique for identifying and removing predictors, or features, which are redun-

dant or irrelevant to an outcome [57]. Filter methods are a computationally efficient class of feature

selection algorithms which operate directly on the characteristics of the data, relating features (e.g.,

performance event measurements) to the corresponding classes (e.g., preferred hardware prefetcher

usage). Filter methods typically rank and select features according to univariate and multivariate

measures of those features.

Correlation-Based Feature Selection (CFS) [59] selects feature subsets which maximize the heuristic

of that subset’s merit,

MeritS =
k rfc

√

k + (k − 1) rff
, (5.1)

where S is a subset of k features, rfc is the average correlation between the features of the subset

and the corresponding classes, and rff is the average correlation between each pair of features

in the subset. The merit heuristic rewards feature sets with a high average relevancy (feature-class

correlation), and penalizes feature sets with a high average redundancy (feature-feature correlation).

Direct combinatorial optimization of MeritS is impractical for large sets of features. Instead, event

subsets are selected with a greedy search. This can either be through a forward search, starting

with the empty set of features and progressively adding events which maximizes merit, until adding

any additional events will only reduce the merit heuristic, or similarly through a backward search,

starting with the full set and progressively removing events.

5.4 Methodology

We utilize the Sandy Bridge and Kaby Lake experimental environments detailed in Table 4.2. The

two environments represent different Intel microarchitectures (Sandy Bridge and Kaby Lake), which

have substantial differences in the available performance events. In addition, the two environments

79



CHAPTER 5. PERFORMANCE EVENT SELECTION

have different memory characteristics, with Kaby Lake having significantly more available memory

and memory bandwidth. In both cases, turbo-boost and energy-saving features are disabled. We

additionally disable hyper-threading, as counter use is otherwise restricted.

For each system, performance events are identified using libpfm4, which provides a set of mnemonic

designations and corresponding configuration details for each performance event exposed by the

microarchitecture. From the complete list of available events, we prune a number of events according

to the following criterion. We prune any event which is limited in use to a subset of the available

performance counter registers. A small number of events on each microarchitecture are documented

as being limited in this way. Similarly, we remove events which require additional, non-standard

configuration, such as requiring additional MSRs to parameterize the events measured (e.g. MEM_

TRANS_RETIRED:LOAD_LATENCY measures memory accesses which exceed a user-defined threshold

specified with MSR 0x3F6). The total number of (unique) event mnemonics reported by libpfm4

for Sandy Bridge is 255. After pruning, we are left with 235 unique events. For Kaby Lake, the

total number of event mnemonics reported is 275, and after pruning we are left with 236 events.

5.4.1 Workload Design and Execution

We evaluate hardware prefetcher control using CFS selected events on the 60 workloads presented

in Hiebel et al. [62]. Each workload is comprised of four benchmarks, selected with replacement

from a set of twenty prefetcher-sensitive benchmarks from the SPEC CPU2006 [125, 60], SPEC

CPU2017 [126], and PARSEC [25] benchmark suites.

A workload is executed by isolating each of the four benchmarks to a unique core, and executing each

benchmark repeatedly on the corresponding core until all benchmarks have finished execution at least

once. These workloads represent a broad range of workload behaviors with respect to last-level cache

and memory contention and include cases for both evaluation environments in which prefetching on

each core is advantageous or disadvantageous to system-wide performance. A user-space controller

manages workload execution, performance event measurement, and hardware prefetcher control

system-wide at fixed intervals.

80



CHAPTER 5. PERFORMANCE EVENT SELECTION

The performance of each benchmark is measured as the average throughput of instructions retired per

cycle (IPC) on that benchmark’s core. Workload performance is measured according to the average

speedup of each benchmark’s performance when executed with some static or dynamic hardware

prefetcher controler (conf), compared to the performance of each benchmark when executed with

the static baseline with all prefetchers enabled on all cores (base):

Speedup =
1

4

∑

i

IPC conf
i

IPC base
i

. (5.2)

5.4.2 Dynamic Hardware Prefetcher Control

Controllers for dynamic hardware prefetching can be constructed using training data derived from

random profiling [62]. During workload execution, a controller, at regular (1s) intervals, chooses a

random, system-wide prefetcher configuration. The workload behavior and resulting performance

corresponding to each random selection are recorded for the entirety of the workload’s execution. For

our purposes, we only consider the effects of each prefetcher in isolation. During random profiling, the

hardware prefetcher of interest is enabled or disabled at random on each core, which the remaining

hardware prefetchers remain enabled and unchanging on all cores.

Workload behavior consists of a set of PMU measurements for a specified set of performance events,

utilizing multiplexed measurement if necessary. The event count data for each interval is normalized

to the cycle count of that interval. Performance is measured as the throughput (IPC) of each core

during that interval.

The Offset translation converts random profiling data into weighted classification data which is

amenable to a wide range of instance-weighted classifiers. This translation consists of three main

components:

1. Phase Extraction: Program behavior will often follow patterns, or phases, of repeating behav-

iors. A phase change occurs when the program undergoes a noticeable and sudden change in

program behavior. Change-point analysis can be used to identify phase changes by detect-

81



CHAPTER 5. PERFORMANCE EVENT SELECTION

ing points in which the statistical properties of a program’s performance (IPC) have shifted.

Phase changes for each program (i.e., on each core) are identified independently using the

Pruned Exact Linear Time (PELT) [78]. The resulting phases are used to establish a baseline

performance metric for each prefetcher configuration.

2. Reward Calculation: The reward for each core’s prefetcher configuration, either enabling or

disabling the configuration of interest, as the estimated speedup that configuration has system-

wide compared to the average performance of acting randomly. To estimate system-wide

speedup, we average the effect that each core’s configuration has locally (on the same core)

and remotely (on each other core), while controlling for the prefetcher usage on the remote

cores.

3. Binary-Offset: The resulting data, consisting of workload measurements, random prefetcher

selections, and the calculated reward are further transformed according to the Binary-Offset

algorithm [21]. This translates the context-action-reward tuples in to a set of weighted classi-

fication data that describes the (normalized) workload behavior, the predicted, ideal configu-

ration, and the weight of that prediction.

As each core addresses the same underlying decision process, the resulting data for each core is

combined into a single dataset of that workload.

Models for prefetcher control are constructed according to the Binary-Offset transformed data using

instance-weighted supervised learning. For each prefetcher, a set of ten training workloads are chosen

uniformly based on the speedup of the static policy in which the prefetcher of interest is disabled

across all cores. This ensures that the training is illustrative of a wide extent of performance

variation. The ten training workloads are aggreated to form the training dataset.

In addition to the set of events measurements, we additionally incorporate higher-order features.

This includes aggregate measures of each event system-wide, ensuring that each per-core controller

can respond to system-wide resource usage, and binary interaction terms between the event and

aggregate event features to measure non-linear relationships. For a total of k performance events

selected, there are 2k2 + k features. We utilize an instance-weighted variant of the SLA binary

82



CHAPTER 5. PERFORMANCE EVENT SELECTION

Random Profiling

Offset Transformation

MDLPC Partitioning

Correlation

MeritS Optimization

CFS

Model Construction

Evaluation

Figure 5.1: Overview of the CFS performance event selection, Binary-Offset model construction,
and Binary-Offset model evaluation workflows for hardware memory prefetcher utilization.

classifier [99] to learn a linear model for hardware prefetcher control.

5.4.3 Event Selection

As a baseline, we use the domain-expert event selection of Liao et al. [88], Hiebel et al. [62], de-

tailed in Table 4.1. The expert features are translated for Sandy Bridge and Kaby Lake using

close analogs which are consistent across both microarchitectures. The events correspond primarily

to cache (L1D, L2_LINES_IN, L3_LAT_CACHE) and memory behavior. This includes blocked loads

(LD_BLOCKS), translation-lookaside buffer behavior (DTLB_LOAD_MISSES), and memory bandwidth

(OFFCORE_REQUESTS). The set of eleven events is then reduced to eight events on each microarchi-

tecture due to availability of L1D and LD_BLOCKS events. As both execution environments have eight

performance counters, the resulting event selections require no multiplexing.

Figure 5.1 summarizes the workflow for performance event selection. On each system, random

profiling is performed with the full set of (pruned) events, using multiplex sampling in order to

estimate performance counts for the full set during each interval. Training data is created from

the random profiling using the Offset transformation described in Section 5.4.2. The CFS event

selection has three main components:

1. MDLPC Partitioning. In order to ensure a consistent comparison between the ordinal per-

83



CHAPTER 5. PERFORMANCE EVENT SELECTION

formance event features and the nominal class descriptions (prefetcher enabled, disabled), we

utilize the MDLPC partitioning algorithm to map each feature to a set of discrete values [48].

MDLPC recursively chooses the binary partition of the feature values which minimizes the

information entropy induced by the partition. Partitioning continues while the information

gain of the selected partition exceeds a condition based on the Minimum Description Length

(MDL). The MDL criterion appeals to the regularity of the partitioned data: if the partition

produces sub-sequences which are in total more regular than the original data, then that data

can be described more compactly using the partition.

2. Correlation. After partitioning, the feature-class correlations (rfc) and feature-feature correla-

tions (rff ) may be treated uniformly between nominal values. Symmetrical Uncertainty (SU),

is a normalized, symmetric measure of mutual information,

SU(r1, r2) = 2

(

1−
Ent(r1, r2)

Ent(r1) + Ent(r2)

)

, (5.3)

where Ent is entropy.

3. MeritS Optimization. We use the union of the forward and backward greedy searches as the

events selected, “CFS Features”. In order to provide a fair comparison to the domain-expert

selection, we additionally consider a subset of eight events from the CFS selected features. We

select this subset, “CFS Features (8)”, using an enumerative search considering just the CFS

features.

After selecting a subset of events, we repeat the process of random profiling and Offset transfor-

mation on only those events. A control model is now generated using SLA on the new training data

set specific to the event selection. While the model could be trained on the initial set of trained

data, using only the data for the selected features, we perform the additional profiling pass to ensure

that the error of multiplex sampling is minimized.

84



CHAPTER 5. PERFORMANCE EVENT SELECTION

Table 5.1: CFS Events for Sandy Bridge DPL Prefetcher

Mnemonic
BR_INST_EXEC:ALL_CONDITIONAL
BR_INST_EXEC:TAKEN_DIRECT_JUMP
BR_INST_RETIRED:CONDITIONAL
DTLB_STORE_MISSES:MISS_CAUSES_A_WALK
FP_ASSIST:SIMD_INPUT
ILD_STALL:IQ_FULL
ITLB_MISSES:MISS_CAUSES_A_WALK
L2_LINES_IN:E
L2_LINES_OUT:DIRTY_ANY
L2_RQSTS:ALL_DEMAND_RD_HIT
L2_STORE_LOCK_RQSTS:HIT_M
L2_TRANS:L2_WB
LD_BLOCKS:DATA_UNKNOWN
LD_BLOCKS:STORE_FORWARD
LSD:UOPS
MEM_LOAD_UOPS_RETIRED:L2_HIT
MISALIGN_MEM_REF:LOADS
OFFCORE_REQUESTS_OUTSTANDING:DEMAND_DATA_RD_GE_6
RESOURCE_STALLS:LD_SB
RESOURCE_STALLS:SB
UOPS_DISPATCHED_PORT:PORT_1
UOPS_DISPATCHED_PORT:PORT_5

5.5 Results

Following the analysis of [62], we restrict our focus to the DPL and DCU IP prefetchers. Sensitivity

to these prefetchers is more substantial amongst the selected workloads compared to the ACL and

DCU prefetchers.

5.5.1 DPL Prefetcher

The events selected by CFS for the DPL prefetcher on Sandy Bridge and Kaby Lake are given

alphabetically in Tables 5.1 and 5.2. The eight event subsets are denoted in bold. Each feature

selection is a combination of both the forward and backward greedy searches. However, we observe

that there is substantial overlap between the two searches. On Sandy Bridge, with 22 total events

in the union, the forward search produces 17 events and the backward search produces 21 events.

85



CHAPTER 5. PERFORMANCE EVENT SELECTION

Table 5.2: CFS Events for Kaby Lake DPL Prefetcher

Mnemonic
CYCLE_ACTIVITY:STALLS_L3_MISS
DTLB_LOAD_MISSES:WALK_COMPLETED_4K
DTLB_STORE_MISSES:MISS_CAUSES_A_WALK
DTLB_STORE_MISSES:WALK_COMPLETED_4K
L2_RQSTS:ALL_DEMAND_MISS
LD_BLOCKS_PARTIAL:ADDRESS_ALIAS
LD_BLOCKS:NO_SR
LD_BLOCKS:STORE_FORWARD
LONGEST_LAT_CACHE:MISS
MEM_LOAD_L3_HIT_RETIRED:XSNP_HIT
MEM_LOAD_L3_HIT_RETIRED:XSNP_MISS
MOVE_ELIMINATION:SIMD_NOT_ELIMINATED
OFFCORE_REQUESTS_OUTSTANDING:DEMAND_DATA_RD_GE_6
OFFCORE_REQUESTS_OUTSTANDING:DEMAND_RFO_CYCLES
RESOURCE_STALLS:RS
TLB_FLUSH:DTLB_THREAD
UOPS_DISPATCHED:PORT_7
UOPS_ISSUED:FLAGS_MERGE

On Kaby Lake, with 18 total events in the union, both the forward and backward searches produce

17 events.

Selected Events

The CFS selected events can be categorized according to the affected hardware components: the

in-order front end, out-of-order execution engine, cache, translation look-aside buffer TLB, and

memory bus. Understanding the relevance of the selected events requires extensive investigation of

the sparsely available literature regarding the specifics of each microarchitecture’s implementation

and the details of each event’s description.

Front End. This class of events describes the behavior of several front end hardware components.

This includes the Loop Stream Detector (LSD), the Instruction Length Decoder and Instruction

Queue (ILD_STALL:IQ_FULL), and the Instruction Translation-Lookaside Buffer (ITLB_MISSES).

Each event may be indicative of low-level patterns in execution which stress the instruction decode

pipeline. Branch behavior (BR_INST_EXEC, BR_INST_RETIRED) is similarly indicative of execution

86



CHAPTER 5. PERFORMANCE EVENT SELECTION

1.049
1.056

1.044

1.012
1.006

1.020
1.010

0.915

0.90

0.95

1.00

1.05

SB KL

A
ve

ra
g

e
 S

p
e

e
d

u
p

DPL Disabled

Expert Features

CFS Features

CFS Features (8)

Figure 5.2: Comparison of (geometric) mean policy performance on both the Sandy Bridge and
Kaby Lake for the DPL prefetcher.

patterns wherein hardware prefetcher utilization may or may not be constructive. Events such as

UOPS_ISSUED:FLAGS_MERGE, MOVE_ELIMINATION, and FP_ASSIST indicate pathological cases which

can incur a notable performance penalty.

Execution Engine. Specific µop execution ports are emphasized in the event selections for both

systems (UOPS_DISPATCHED, UOPS_DISPATCHED_PORT). On Sandy Bridge, ports 1 and 5 are respon-

sible for a broad range of instructions, most notably for load effective address (LEA) instructions

and branch instructions on Port 5. On Kaby Lake, port 7 is responsible solely for store address

commands [67].

Various resources in the execution engine can cause load instructions to become blocked. LD_BLOCKS

events measure loads which are blocked due to interactions with the store buffer (STORE_FORWARD,

DATA_UNKNOWN) or a lack of available resources to handle a “split” load which crosses a cache line

boundary (NO_SR). The performance penalty of split loads is also measured by MISALIGN_MEM_REF.

Related RESOURCE_STALLS events measure stalls due to a lack of available load and store buffer

resources (LD_SB, SB), and more generally due to a lack of available reservation station entries (RS).

Cache. A broad set of L2 and L3 cache-related events are selected by CFS on both systems,

including L2 cache lines filled and evicted (L2_LINES_IN, L2_LINES_OUT), L2 cache access requests

87



CHAPTER 5. PERFORMANCE EVENT SELECTION

(L2_RQSTS, L2_STORE_LOCK_RQSTS, L2_TRANS), and L3 cache misses (CYCLE_ACTIVITY:STALLS_L3_

MISS, LONGEST_LAT_CACHE:MISS). On Sandy Bridge, some L2 cache events in the selection are

specific to cache coherency and the MESI state of the cached data being accessed: L2_LINES_IN:E

counts the number of lines allocated in the L2 cache in the exclusive (E) state, and L2_STORE_LOCK_

RQSTS:HIT_M counts the number of demand store (read-for-ownership, RFO) requests which hit in

the L2 cache and the corresponding cache line was in the modified (M) state.

In addition to measuring L2 and L3 cache behavior directly, the selected events also count the the

retirement of load instructions which based on whether or not that load hit in the respective cache

(MEM_LOAD_UOPS_RETIRED, MEM_LOAD_L3_HIT_RETIRED). The later class of events correspond to

cross-core snoop requests (XSNP), which are necessary to maintain cache coherency in multi-core

systems. Under a hit in the shared last level cache, the cross-core snoop verifies whether the cache

line is present (XSNP_HIT) or absent (XSNP_MISS) in the private caches of the other cores.

The relationship between the DPL prefetcher and both L2 and L3 cache is complicated by more

recent advancements to the adaptive cache fill policy. Under certain conditions, the prefetcher may

forgo populating the prefetched cache line in the L2 cache, and will instead only populate the cache

line in the L3 cache. Forgoing data population in the L2 cache when that cache is stressed may help

avoid useful cache lines from being prematurely evicted.

Data Translation Look-Aside Buffer (DTLB). High incidents of miss events in the data DTLB, e.g.

DTLB_STORE_MISSES and DTLB_LOAD_MISSES, may suggest that the working set of a program is large

or unpredictable and thus may suggest that stream prefetching is contraindicated. In addition, the

DPL prefetcher restricts each of the 32 available in-flight streams to 4K page boundaries [67]. High

incidents of DTLB misses would also suggest that prefetcher effectiveness is limited by this technical

constraint, even in the presence of predictable stream accesses. The selected events measure when

a miss in the DTLB causes a walk (MISS_CAUSES_A_WALK) and when a walk is completed for a 4K

page (WALK_COMPLETED_4K). Under some circumstances, entries of the DTLB may become invalid

and require flushing to prevent incorrect address translation. On single-threaded benchmarks, high

incidents of TLB_FLUSH:DTLB_THREAD result from far calls which transfer to privileged code, as

indicated by the high correlation with the BR_INST_RETIRED:FAR_BRANCH event.

88



CHAPTER 5. PERFORMANCE EVENT SELECTION

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

0.9

1.0

1.1

1.2

Workload

S
p

e
e

d
u

p

(a) Sandy Bridge

●

●

●●

●
●

●

●
●

● ●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

0.8

0.9

1.0

1.1

1.2

Workload

S
p

e
e

d
u

p

(b) Kaby Lake
● DPL Disabled Binary−Offset (Ind) Binary−Offset (5) Binary−Offset (10)

Figure 5.3: Workload performance for DPL prefetcher related policies on Sandy Bridge and Kaby
Lake experimental environments, relative to the baseline.

Memory Bandwidth. When memory bandwidth usage is saturated, the addition of stream prefetching

requests from the DPL prefetcher may be contraindicated. In the absence of events which directly

measure memory bandwidth usage, off-core memory requests events (OFFCORE_REQUESTS, OFFCORE_

REQUESTS_OUTSTANDING) can be used as a surrogate measure. The CFS selected events include

DEMAND_DATA_RD_GE_6, which measures the number of cycles in which at least 6 outstanding demand

data read transactions are in-flight (potentially indicating that the memory bandwidth is saturated)

and DEMAND_RFO_CYCLES, which measures stores which have missed in the inclusive L3 cache and

require cross-core invalidation (potentially indicating contention for the last-level cache). The DPL

prefetcher will additionally monitor off-core traffic and will throttle the rate of streaming prefetch

requests to avoid additional bandwidth usage and prevent additional bandwidth contention [67].

Model Performance

Figure 5.2 details the average workload speedup (Equation 5.2) of DPL prefetcher controllers com-

pared to the static baseline (all prefetchers enabled). On average, CFS event selection outperforms

89



CHAPTER 5. PERFORMANCE EVENT SELECTION

Table 5.3: CFS Events for Sandy Bridge DCU IP Prefetcher

Mnemonic
ARITH:FPU_DIV_ACTIVE
BR_INST_EXEC:TAKEN_COND
BR_INST_RETIRED:ALL_BRANCHES
BR_INST_RETIRED:CONDITIONAL
BR_MISP_EXEC:NONTAKEN_COND
BR_MISP_EXEC:TAKEN_COND
DTLB_LOAD_MISSES:WALK_DURATION
FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE
IDQ_UOPS_NOT_DELIVERED:CYCLES_LE_3_UOP_DELIV_CORE
ITLB_MISSES:WALK_DURATION
L2_L1D_WB_RQSTS:HIT_M
L2_LINES_IN:ANY
L2_LINES_OUT:DEMAND_DIRTY
L2_RQSTS:RFO_ANY
L2_TRANS:ALL
LD_BLOCKS_PARTIAL:ALL_STA_BLOCK
LD_BLOCKS:DATA_UNKNOWN
MEM_LOAD_UOPS_LLC_HIT_RETIRED:XSNP_HIT
OFFCORE_REQUESTS_OUTSTANDING:DEMAND_RFO

domain-expert event selection on both Sandy Bridge (1.2%) and Kaby Lake (1.0%) and the per-

formance of the eight-event CFS selection is comparable to the performance of the eight-event

domain-expert selection on both systems. This performance can be achieved with no knowledge of

the underlying microarchitectural design, PMU details, or system specifications.

Individual workload performances for DPL prefetcher controllers, constructed from the domain-

expert event selection and both CFS event selections, are given in Figures 5.3a and 5.3b. On both

systems, there is ample opportunity for improvement compared to the static prefetcher controllers.

In many cases, dynamic DPL control performance matches or exceeds both the static baseline

controller (all prefetchers enabled on all cores) and the static DPL Disabled controller (DPL disabled

on all cores). Further, for a majority of workloads, the three dynamic controllers result in similar

performance (median difference in speedup less than 2.4% on Sandy Bridge and less than 2.0% on

Kaby Lake).

90



CHAPTER 5. PERFORMANCE EVENT SELECTION

Table 5.4: CFS Events for Kaby Lake DCU IP Prefetcher

Mnemonic
ARITH:FPU_DIV_ACTIVE
BR_INST_RETIRED:CONDITIONAL
DTLB_LOAD_MISSES:WALK_COMPLETED
DTLB_LOAD_MISSES:WALK_COMPLETED_1G
EXE_ACTIVITY:2_PORTS_UTIL
IDQ:MITE_UOPS_CYCLES
L2_LINES_IN:ALL
L2_LINES_OUT:USELESS_HWPF
L2_RQSTS:ALL_RFO
OFFCORE_REQUESTS_OUTSTANDING:L3_MISS_DEMAND_DATA_RD
RESOURCE_STALLS:RS
SW_PREFETCH_ACCESS:T0

5.5.2 DCU IP Prefetcher

The events selected by CFS for the DCU IP prefetcher on Sandy Bridge and Kaby Lake are given

alphabetically in Tables 5.3 and 5.4. The eight event subsets are again denoted in bold. Similarly to

the DPL Prefetcher, there is some overlap in the forward and backward searches. On Sandy Bridge,

with 19 total events in the union, the forward and backward searches both produce 18 events. On

Kaby Lake, with 12 total events in the union, the forward search produces 4 events and the backward

search produces 11 events.

Selected Events

Many of the events which were present in the DPL event selections are also present in the DCU IP

event selections. The events unique to the DCU IP selections are more closely related to front end

and execution engine behavior. Notably, there is an increase in branch instruction (BR_INST_EXEC,

BR_INST_RETIRED) and branch misprediction (BR_MISP_EXEC) events. Software prefetching, as indi-

cated by the (SW_PREFETCH_ACCESS) event can have both a synergistic and antagonistic effect when

used together with hardware prefetching [87]. Specific, non-memory related instruction behavior

is also identified. This includes cycles in which the divider (integer and floating-point) are active

(ARITH:FPU_DIV_ACTIVE) and SSE double precision scalar operations (FP_COMP_OPS_EXE), which

91



CHAPTER 5. PERFORMANCE EVENT SELECTION

1.017

1.027

1.014

1.009

1.003

1.012

1.006

1.001

0.99

1.00

1.01

1.02

1.03

SB KL

A
ve

ra
g

e
 S

p
e

e
d

u
p

DCU IP Disabled

Expert Features

CFS Features

CFS Features (8)

Figure 5.4: Comparison of (geometric) mean policy performance on both the Sandy Bridge and
Kaby Lake for the DCU IP prefetcher.

are generally associated with higher cycle latency.

Despite their availability, performance events for measuring L1 data cache behavior are not common

in the event selections for this (L1 stride) DCU IP prefetcher. On Kaby Lake, we also see L2

prefetching behavior described by the event selection (L2_LINES_OUT:USELESS_HWPF). This is likely

due to the interaction of the DCU IP prefetcher with the other three prefetchers. To test this

hypothesis, we disabled the three other prefetchers and performed CFS event selection on the DCU

IP prefetcher. The result is a increase in the number of L1 cache related events on Sandy Bridge,

including L1 data cache behavior (L1D), loads blocked due to L1 data cache operation (L1D_BLOCKS),

and multiple events describing the behavior of write-backs from the L1 data cache to the L2 cache

(L2_L1D_WB_RQSTS).

Model Performance

Figure 5.4 details the average workload speedup (Equation 5.2) of DCU IP prefetcher controllers

compared to the static baseline (all prefetchers enabled). On average, CFS event selection outper-

forms domain-expert event selection on both Sandy Bridge (1.3%) and Kaby Lake (0.6%) and the

performance of the eight-event CFS selection is comparable to the performance of the eight-event

92



CHAPTER 5. PERFORMANCE EVENT SELECTION

● ● ●
●

●

●

● ●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●●
●

●
●

●
●

●

●

●

●

●
●

● ●
●

●
● ●

●

●

● ●
●

●●
●

0.9

1.0

1.1

Workload

S
p

e
e

d
u

p

(a) Sandy Bridge

●

● ●

●

●

●

● ●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
● ●

● ●

●

●

●

●
●

●

● ●

●
● ●

●

●

●

● ●

●

●

●

●

0.96

1.00

1.04

Workload

S
p

e
e

d
u

p

(b) Kaby Lake
● DCU IP Disabled Expert Features CFS Features CFS Features (8)

Figure 5.5: Workload performance for DCU IP prefetcher related policies on Sandy Bridge and Kaby
Lake experimental environments, relative to the baseline.

domain-expert selection on both systems.

Individual workload performances for DCU IP prefetcher controllers, constructed from the domain-

expert event selection and both CFS event selections, are given in Figures 5.5a and 5.5b. There is

less opportunity on average for performance gain from dynamic prefetcher control compared to the

DPL prefetcher. Regardless, dynamic DCU IP control using the domain-expert selection and full

CFS selection matches or beats the performance of both the static baseline controller (all prefetchers

enabled on all cores) and the static DCU IP Disabled controller (DCU IP disabled on all cores). On

Kaby Lake, the controller using the eight-event CFS selection will disable the DCU IP prefetcher in

almost all instances, roughly matching the performance of the DPL Disabled controller.

5.6 Related Work

Hardware prefetcher control methods utilize a number of techniques for identifying relevant perfor-

mance events to measure. Liao et al. [88] and Ebrahimi et al. [45] select subsets of performance

93



CHAPTER 5. PERFORMANCE EVENT SELECTION

events by hand, choosing events according to domain knowledge, e.g., the events given in Table 4.1.

Especially for multi-core systems, where there may be complex interactions between hardware com-

ponents in response to contention for shared resources, selecting meaningful events with direct,

observable connections to the performance metric can be challenging.

In contrast, Rahman et al. [105] select performance events utilizing a distinctness heuristic to deter-

mine events whose average counts differ substantially across a set of training workloads. However,

this method targets selecting static prefetcher configurations which are suitable for whole-workload

execution and may not express informative differences for fine-grained, dynamic prefetcher control.

Other methods eschew performance event monitoring, and instead directly evaluate the target per-

formance measure for each prefetcher configuration. For example, Jiménez et al. [70] directly measure

the performance of several prefetcher configurations at periodic intervals to determine which con-

figuration is advantageous to exploit for the current workload. As this method is enumerative in

nature, the sampling cost grows with the number of prefetcher configurations of interest.

Correlation-Based Feature Selection has also been used for workload characterization. Yoo et al.

[146] use CFS to identify performance events which are relevant to pathological performance cases,

e.g., inefficient array, list, and data structure accesses which incur significant cache misses or branch

mispredictions. Carefully designed micro-benchmarks were hand-labeled according to the patho-

logical cases which they represent. Consequently, their approach has relatively clean performance

data.

5.7 Discussion and Conclusion

In this work, we evaluate feature selection as a means for selecting relevant performance events

for hardware memory prefetching control. While our focus was on Correlation-Based Feature Se-

lection, alternative feature selection algorithms may also be applicable. For unstructured features,

there are three classes of feature selection algorithms: filters, wrappers, and embedded methods.

Filters operate directly on the data, independent of the resulting predictor or model that will be

94



CHAPTER 5. PERFORMANCE EVENT SELECTION

learned using the chosen features. Many additional filters could be considered including statisti-

cal, information-theoretic, Markov Blanket based methods. In contrast, wrappers evaluate feature

selections according to the performance of the model generated using those features. As the cost

of model evaluation is significant, wrappers are disadvantageous for dynamic hardware prefetcher

control. Embedded methods combine feature selection and model construction into a single process,

often specific to an algorithm or a class of algorithms. Due to the noise inherent to multiplex-

ing and the Offset transformation, finding an embedded method that is noise tolerant would be

challenging.

We limit our consideration to binary decisions where a specific hardware prefetcher is either enabled

or disabled on a specific core. Events selected by CFS are sensitive both to this decision, as well

as many other factors including the the memory characteristics of the system and the configuration

of the remaining hardware prefetchers. For example, when the DPL, ACL, and DCU prefetchers

are enabled, the cache events selected for the L1 DCU IP primarily feature L2 behavior, including

cache behavior related to useless prefetching. When those prefetchers are disabled however, L1

cache behavior is more prominently described. Simultaneous control of all four prefetchers will

require event selections which effectively describe interactions between hardware prefetchers and the

resulting effects on performance.

In order to generate the dataset on which feature selection is performed, we rely on multiplex sam-

pling for the full set of performance events identified by libpfm4 (≈ 235 on both Sandy Bridge

and Kaby Lake). However, several Intel microarchitectures feature more than a thousand avail-

able events [149]. As the number of events of interest grow, the overhead and sampling noise of

multiplexing will continue to increase.

Compared to domain-expert selected features, CFS performance event selection is competitive for

building effective dynamic hardware prefetching controllers on multi-core systems. On a memory-

limited system, we observe a performance improvement of 5.6% compared to the static baseline, and

1.2% compared to a model using domain-expert events, when controlling the DPL prefetcher with

CFS selected events. For the DCU IP prefetcher, we observe a performance improvement of 2.7%

compared to the static baseline, and 1.3% compared to a model using domain-expert events. Models

95



CHAPTER 5. PERFORMANCE EVENT SELECTION

constructed using a restricted set of (eight) CFS selected events have a performance comparable

to the domain-expert events. In addition to providing comparable performance when trained and

evaluated on prefetcher-sensitive workloads, automatic feature selection mitigates the cost of manual

analysis required to identify relevant events by hand on each potential microarchitecture of interest.

With the addition of feature selection, dynamic hardware prefetcher control can be learned efficiently

with less need for domain expertise while providing comparable or better performance.

96



Chapter 6

Conclusion

This dissertation presents a general framework to modeling runtime control for system configuration

and resource allocation problems which are informed by measurable statistics of microarchitecture

and workload behavior, such as measurements obtained from the Performance Monitoring Unit

(PMU). This work describes the mapping of two motivating applications, paging mode selection

and hardware memory prefetcher utilization, to the off-policy contextual bandit, and generates

effective runtime control models using random profiling data and Binary-Offset [21]. Finally, a

correlation-based feature selection method is evaluated for selecting performance events from the

logged random profiling data which are relevant to the the runtime control of hardware memory

prefetcher utilization. The selected performance events are examined in detail and provided potential

justification by appealing to available documentation.

The models resulting from the presented framework and mapping are competitive in comparison

to existing approaches. For paging mode selection, the resulting model provides equivalent perfor-

mance to the state-of-the-art ASP-SVM [80] method while substantially reducing the computational

requirements of profiling to obtain training data, from over 24 hours in the case of ASP-SVM to

less than 3 hours. For hardware memory prefetcher utilization, the resulting models are the first

to provide dynamic control for hardware memory prefetchers using workload statistics. Existing

runtime prefetcher control methods either determined the prefetcher configuration statically, at the

beginning of execution, or dynamically, by periodically enumerating the set of configurations and

measuring the resulting performance directly.

97



CHAPTER 6. CONCLUSION

6.1 Contributions

1. An off-policy contextual bandit model for dynamic runtime control using random profiling

data. The model describes a sequence of translations on the random profiling data, including

PELT [78] (for phase identification) and Binary-Offset [21], which reduces the problem of

dynamic runtime control to weighted classification.

2. An evaluation of two motivating examples of scaffolded difficulty: paging mode selection and

hardware memory prefetcher utilization.

3. A performance event selection method, based on Correlation-Based Feature Selection [59],

for identifying relevant performance events from random profiling data. Events are identified

for hardware memory prefetcher utilization, and are analyzed and justified in the context of

available microarchitecture documentation.

6.2 Future Work

There are a number of potential extensions to the contextual bandit framework, motivated by existing

techniques in bandit literature, to describe system control with greater fidelity.

The focus of this work was model construction, however, models still required deployment and

evaluation in-situ to measure model performance and effectiveness. In comparison, the cost of

model evaluation now far outweighs the cost of profiling and model construction. Model evaluation

can additionally be addressed from logged data using off-policy contextual bandit methods [86, 44].

When considering hardware memory prefetchers, each prefetcher on each core was modeled as an

independent contextual bandit, with a binary action space, and these bandits operated concurrently

with no explicit communication. Instead, the bandits communicated implicitly by observing the

system-wide performance behavior of the current workload. Expanding the bandit framework to

include methods which are amenable to a larger space of actions, including the Offset-Tree [21]

generalization of Binary-Offset, would allow for multiple independent configurable elements, such

98



CHAPTER 6. CONCLUSION

as multiple prefetchers on each core, to be controlled simultaneously while modeling the combined

effect those configurations have on performance as a whole.

Switching between Hardware-Assisted Paging and Shadow Paging incurs a small, yet non-negligible

cost as the paging table is reconstructed for the new mode. In the case where a program was

transitioning from one phase of execution to another, the cost of this switch would is outweighed

by the benefits of switching. However, some program phases exhibit behavior that occurs near

the boundary of the learned paging mode selection classifier. During these phases, the system will

continue to switch between the two paging modes in reflex to minor, inconsequential changes in

performance characteristics. The margin behavior results in a significant accumulation in switching

cost penalty without any improvement in performance. Switching cost was modeled by the introduc-

tion of a margin around the classifier. Measurements which fell within this margin would not trigger

a switch from the current paging mode. The margin size was practitioner-designed, and selected

according to manual data analysis. Ideally, the cost of switching would be directly modeled into the

bandit formation, taking inspiration from (non-contextual) multi-armed bandits which include such

costs [8, 20, 26].

99





Bibliography

[1] Keith Adams and Ole Agesen. A comparison of software and hardware techniques for x86

virtualization. In Proceedings of the 12th International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS ’06, pages 2–13, 2006.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. R.

Tallent. HPCTOOLKIT: Tools for performance analysis of optimized parallel programs. Con-

currancy and Computation: Practice and Experiences, 22(6):685–701, April 2010.

[3] Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear

payoffs. In Proceedings of the 30th International Conference on International Conference on

Machine Learning, ICML ’13, pages 1220–1228, 2013.

[4] Shipra Agrawal and Navin Goyal. Further optimal regret bounds for thompson sampling. In

Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics,

AISTATS ’13, pages 99–107, 2013.

[5] Hirotugu Akaike. A new look at the statistical model identification. IEEE Transactions on

Automatic Control, 19(6):716–723, 1974.

[6] AMD. AMD64 Architecture Programmer’s Manual: Volume 2, July 2019.

[7] Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind, and Peter F. Sweeney. A

survey of adaptive optimization in virtual machines. Proceedings of the IEEE, 93(2):449–466,

2005.

[8] Manjari Asawa and Demonsthenis Teneketzis. Multi-armed bandits with switching penalties.

IEEE Transactions on Automatic Control, 41(3):328–348, March 1996.

101



BIBLIOGRAPHY

[9] Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in multi-armed bandits.

In Proceedings of the 23rd Annual Conference on Learning Theory, COLT ’10, pages 41–53,

2010.

[10] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Ma-

chine Learning Research, 3:397–422, March 2003.

[11] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed

bandit problem. Machine Learning, 47:235–256, May 2002.

[12] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic

multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2003.

[13] Ivan E. Auger and Charles E. Lawrence. Algorithms for the optimal identification of segment

neighborhoods. Bulletin of Mathematical Biology, 51(1):39–54, January 1989.

[14] Reza Azimi, Michael Stumm, and Robert W. Wisniewski. Online performance analysis by

statistical sampling of microprocessor performance counters. In Proceedings of the 19th Annual

International Conference on Supercomputing, ICS ’05, pages 101–110, 2005.

[15] Chang S. Bae, John R. Lange, and Peter A. Dinda. Enhancing virtualized application per-

formance through dynamic adaptive paging mode selection. In Proceedings of the 8th ACM

International Conference on Autonomic Computing, ICAC ’11, pages 255–264, 2011.

[16] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-

bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. SIGOPS Operating

Systems Review, 37(5):164–177, 2003.

[17] Shai Ben-David, Nadav Eiron, and Philip M. Long. On the difficulty of approximately maxi-

mizing agreements. Journal of Computer and System Sciences, 66(3):496 – 514, 2003.

[18] James Bergstra, Nicolas Pinto, and David Cox. Machine learning for predictive auto-tuning

with boosted regression trees. In 2012 Innovative Parallel Computing, InPar ’12, pages 1–9,

2012.

102



BIBLIOGRAPHY

[19] Ramon Bertran, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and Eduard Ayguade. De-

composable and responsive power models for multicore processors using performance counters.

In Proceedings of the 24th ACM International Conference on Supercomputing, ICS ’10, pages

147–158, 2010.

[20] Dimitris Bertsimas and José Niño-Mora. Restless bandits, linear programming relaxations,

and a primal-dual index heuristic. Operations Research, 48(1):80–90, 2000.

[21] Alina Beygelzimer and John Langford. The offset tree for learning with partial labels. In

Proceedings of 15th International Conference on Knowledge Discovery and Data Mining, KDD

’09, pages 129–38, 2009.

[22] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual

bandit algorithms with supervised learning guarantees. In Proceedings of the Fourteenth In-

ternational Conference on Artificial Intelligence and Statistics, AISTATS ’09, pages 19–26,

2011.

[23] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. Accelerating

two-dimensional page walks for virtualized systems. In Proceedings of the 13th International

Conference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’08, pages 26–35, 2008.

[24] Nikhil Bhatia. Performance evaluation of Intel EPT hardware assist. Technical report,

VMWare, 2009.

[25] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,

January 2011.

[26] Monica Brezzi and Tze Leung Lai. Optimal learning and experimentation in bandit problems.

Journal of Economic Dynamics and Control, 27(1):87–108, 2002.

[27] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming interface for

performance evaluation on modern processors. The International Journal of High Performance

Computing Applications, 14(3):189–204, August 2000.

103



BIBLIOGRAPHY

[28] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic

multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122,

2012.

[29] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-armed bandits

problems. In Proceedings of the 20th International Conference on Algorithmic Learning Theory,

ALT ’09, pages 23–37, 2009.

[30] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in finitely-armed and

continuous-armed bandits. Theoretical Computer Science, 412(19):1832–1852, 2011.

[31] Martin Burtscher, Byoung-Do Kim, Jeff Diamond, John McCalpin, Lars Koesterke, and James

Browne. PerfExpert: An easy-to-use performance diagnosis tool for HPC applications. In Pro-

ceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’10, pages 1–11, 2010.

[32] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F. P. O’Boyle, and Olivier

Temam. Rapidly selecting good compiler optimizations using performance counters. In Inter-

national Symposium on Code Generation and Optimization, CGO ’07, pages 185–197, 2007.

[33] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge Uni-

versity Press, New York, NY, USA, 2006.

[34] Dehao Chen, Neil Vachharajani, Robert Hundt, Xinliang Li, Stephane Eranian, Wenguang

Chen, and Weimin Zheng. Taming hardware event samples for precise and versatile feedback

directed optimizations. IEEE Transactions on Computers, 62(2):376–389, 2013.

[35] Tien-Fu Chen and Jean-Loup Baer. Reducing memory latency via non-blocking and prefetch-

ing caches. In Proceedings of the Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS V, pages 51–61, 1992.

[36] Yong Chen, Huaiyu Zhu, and Xian-He Sun. An adaptive data prefetcher for high-performance

processors. In 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing, CCGRID ’10, pages 155–164, 2010.

104



BIBLIOGRAPHY

[37] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff

functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics, AISTATS ’11, pages 208–214, 2011.

[38] Gilberto Contreras and Margaret Martonosi. Power prediction for Intel XScale®processors

using performance monitoring unit events. In Proceedings of the 2005 International Symposium

on Low Power Electronics and Design, ISLPED ’05, pages 221–226, 2005.

[39] Fredrik Dahlgren, Michel Dubois, and Per Stenstrom. Fixed and adaptive sequential prefetch-

ing in shared memory multiprocessors. In Proceedings of the 1993 International Conference

on Parallel Processing, ICPP ’93, pages 56–63, 1993.

[40] Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and Fabian Monrose.

Sok: The challenges, pitfalls, and perils of using hardware performance counters for security.

In 40th IEEE Symposium on Security & Privacy, S&P ’19, 2019.

[41] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-aware scheduling for heteroge-

neous datacenters. In Proceedings of the Eighteenth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’13, pages 77–88, 2013.

[42] John Demme and Simha Sethumadhavan. Rapid identification of architectural bottlenecks

via precise event counting. In Proceedings of the 38th Annual International Symposium on

Computer Architecture, ISCA ’11, pages 353–364, 2011.

[43] Ashutosh S. Dhodapkar and James E. Smith. Managing multi-configuration hardware via

dynamic working set analysis. In Proceedings of the 29th Annual International Symposium on

Computer Architecture, ISCA ’02, pages 233–244, 2002.

[44] Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation and learning.

In Proceedings of the 28th International Conference on Machine Learning, ICML ’11, pages

1097–1104, 2011.

[45] Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt. Coordinated control of

multiple prefetchers in multi-core systems. In Proceedings of the 42nd Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO 42, pages 316–326, 2009.

105



BIBLIOGRAPHY

[46] Charles Elkan. Boosting and naive bayesian learning. Technical report, University of Califor-

nia, San Diego, 1997.

[47] Stéphane Eranian. Perfmon2: A flexible performance monitoring interface for linux. In Ottawa

Linux Symposium, OLS ’06, pages 269–288, 2006.

[48] Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of continuous-valued at-

tributes for classification learning. In Proceedings of the 13th International Joint Conference

on Artificial Intelligence, IJCAI ’93, pages 1022–1027, 1993.

[49] Alexandra Ferreón, Radhika Jagtap, Sascha Bischoff, and Roxana Ruşitoru. Crossing the

architectural barrier: Evaluating representative regions of parallel HPC applications. In 2017

IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS

’17, pages 109–120, 2017.

[50] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139,

1997.

[51] Benoît Frénay and Michel Verleysen. Classification in the presence of label noise: A survey.

IEEE Transactions on Neural Networks and Learning Systems, 25(5):845–869, 2014.

[52] Archana S. Ganapathi. Predicting and Optimizing System Utilization and Performance via

Statistical Machine Learning. PhD thesis, University of California, Berkely, December 2009.

[53] M. Gerndt and M. Ott. Automatic performance analysis with periscope. Concurrency and

Computation: Practice and Experience, 22(6):736–748, April 2010.

[54] Matthew Gillespie. Best practices for paravirtualization enhancements from Intel virtualization

technology: EPT and VT-d. Technical report, Intel, 2009.

[55] John C. Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal

Statistical Society, Series B, 41(2):148–177, 1979.

106



BIBLIOGRAPHY

[56] Mario Gutierrez, Saami Rahman, Dan Tamir, and Apan Qasem. Neural network methods for

fast and portable prediction of CPU power consumption. In Sixth International Green and

Sustainable Computing Conference, IGSC ’15, pages 1–4, 2015.

[57] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal

of Machine Learning Research, 3:1157–1182, March 2003.

[58] Brian Hall, Peter Bergner, Alon Shalev Housfater, Madhusudanan Kandasamy, Tulio Magno,

Alex Mericas, Steve Munroe, Mauricio Oliveira, Bill Schmidt, Will Schmidt, Bernard King

Smith, Julian Wang, Suresh Warrier, and David Wendt. Performance Optimization and Tuning

Techniques for IBM Power Systems Processors Including IBM POWER8. IBM Corporation,

March 2017.

[59] Mark A. Hall. Correlation-based feature selection for discrete and numeric class machine

learning. In Proceedings of the Seventeenth International Conference on Machine Learning,

ICML ’00, pages 359–366, 2000.

[60] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Computer Architecture

News, 34(4):1–17, September 2006.

[61] Jason Hiebel, Laura E. Brown, and Zhenlin Wang. Constructing dynamic policies for paging

mode selection. In Proceedings of the 47th International Conference on Parallel Processing,

ICPP ’18, pages 72:1–72:9, 2018.

[62] Jason Hiebel, Laura E. Brown, and Zhenlin Wang. Machine learning for fine-grained hardware

prefetcher control. In Proceedings of the 48th International Conference on Parallel Processing,

ICPP ’19, pages 3:1–3:9, 2019.

[63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of

the American Statistical Association, 58:13–30, 1963.

[64] Lajos Horváth. The maximum likelihood method for testing changes in the parameters of

normal observations. The Annals of Statistics, 21(2):671–680, 1993.

107



BIBLIOGRAPHY

[65] Carla Inclán and George C. Tiao. Use of cumulative sums of squares for retrospective detection

of changes of variance. Journal of the American Statistical Association, 89(427):913–923, 1994.

[66] Intel Corporation. Intel 64 and IA-32 Architectures Developer’s Manual: Volume 3B, Septem-

ber 2016.

[67] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual, April

2018.

[68] Canturk Isci and Margaret Martonosi. Runtime power monitoring in high-end processors:

Methodology and empirical data. In Proceedings of the 36th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 36, pages 93–104, 2003.

[69] Victor Jiménez, Alpher Buyuktosunoglu, Pradip Bose, Francis P. O’Connell, Francisco Ca-

zorla, and Mateo Valero. Increasing multicore system efficiency through intelligent band-

width shifting. In 21st International Symposium on High Performance Computer Architecture

(HPCA), pages 39–50, 2015.

[70] Víctor Jiménez, Roberto Gioiosa, Francisco J. Cazorla, Alper Buyuktosunoglu, Pradip Bose,

and Francis P. O’Connell. Making data prefetch smarter: Adaptive prefetching on POWER7.

In 21st International Conference on Parallel Architectures and Compilation Techniques

(PACT), pages 137–146, 2012.

[71] Doug Joseph and Dirk Grunwald. Prefetching using markov predictors. In Proceedings of the

24th Annual International Symposium on Computer Architecture, ISCA ’97, pages 252–263,

1997.

[72] Russ Joseph and Margaret Martonosi. Run-time power estimation in high performance mi-

croprocessors. In Proceedings of the 2001 International Symposium on Low Power Electronics

and Design, ISLPED ’01, pages 135–140, 2001.

[73] Norman P. Jouppi. Improving direct-mapped cache performance by the addition of a small

fully-associative cache and prefetch buffers. In Proceedings of the 17th Annual International

Symposium on Computer Architecture, ISCA ’90, pages 364–373, 1990.

108



BIBLIOGRAPHY

[74] Sham M. Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. Efficient bandit algorithms for

online multiclass prediction. In Proceedings of the 25th International Conference on Machine

Learning, ICML ’08, pages 440–447, 2008.

[75] Hui Kang and Jennifer L. Wong. To hardware prefetch or not to prefetch?: A virtualized envi-

ronment study and core binding approach. In Proceedings of the 18th International Conference

on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’13,

pages 357–368, 2013.

[76] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm

identification in multi-armed bandit models. Journal of Machine Learning Research, 17(1):

1–42, January 2016.

[77] Muneeb Khan, Andreas Sandberg, and Erik Hagersten. A case for resource efficient prefetching

in multicores. In 43rd International Conference on Parallel Processing, ICPP ’14, pages 101–

110, 2014.

[78] Rebecca Killick, Paul Fearnhead, and I.A. Eckley. Optimal detection of changepoints with

a linear computational cost. Journal of the American Statistical Association, 107:1590–1598,

2012.

[79] Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial Intelligence,

97(1):273–324, 1997.

[80] Wei Kuang, Laura E. Brown, and Zhenlin Wang. Selective switching mechanism in virtual

machines via support vector machines and transfer learning. Machine Learning, 101(1):137–

161, 2015.

[81] Wei Kuang, Laura E. Brown, and Zhenlin Wang. Modeling cross-architecture co-tenancy

performance interference, 2015.

[82] Rick Kufrin. Perfsuite: An accessible, open source performance analysis environment for linux,

2005.

109



BIBLIOGRAPHY

[83] Kanishka Lahiri and Subhash Kunnoth. Fast IPC estimation for performance projections

using proxy suites and decision trees. In 2017 IEEE International Symposium on Performance

Analysis of Systems and Software, ISPASS ’17, pages 77–86, 2017.

[84] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges, A. Gocke, S. Ja-

conette, M. Levenhagen, and R. Brightwell. Palacios and Kitten: New high performance

operating systems for scalable virtualized and native supercomputing. In 2010 IEEE Interna-

tional Symposium on Parallel Distributed Processing, IPDPS ’10, pages 1–12, 2010.

[85] John Langford and Tong Zhang. The epoch-greedy algorithm for contextual multi-armed

bandits. In Advances in Neural Information Processing Systems 20, NIPS, pages 817–824,

2007.

[86] John Langford, Alexander Strehl, and Jennifer Wortman. Exploration scavenging. In Pro-

ceedings of the 25th International Conference on Machine Learning, ICML ’08, pages 528–535,

2008.

[87] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. When prefetching works, when it doesn’t, and

why. ACM Transactions on Architecture and Code Optimization, 9(1), March 2012.

[88] Shih-wei Liao, Tzu-Han Hung, Donald Nguyen, Chinyen Chou, Chiaheng Tu, and Hucheng

Zhou. Machine learning-based prefetch optimization for data center applications. In Proceed-

ings of the Conference on High Performance Computing Networking, Storage and Analysis,

SC ’09, pages 1–10, 2009.

[89] Tyler Lu, David Pal, and Martin Pal. Contextual multi-armed bandits. In Proceedings of the

Thirteenth International Conference on Artificial Intelligence and Statistics, AISTATS ’10,

pages 485–492, 2010.

[90] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming. Springer US, 3

edition, 2017.

[91] Ami Marowka. On performance analysis of a multithreaded application parallelized by different

programming models using Intel VTune. In Parallel Computing Technologies, pages 317–331,

2011.

110



BIBLIOGRAPHY

[92] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa. Bubble-

Up: Increasing utilization in modern warehouse scale computers via sensible co-locations. In

Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO-44, pages 248–259, 2011.

[93] Collin McCurdy, Gabriel Marin, and Jeffrey S. Vetter. Characterizing the impact of prefetching

on scientific application performance. In High Performance Computing Systems. Performance

Modeling, Benchmarking and Simulation, pages 115–135, 2014.

[94] Sparsh Mittal. A survey of recent prefetching techniques for processor caches. ACM Computing

Surveys, 49(2):1–35, August 2016.

[95] Daniel Molka, Robert Schöne, Daniel Hackenberg, and Wolfgang E. Nagel. Detecting memory-

boundedness with hardware performance counters. In Proceedings of the 8th ACM/SPEC on

International Conference on Performance Engineering, ICPE ’17, pages 27–38, 2017.

[96] Tipp Moseley, Neil Vachharajani, and William Jalby. Hardware performance monitoring for

the rest of us: A position and survey. In Proceedings of the 8th IFIP International Conference

on Network and Parallel Computing, NPC ’11, pages 293–312, 2011.

[97] Hitoshi Nagasaka, Naoya Maruyama, Akira Nukada, Toshio Endo, and Satoshi Matsuoka.

Statistical power modeling of gpu kernels using performance counters. In International Con-

ference on Green Computing, pages 115–122, 2010.

[98] Priya Nagpurkar, Michael Hind, Chandra Krintz, Peter F. Sweeney, and V. T. Rajan. Online

phase detection algorithms. In International Symposium on Code Generation and Optimization

(CGO’06), CGO ’06, pages 121–123, 2006.

[99] Tan T. Nguyen and Scott Sanner. Algorithms for direct 0-1 loss optimization in binary clas-

sification. In Proceedings of the 30th International Conference on Machine Learning, ICML

’13, pages 1085–1093, 2013.

[100] Konstantinos Nikas, Nikela Papadopoulou, Dimitra Giantsidi, Vasileios Karakostas, Georgios

Goumas, and Nectarios Koziris. DICER: Diligent cache partitioning for efficient workload

111



BIBLIOGRAPHY

consolidation. In Proceedings of the 48th International Conference on Parallel Processing,

ICPP ’19, pages 15:1–15:10, 2019.

[101] Cristobal Ortega, Miquel Moreto, Marc Casas, Ramon Bertran, Alper Buyuktosunoglu,

Alexandre E. Eichenberger, and Pradip Bose. libPRISM: An intelligent adaptation of prefetch

and SMT levels. In Proceedings of the International Conference on Supercomputing, ICS ’17,

pages 28:1–28:10, 2017.

[102] ElMoustapha Ould-Ahmed-Vall, Kshitij A. Doshi, Charles Yount, and James Woodlee. Char-

acterization of SPEC CPU2006 and SPEC OMP2001: Regression models and their transfer-

ability. In Proceedings of the IEEE International Symposium on Performance Analysis of

Systems and Software, ISPASS ’08, pages 179–190, 2008.

[103] Subbarao Palacharla and R. E. Kessler. Evaluating stream buffers as a secondary cache replace-

ment. In Proceedings of the 21st Annual International Symposium on Computer Architecture,

ISCA ’94, pages 24–33, 1994.

[104] J. R. Quinlan. Bagging, boosting, and c4.s. In Proceedings of the Thirteenth National Con-

ference on Artificial Intelligence, AAAI ’96, pages 725–730, 1996.

[105] Saami Rahman, Martin Burtscher, Ziliang Zong, and Apan Qasem. Maximizing hardware

prefetch effectiveness with machine learning. In Proceedings of the 17th International Confer-

ence on High Performance Computing and Communications, pages 383–389, 2015.

[106] Luis Ramos, José Briz, Pablo Ibáñez, and Víctor Viñals-Yufera. Multi-level adaptive prefetch-

ing based on performance gradient tracking. Journal of Instruction-Level Parallelism, 13:1–14,

2011.

[107] Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the

American Mathematical Society, 58(5):527–535, August 1952.

[108] James M. Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression coefficients

when some regressors are not always observed. Journal of the American Statistical Association,

89(427):846–866, 1994.

112



BIBLIOGRAPHY

[109] Shuvabrata Saha. A multi-objective autotuning framework for the java virtual machine. Mas-

ter’s thesis, Texas State University, May 2016.

[110] Florian T. Schneider, Mathias Payer, and Thomas R. Gross. Online optimizations driven by

hardware performance monitoring. In Proceedings of the 28th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’07, pages 373–382, 2007.

[111] Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,

1978.

[112] A. J. Scott and M. Knott. A cluster analysis method for grouping means in the analysis of

variance. Biometrics, 30(3):507–512, 1974.

[113] Xipeng Shen, Yutao Zhong, and Chen Ding. Locality phase prediction. In Proceedings of

the 11th International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’04, pages 165–176, 2004.

[114] Timothy Sherwood and Brad Calder. Time varying behavior of programs. Technical Report

UCSD-CS99-630, University of California San Diego, 1999.

[115] Timothy Sherwood, Suleyman Sair, and Brad Calder. Predictor-directed stream buffers. In

Proceedings of the 33rd Annual ACM/IEEE International Symposium on Microarchitecture,

MICRO 33, pages 42–53, 2000.

[116] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution analysis to

find periodic behavior and simulation points in applications. In Proceedings of the 2001 Inter-

national Conference on Parallel Architectures and Compilation Techniques, PACT ’01, pages

3–14, 2001.

[117] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically charac-

terizing large scale program behavior. In Proceedings of the 10th International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS X, pages

45–57, 2002.

113



BIBLIOGRAPHY

[118] Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and Brad Calder. Discov-

ering and exploiting program phases. IEEE Micro, 23(6):84–93, 2003.

[119] Timothy Sherwood, Suleyman Sair, and Brad Calder. Phase tracking and prediction. In

Proceedings of the 30th Annual International Symposium on Computer Architecture, ISCA

’03, pages 336–349, 2003.

[120] Karan Singh, Major Bhadauria, and Sally A. McKee. Real time power estimation and thread

scheduling via performance counters. SIGARCH Computer Architecture News, 37(2):46–55,

July 2009.

[121] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni, J. A. Van Norstrand, B. J.

Ronchetti, J. Stuecheli, J. Leenstra, G. L. Guthrie, D. Q. Nguyen, B. Blaner, C. F. Marino,

E. Retter, and P. Williams. IBM POWER7 multicore server processor. IBM Journal of

Research and Development, 55(3):1:1–1:29, 2011.

[122] B. Sinharoy, J. A. Van Norstrand, R. J. Eickemeyer, H. Q. Le, J. Leenstra, D. Q. Nguyen,

B. Konigsburg, K. Ward, M. D. Brown, J. E. Moreira, D. Levitan, S. Tung, D. Hrusecky,

J. W. Bishop, M. Gschwind, M. Boersma, M. Kroener, M. Kaltenbach, T. Karkhanis, and

K. M. Fernsler. IBM POWER8 multicore server processor. IBM Journal of Research and

Development, 59(1):2:1–2:21, 2015.

[123] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt. Feedback directed prefetching:

Improving the performance and bandwidth-efficiency of hardware prefetchers. In IEEE 13th

International Symposium on High Performance Computer Architecture, HPCA ’07, pages 63–

74, 2007.

[124] Standard Performance Evaluation Corporation. SPEC CPU 1995. www.spec.org/cpu95/,

1995.

[125] Standard Performance Evaluation Corporation. SPEC CPU 2006. www.spec.org/cpu2006/,

2006.

[126] Standard Performance Evaluation Corporation. SPEC CPU 2017. www.spec.org/cpu2017/,

2017.

114



BIBLIOGRAPHY

[127] Alexander L. Strehl, Chris Mesterharm, Michael L. Littman, and Haym Hirsh. Experience-

efficient learning in associative bandit problems. In Proceedings of the 23rd International

Conference on Machine Learning, ICML ’06, pages 889–896, 2006.

[128] Alexander L. Strehl, John Langford, Lihong Li, and Sham M. Kakade. Learning from logged

implicit exploration data. In Proceedings of the 23rd International Conference on Neural

Information Processing Systems, NIPS ’10, pages 2217–2225, 2010.

[129] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press,

Cambridge, MA, USA, 1998.

[130] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

[131] Nedeljko Vasić, Dejan Novaković, Svetozar Miučin, Dejan Kostić, and Ricardo Bianchini. De-

jaVu: Accelerating resource allocation in virtualized environments. In Proceedings of the 17th

International Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’12, pages 423–436, 2012.

[132] Vish Viswanathan. Disclosure of h/w prefetcher control on some intel processors. Technical

report, Intel, 2014.

[133] Carl A. Waldspurger. Memory resource management in vmware esx server. SIGOPS Operating

Systems Review, 36(SI):181–194, 2002.

[134] Chih-Chun Wang, Sanjeev R. Kulkarni, and H. Vincent Poor. Bandit problems with side

observations. IEEE Transactions on Automatic Control, 50(3):338–355, 2005.

[135] Chih-Chun Wang, Sanjeev R. Kulkarni, and H. Vincent Poor. Arbitrary side observations in

bandit problems. Advances in Applied Mathematics, 34(4):903–938, 2005.

[136] Xiaolin Wang, Jiarui Zang, Zhenlin Wang, Yingwei Luo, and Xiaoming Li. Selective hard-

ware/software memory virtualization. In Proceedings of the 7th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments, VEE ’11, pages 217–226, 2011.

115



BIBLIOGRAPHY

[137] Michael Woodroofe. A one-armed bandit problem with a concomitant variable. Journal of the

American Statistical Association, 74(368):799–806, 1979.

[138] Carole-Jean Wu and Margaret Martonosi. Characterization and dynamic mitigation of intra-

application cache interference. In Proceedings of the IEEE International Symposium on Per-

formance Analysis of Systems and Software, ISPASS ’11, pages 2–11, 2011.

[139] Xingfu Wu and Valerie Taylor. Utilizing hardware performance counters to model and optimize

the energy and performance of large scale scientific applications on power-aware supercomput-

ers. In 2016 IEEE International Parallel and Distributed Processing Symposium Workshops,

IPDPSW ’16, pages 1180–1189, 2016.

[140] Yaocheng Xiang, Xiaolin Wang, Zihui Huang, Zeyu Wang, Yingwei Luo, and Zhenlin Wang.

DCAPS: Dynamic cache allocation with partial sharing. In Proceedings of the Thirteenth

EuroSys Conference, EuroSys ’18, 2018.

[141] Yaocheng Xiang, Chencheng Ye, Xiaolin Wang, Yingwei Luo, and Zhenlin Wang. EMBA:

Efficient memory bandwidth allocation to improve performance on Intel commodity processor.

In Proceedings of the 48th International Conference on Parallel Processing, ICPP ’19, pages

16:1–16:12, 2019.

[142] Jun Xiao, Andy D. Pimentel, and Xu Liu. CP-pf: A prefetch aware LLC partitioning approach.

In Proceedings of the 48th International Conference on Parallel Processing, ICPP ’19, pages

17:1–17:10, 2019.

[143] Hao Xu, Qingsen Wang, Shuang Song, Lizy Kurian John, and Xu Liu. Can we trust profiling

results? understanding and fixing the inaccuracy in modern profilers. In Proceedings of the

ACM International Conference on Supercomputing, ICS ’19, pages 284–295, 2019.

[144] Min Yang, Linli Xu, Martha White, Dale Schuurmans, and Yao liang Yu. Relaxed clipping:

A global training method for robust regression and classification. In Advances in Neural

Information Processing Systems 23, NIPS, pages 2532–2540, 2010.

[145] Xulei Yang, Qing Song, and Aize Cao. Weighted support vector machine for data classification.

116



BIBLIOGRAPHY

In Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, volume 2,

pages 859–864, 2005.

[146] Wucherl Yoo, Kevin Larson, Lee Baugh, Sangkyum Kim, and Roy H. Campbell. ADP: Auto-

mated diagnosis of performance pathologies using hardware events. In Proceedings of the 12th

ACM SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and

Modeling of Computer Systems, SIGMETRICS ’12, pages 283–294, 2012.

[147] Jia Yuan Yu and Shie Mannor. Piecewise-stationary bandit problems with side observations.

In Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09,

pages 1177–1184, 2009.

[148] Bianca Zadrozny, John Langford, and Naoki Abe. Cost-sensitive learning by cost-proportionate

example weighting. In Proceedings of the Third IEEE International Conference on Data

Mining, ICDM ’03, pages 435–442, 2003.

[149] Gerd Zellweger, Denny Lin, and Timothy Roscoe. So many performance events, so little time.

In Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys ’16, pages

14:1–14:9, 2016.

[150] Nancy R. Zhang and David O. Siegmund. A modified bayes information criterion with appli-

cations to the analysis of comparative genomic hybridization data. Biometrics, 63(1):22–32,

2007.

117





Appendix A

Copyright Permission

The following documents detail permission from the ACM to reprint the materials herein.

Chapter 3 contains material previously published in the Proceedings of the 47th International Con-

ference on Parallel Processing (ICPP ’18) [61]:

Jason Hiebel, Laura E. Brown, and Zhenlin Wang. Constructing dynamic policies for

paging mode selection. In Proceedings of the 47th International Conference on Parallel

Processing, ICPP ’18, pages 72:1–72:9, 2018, doi:10.1145/3225058.3225082.

Chapter 4 contains material previously published in the Proceedings of the 48th International Con-

ference on Parallel Processing (ICPP ’19) [62]:

Jason Hiebel, Laura E. Brown, and Zhenlin Wang. Machine learning for fine-grained

hardware prefetcher control. In Proceedings of the 48th International Conference on

Parallel Processing, ICPP ’19, pages 3:1–3:9, 2019, doi:10.1145/3337821.3337854.

119



ACM Copyright and Audio/Video Release 

Title of the Work: Constructing Dynamic Policies for Paging Mode Selection
Submission ID:pap212 
Author/Presenter(s): Jason Hiebel (Michigan Technological University);Laura E. Brown (Michigan Technological
University);Zhenlin Wang (Michigan Technological University) 
Type of material:Full Paper 

Publication and/or Conference Name:     47th International Conference on Parallel Processing Proceedings       

I. Copyright Transfer, Reserved Rights and Permitted Uses      

* Your Copyright Transfer is conditional upon you agreeing to the terms set out below.

Copyright to the Work and to any supplemental fi les integral to the Work which are
submitted with i t  for review and publication such as an extended proof,  a PowerPoint outline,
or appendices that may exceed a printed page limit,  ( including without l imitation, the right
to publish the Work in whole or in part  in any and all  forms of media,  now or hereafter
known) is hereby transferred to the ACM (for Government work, to the extent transferable)
effective as of the date of this  agreement,  on the understanding that  the Work has been
accepted for publication by ACM. 

Reserved Rights and Permitted Uses

(a) All rights and permissions the author has not granted to ACM are reserved to the Owner,
including al l  other proprietary r ights such as patent  or  trademark rights.  

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM, Owner
shall have the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or edited by the
Author,  including books,  lectures and presentations in any and all  media.

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2) the Owner's
institutional repository, (3) any repository legally mandated by an agency funding the
research on which the Work is based, and (4) any non-commercial  repository or aggregation
that does not duplicate ACM tables of contents,  i .e. ,  whose patterns of l inks do not
substantially duplicate an ACM-copyrighted volume or issue.  Non-commercial  repositories
are  here understood as  reposi tor ies  owned by non-profi t  organizat ions that  do not  charge a
fee for accessing deposited art icles and that do not sell  advertising or otherwise profit  from
serving articles.

(iv) Post an "Author - Ize r" link enabling free downloads of the Version of Record in the ACM
Digital Library on (1) the Author's home page or (2) the Owner's institutional repository; 

(v) Prior to commencement of the ACM peer review process, post the version of the Work as
submitted to ACM (" Submitted Version" or any earlier versions) to non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to the Owner's
employees, if applicable;

(vii) Make free distributions of the published Version of Record for Classroom and Personal
Use;

(viii) Bundle the Work in any of Owner's software distributions; and 



(ix) Use any Auxiliary Material independent from the Work. 

When preparing your paper for submission using the ACM TeX templates,  the rights and
permissions information and the bibl iographic s tr ip must  appear on the lower lef t  hand
portion of the first  page.

The new ACM Consolidated TeX template Version 1.3 and above automatical ly creates and
posi t ions these text  blocks for  you based on the code snippet  which is  system-generated
based on your r ights  management choice and this  part icular  conference.

Please copy and paste the following code snippet into your TeX file between
\begin{document} and \maketitle, either after or before CCS codes.

\copyrightyear{2018} 
\acmYear{2018} 
\setcopyright{acmcopyright}
\acmConference[ICPP 2018]{47th International Conference on Parallel
Processing}{August 13--16, 2018}{Eugene, OR, USA}
\acmBooktitle{ICPP 2018: 47th International Conference on Parallel
Processing, August 13--16, 2018, Eugene, OR, USA}
\acmPrice{15.00}
\acmDOI{10.1145/3225058.3225082}
\acmISBN{978-1-4503-6510-9 /18/08}

ACM TeX template .cls version 2.8, automatically creates and positions these
text  blocks for  you based on the code snippet  which is  system-generated
based on your r ights  management choice and this  part icular  conference.
Please copy and paste the following code snippet into your TeX file between
\begin{document} and \maketitle, either after or before CCS codes.

\CopyrightYear{2018} 
\setcopyright{acmcopyright} 
\conferenceinfo{ICPP 2018,}{August 13--16, 2018, Eugene, OR, USA}
\ isbn{978-1-4503-6510-9/18/08}\acmPrice{$15.00}
\doi{ht tps : / /doi .org/10.1145/3225058.3225082}

If you are using the ACM Microsoft Word template, or still using an older
version of the ACM TeX template, or the current versions of the ACM SIGCHI,
SIGGRAPH, or SIGPLAN TeX templates, you must copy and paste the following
text block into your document as per the instructions provided with the
templates you are using:

Permission to make digital  or hard copies of all  or part  of this work for
personal  or  classroom use is  granted without  fee provided that  copies are not
made or  distr ibuted for  profi t  or  commercial  advantage and that  copies bear
this notice and the full  ci tat ion on the first  page.  Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit  is  permitted. To copy otherwise,  or republish,  to post on servers or to
redistribute to l ists ,  requires prior specific permission and/or a fee.  Request
permissions from Permissions@acm.org.



ICPP 2018, August 13–16, 2018, Eugene, OR, USA 
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6510-9/18/08…$15.00 
h t tps : / /do i .o rg /10 .1145/3225058 .3225082

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be
registered and become active shortly after publication in the ACM Digital Library

A. Assent to Assignment.  I  hereby represent and warrant that I  am the sole owner (or

authorized agent of the copyright owner(s)),  with the exception of third party materials
detailed in section III below. I have obtained permission for any third-party material
included in the Work.

B. Declaration for Government Work. I am an employee of the National Government of

my country and my Government claims rights to this work, or i t  is  not copyrightable
(Government work is classified as Public Domain in U.S. only)

 Are any of the co-authors,  employees or contractors of a National Government? Yes N o

II. Permission For Conference Recording and Distribution

* Your Audio/Video Release is conditional upon you agreeing to the terms set out below. 

I  hereby grant permission for ACM to include my name, l ikeness,  presentation and
comments in any and all  forms, for the Conference and/or Publication.  

I  further  grant  permission for  ACM to record and/or t ranscribe and reproduce my
presentation as part of the ACM Digital Library, and to distribute the same for sale in
complete or partial form as part of an ACM product on CD-ROM, DVD, webcast, USB device,
streaming video or any other media format now or hereafter  known. 

I  understand that  my presentat ion wil l  not  be sold separately as  a  s tand-alone product
without my direct consent. Accordingly, I give ACM the right to use my image, voice,
pronouncements,  l ikeness,  and my name, and any biographical  material  submitted by me,
in connection with the Conference and/or Publication, whether used in excerpts or in full ,
for distribution described above and for any associated advertising or exhibition. 

Do you agree to the above Audio/Video Release? Yes N o

III. Auxiliary Material 

Do you have any Auxiliary Materials? Yes No 

IV. Third Party Materials 

In the event that any materials used in my presentation or Auxiliary Materials contain the
work of third-party individuals or organizations (including copyrighted music or movie
excerpts or anything not owned by me),  I  understand that i t  is  my responsibil i ty to secure
any necessary permissions and/or l icenses for  print  and/or digital  publicat ion,  and ci te  or
at tach them below. 



We/I have not  used third-party material .  
We/I  have used third-party materials  and have necessary permissions.  

V. Artistic Images
If  your paper includes images that  were created for  any purpose other than this  paper and to
which you or your employer claim copyright,  you must complete Part  V and be sure to
include a notice of copyright with each such image in the paper.  

We/I do not have any artistic images. 
We/I have any artistic images. 

VI. Representations, Warranties and Covenants 

The undersigned hereby represents,  warrants and covenants as follows: 

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is  authorized to enter  into this  Agreement and grant  the r ights
included in this license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all  permissions
for  use of  third-party materials  consistent  in scope and durat ion with the r ights  granted
to ACM have been obtained, copies of such permissions have been provided to ACM, and
the Work as submitted to ACM clearly and accurately indicates the credit  to the
proprietors of any such third-party materials (including any applicable copyright notice),
or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer reviewed
servers,  and Owner covenants to use best efforts to place ACM DOI pointers on any such
prior postings;  

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or other
sof tware rout ines  or  hardware components  designed to  permit  unauthorized access  or  to
disable,  erase or  otherwise harm any computer systems or software;  and

(f) The Artistic Images, if any, are clearly and accurately noted as such (including any
applicable copyright notice) in the Submitted Version.

I  agree to the Representations,  Warranties and Covenants

Funding Agents

1. National Science Foundation award number(s): CSR1422343, CSR1618384

DATE: 0 5 / 2 2 / 2 0 1 8 sent to jshiebel@mtu.edu at  10:05:50 



ACM Copyright and Audio/Video Release 

Title of the Work: Machine Learning for Fine-Grained Hardware Prefetcher Control
Submission ID:pap223 
Author/Presenter(s): Jason Hiebel (Michigan Technological University);Laura E. Brown (Michigan Technological
University);Zhenlin Wang (Michigan Technological University) 
Type of material:Full Paper 

Publication and/or Conference Name:     48th International Conference on Parallel Processing Proceedings       

I. Copyright Transfer, Reserved Rights and Permitted Uses      

* Your Copyright Transfer is conditional upon you agreeing to the terms set out below.

Copyright to the Work and to any supplemental files integral to the Work which are submitted with it for
review and publication such as an extended proof, a PowerPoint outline, or appendices that may exceed a
printed page limit, (including without limitation, the right to publish the Work in whole or in part in any
and all forms of media, now or hereafter known) is hereby transferred to the ACM (for Government work,
to the extent transferable) effective as of the date of this agreement, on the understanding that the Work
has been accepted for publication by ACM. 

Reserved Rights and Permitted Uses

(a) All rights and permissions the author has not granted to ACM are reserved to the Owner, including all
other proprietary rights such as patent or trademark rights. 

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM, Owner shall have
the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or edited by the Author,
including books, lectures and presentations in any and all media.

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2) the Owner's institutional
repository, (3) any repository legally mandated by an agency funding the research on which the Work is
based, and (4) any non-commercial repository or aggregation that does not duplicate ACM tables of
contents, i.e., whose patterns of links do not substantially duplicate an ACM-copyrighted volume or issue.
Non-commercial repositories are here understood as repositories owned by non-profit organizations that
do not charge a fee for accessing deposited articles and that do not sell advertising or otherwise profit from
serving articles.

(iv) Post an "Author-Izer" link enabling free downloads of the Version of Record in the ACM Digital
Library on (1) the Author's home page or (2) the Owner's institutional repository; 

(v) Prior to commencement of the ACM peer review process, post the version of the Work as submitted to
ACM ("Submitted Version" or any earlier versions) to non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to the Owner's employees,
if applicable;

(vii) Make free distributions of the published Version of Record for Classroom and Personal Use;

(viii) Bundle the Work in any of Owner's software distributions; and 

(ix) Use any Auxiliary Material independent from the Work. (x) If your paper is withdrawn before it is
published in the ACM Digital Library, the rights revert back to the author(s). 



When preparing your paper for submission using the ACM TeX templates, the rights and permissions
information and the bibliographic strip must appear on the lower left hand portion of the first page.

The new ACM Consolidated TeX template Version 1.3 and above automatically creates and positions these
text blocks for you based on the code snippet which is system-generated based on your rights management
choice and this particular conference.

Please copy and paste the following code snippet into your TeX file between
\begin{document} and \maketitle, either after or before CCS codes.

\copyrightyear{2019} 
\acmYear{2019} 
\setcopyright{acmcopyright}
\acmConference[ICPP 2019]{48th International Conference on Parallel
Processing}{August 5--8, 2019}{Kyoto, Japan}
\acmBooktitle{48th International Conference on Parallel Processing (ICPP 2019),
August 5--8, 2019, Kyoto, Japan}
\acmPrice{15.00}
\acmDOI{10.1145/3337821.3337854}
\acmISBN{978-1-4503-6295-5/19/08}

ACM TeX template .cls version 2.8, automatically creates and positions these text blocks
for you based on the code snippet which is system-generated based on your rights
management choice and this particular conference.
Please copy and paste the following code snippet into your TeX file between
\begin{document} and \maketitle, either after or before CCS codes.

\CopyrightYear{2019} 
\setcopyright{acmcopyright} 
\conferenceinfo{ICPP 2019,}{August 5--8, 2019, Kyoto, Japan}
\isbn{978-1-4503-6295-5/19/08}\acmPrice{$15.00}
\doi{https://doi.org/10.1145/3337821.3337854}

If you are using the ACM Microsoft Word template, or still using an older version of the
ACM TeX template, or the current versions of the ACM SIGCHI, SIGGRAPH, or
SIGPLAN TeX templates, you must copy and paste the following text block into your
document as per the instructions provided with the templates you are using:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.

ICPP 2019, August 5–8, 2019, Kyoto, Japan 
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6295-5/19/08…$15.00 
https://doi.org/10.1145/3337821.3337854



https://doi.org/10.1145/3337821.3337854

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be registered and
become active shortly after publication in the ACM Digital Library. Once you have your camera ready copy
ready, please send your source files and PDF to your event contact for processing.

A. Assent to Assignment. I hereby represent and warrant that I am the sole owner (or authorized

agent of the copyright owner(s)), with the exception of third party materials detailed in section III below. I
have obtained permission for any third-party material included in the Work.

B. Declaration for Government Work. I am an employee of the National Government of my country

and my Government claims rights to this work, or it is not copyrightable (Government work is classified
as Public Domain in U.S. only)

 Are any of the co-authors, employees or contractors of a National Government? Yes No

II. Permission For Conference Recording and Distribution

* Your Audio/Video Release is conditional upon you agreeing to the terms set out below. 

I hereby grant permission for ACM to include my name, likeness, presentation and comments in any and
all forms, for the Conference and/or Publication. 

I further grant permission for ACM to record and/or transcribe and reproduce my presentation as part
of the ACM Digital Library, and to distribute the same for sale in complete or partial form as part of an
ACM product on CD-ROM, DVD, webcast, USB device, streaming video or any other media format now
or hereafter known. 

I understand that my presentation will not be sold separately as a stand-alone product without my direct
consent. Accordingly, I give ACM the right to use my image, voice, pronouncements, likeness, and my
name, and any biographical material submitted by me, in connection with the Conference and/or
Publication, whether used in excerpts or in full, for distribution described above and for any associated
advertising or exhibition. 

Do you agree to the above Audio/Video Release? Yes No

III. Auxiliary Material 

Do you have any Auxiliary Materials? Yes No 

IV. Third Party Materials 

In the event that any materials used in my presentation or Auxiliary Materials contain the work of
third-party individuals or organizations (including copyrighted music or movie excerpts or anything not
owned by me), I understand that it is my responsibility to secure any necessary permissions and/or
licenses for print and/or digital publication, and cite or attach them below. 

We/I have not used third-party material. 
We/I have used third-party materials and have necessary permissions. 

V. Artistic Images
If your paper includes images that were created for any purpose other than this paper and to which you or



your employer claim copyright, you must complete Part V and be sure to include a notice of copyright
with each such image in the paper. 

We/I do not have any artistic images. 
We/I have any artistic images. 

VI. Representations, Warranties and Covenants 

The undersigned hereby represents, warrants and covenants as follows: 

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is authorized to enter into this Agreement and grant the rights included in this
license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all permissions for use of
third-party materials consistent in scope and duration with the rights granted to ACM have been
obtained, copies of such permissions have been provided to ACM, and the Work as submitted to ACM
clearly and accurately indicates the credit to the proprietors of any such third-party materials
(including any applicable copyright notice), or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer reviewed servers, and
Owner covenants to use best efforts to place ACM DOI pointers on any such prior postings; 

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or other software
routines or hardware components designed to permit unauthorized access or to disable, erase or
otherwise harm any computer systems or software; and

(f) The Artistic Images, if any, are clearly and accurately noted as such (including any applicable
copyright notice) in the Submitted Version.

I agree to the Representations, Warranties and Covenants

Funding Agents

1. National Science Foundation award number(s): CSR1618384,CSR1422342

DATE: 06/05/2019 sent to jshiebel@mtu.edu at 08:06:44 


	Contextual Bandit Modeling for Dynamic Runtime Control in Computer Systems
	Recommended Citation

	List of Figures
	List of Tables
	Preface
	Acknowlegments
	Abstract
	Introduction
	Background
	Performance Monitoring
	Phase Detection
	Memory Virtualization
	Hardware Memory Prefetching
	Multi-Armed Bandits
	Selection Strategies
	Contextual Bandits

	Supervised Learning and Classification
	Feature Selection

	Paging Mode Selection
	Introduction
	Background and Related Work
	Memory Virtualization
	Contextual Bandits

	Dynamic Paging Mode Selection
	Direct Sampling (DSP-SAMPLE)
	Contextual Bandit Model (DSP-OFFSET)

	Evaluation
	Experimental Environment
	Experimental Design
	Results
	Profiling Cost

	Discussion and Conclusion

	Hardware Memory Prefetcher Utilization
	Introduction
	Background and Related Work
	Contextual Bandit Framework
	Action Selection
	Context Selection
	Reward Function
	Policy Construction

	Methodology
	Workload Selection
	Workload Execution
	Experimental Design

	Results
	Discussion and Conclusion

	Performance Event Selection
	Introduction
	Dynamic Hardware Prefetcher Control
	Correlation-Based Feature Selection
	Methodology
	Workload Design and Execution
	Dynamic Hardware Prefetcher Control
	Event Selection

	Results
	DPL Prefetcher
	DCU IP Prefetcher

	Related Work
	Discussion and Conclusion

	Conclusion
	Contributions
	Future Work

	Bibliography
	Copyright Permission

