
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2016 

Communication Patterns and Strategies in Software Development Communication Patterns and Strategies in Software Development 

Communities of Practice Communities of Practice 

Shreya Kumar 
Michigan Technological University, shreyak@mtu.edu 

Copyright 2016 Shreya Kumar 

Recommended Citation Recommended Citation 
Kumar, Shreya, "Communication Patterns and Strategies in Software Development Communities of 
Practice", Open Access Dissertation, Michigan Technological University, 2016. 
https://doi.org/10.37099/mtu.dc.etdr/186 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Curriculum and Instruction Commons, Educational Methods Commons, Social and Cultural 
Anthropology Commons, and the Software Engineering Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/186
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/786?utm_source=digitalcommons.mtu.edu%2Fetdr%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1227?utm_source=digitalcommons.mtu.edu%2Fetdr%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/323?utm_source=digitalcommons.mtu.edu%2Fetdr%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/323?utm_source=digitalcommons.mtu.edu%2Fetdr%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.mtu.edu%2Fetdr%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages


COMMUNICATION PATTERNS AND STRATEGIES IN SOFTWARE

DEVELOPMENT COMMUNITIES OF PRACTICE

By

Shreya Kumar

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2016

c© 2016 Shreya Kumar





This dissertation has been approved in partial fulfillment of the requirements for the Degree

of DOCTOR OF PHILOSOPHY in Computer Science.

Department of Computer Science

Dissertation Advisor: Charles Wallace

Committee Member: Linda Ott

Committee Member: Mary Beth Rosson

Committee Member: Janet Burge

Committee Member: Lauren Bowen

Department Chair: Min Song





To Mom, Dad and Shraddha,
for loving and encouraging me from across the globe,

even though it meant more time apart.

To my loving husband, Randy,
for constantly supporting me and lifting my spirits,

for giving me a reason to persevere everyday.





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Communication in software development: Two vignettes . . . . . . . . . . 1

1.2 Speech Act Theory: Speaking and Writing as Doing . . . . . . . . . . . . . 8

1.3 Communication in Software Development . . . . . . . . . . . . . . . . . . 8

1.3.1 Communication and Software Process . . . . . . . . . . . . . . . . 9

1.3.2 Communication in Software Engineering Education . . . . . . . . . 11

1.4 Communities of Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vii



1.5.1.1 Refined Questions . . . . . . . . . . . . . . . . . . . . . 18

1.5.2 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.3 Subjects of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.3.1 Open Source Development Community . . . . . . . . . . 19

1.5.3.2 Industry Agile Team . . . . . . . . . . . . . . . . . . . . 20

1.5.3.3 Software Engineering Student Community . . . . . . . . 21

1.5.4 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6.1 Cognitive Apprenticeship . . . . . . . . . . . . . . . . . . . . . . . 23

1.6.2 Discourse Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6.3 Grounded Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.4 Pattern Languages . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Initial studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Communication Strategies for Mentoring in Software Development Projects 29

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Student Mentoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Open source mentoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 TAI - Participant observation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 TAI: An evolving development practice . . . . . . . . . . . . . . . . . . . 39

viii



3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Types of data collection . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Participant observer trajectory . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Selecting candidates . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.4 Asking the question . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.5 The first interview . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.6 The Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Challenges of the ethnographic process . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Dynamic teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Company culture . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3 Multiple identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 TAI - Data and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Evolving meaning, evolving identity . . . . . . . . . . . . . . . . . . . . . 55

4.2 Mentoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Qualitative Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1.1 Alex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1.2 Karoline . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1.3 Ivan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1.4 Casey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1.5 Philip . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ix



4.3.2 Themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.2.1 Participation and Negotiation of Meaning: Internship

changes over time . . . . . . . . . . . . . . . . . . . . . 65

4.3.2.2 Trajectory: Pioneer’s journey . . . . . . . . . . . . . . . 65

4.3.2.3 Early onboarders: Divergent trajectories . . . . . . . . . . 68

4.3.2.4 Onboarding: The next generation . . . . . . . . . . . . . 72

4.3.3 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.3.1 Process tug of war . . . . . . . . . . . . . . . . . . . . . 75

4.3.3.2 Team deciding work for itself . . . . . . . . . . . . . . . 76

4.3.3.3 Learning to work with different mentoring styles . . . . . 76

4.3.3.4 Knowledge transfer . . . . . . . . . . . . . . . . . . . . 77

4.3.3.5 Minutiae disconnect . . . . . . . . . . . . . . . . . . . . 78

4.3.3.6 The burden of onboarding . . . . . . . . . . . . . . . . . 78

4.3.3.7 ‘Pair’ programming over time . . . . . . . . . . . . . . . 79

4.3.3.8 Pace discrepancy . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Quantitative Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Collecting the data . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Description of the raw data . . . . . . . . . . . . . . . . . . . . . . 81

4.4.3 Processing the data . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.4 Processing the data by hand . . . . . . . . . . . . . . . . . . . . . 82

4.4.5 Processing the data with tools . . . . . . . . . . . . . . . . . . . . 86

x



4.4.6 Observations from the data . . . . . . . . . . . . . . . . . . . . . . 86

4.4.6.1 Story scope creep . . . . . . . . . . . . . . . . . . . . . . 90

4.4.6.2 Re-estimating . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.6.3 Proportion of communication . . . . . . . . . . . . . . . 91

4.4.6.4 Perfunctory and evolutionary process . . . . . . . . . . . 92

4.4.6.5 Shapes of sprints . . . . . . . . . . . . . . . . . . . . . . 94

4.4.6.6 Process in practice - Kanban vs. Scrum . . . . . . . . . . 95

4.4.6.7 Multi-sprint stories . . . . . . . . . . . . . . . . . . . . . 96

4.4.6.8 Changes in participation over time . . . . . . . . . . . . . 97

5 TAI - Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1.1 Types of community participants . . . . . . . . . . . . . . . . . . . 113

5.1.2 Community of practice evolution over time . . . . . . . . . . . . . 114

5.1.3 Different onboarding strategies . . . . . . . . . . . . . . . . . . . . 115

5.1.4 Different formats of communication . . . . . . . . . . . . . . . . . 116

5.1.5 Knowledge silo management . . . . . . . . . . . . . . . . . . . . . 117

5.1.6 Learn communication style over time . . . . . . . . . . . . . . . . 118

5.2 Previously Discovered Patterns at TAI . . . . . . . . . . . . . . . . . . . . 118

5.2.1 Previously discovered mentoring patterns . . . . . . . . . . . . . . 118

5.2.2 Previously discovered roles . . . . . . . . . . . . . . . . . . . . . . 119

5.2.3 Previously discovered modes of operation . . . . . . . . . . . . . . 120

xi



5.3 Novel Pattern results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 Pattern: Pioneer Identity . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.2 Pattern: Early onboarder identity . . . . . . . . . . . . . . . . . . . 123

5.3.3 Pattern: Newcomer Identity . . . . . . . . . . . . . . . . . . . . . . 123

5.3.4 Pattern: Pioneer Onboarding . . . . . . . . . . . . . . . . . . . . . 124

5.3.5 Pattern: Generational Onboarding . . . . . . . . . . . . . . . . . . 125

5.3.6 Pattern: Process Tug of war . . . . . . . . . . . . . . . . . . . . . . 126

5.3.7 Pattern: Pioneers don’t know what all they know . . . . . . . . . . 127

5.3.8 Pattern: Patron as Process Champion . . . . . . . . . . . . . . . . . 127

5.3.9 Pattern: Mentor as Oracle . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.10 Pattern: Mentor as interrogator . . . . . . . . . . . . . . . . . . . . 128

5.3.11 Pattern: Mentor as interlocutor . . . . . . . . . . . . . . . . . . . . 129

5.3.12 Pattern: Encourage pair programming by just doing it . . . . . . . . 130

5.3.13 Pattern: Communicate design rationale . . . . . . . . . . . . . . . . 131

5.3.14 Pattern: Initial Turbulence Sprint . . . . . . . . . . . . . . . . . . . 131

5.3.15 Pattern: Path to normalcy Sprint . . . . . . . . . . . . . . . . . . . 132

5.3.16 Pattern: BAU Sprint . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4 Pattern language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4.1 Mentoring pattern relation . . . . . . . . . . . . . . . . . . . . . . 133

5.4.2 Knowledge sharing pattern relation . . . . . . . . . . . . . . . . . . 134

5.4.3 Process evolution pattern relation . . . . . . . . . . . . . . . . . . . 135

xii



5.4.4 Shape of sprints pattern relation . . . . . . . . . . . . . . . . . . . 136

5.5 Relationship with research goals . . . . . . . . . . . . . . . . . . . . . . . 136

5.5.1 Negotiation of meaning and communication . . . . . . . . . . . . . 137

5.5.1.1 Code Review . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5.1.2 Mentoring . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5.1.3 Process tug of war . . . . . . . . . . . . . . . . . . . . . 139

5.5.1.4 Paired programming . . . . . . . . . . . . . . . . . . . . 139

5.5.1.5 Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.5.1.6 Open conference . . . . . . . . . . . . . . . . . . . . . . 139

5.5.1.7 Team deciding . . . . . . . . . . . . . . . . . . . . . . . 140

5.5.1.8 Minutiae disconnect . . . . . . . . . . . . . . . . . . . . 140

5.5.1.9 Knowledge transfer . . . . . . . . . . . . . . . . . . . . 140

5.5.2 Identity and communication . . . . . . . . . . . . . . . . . . . . . 141

5.5.2.1 Pattern roles . . . . . . . . . . . . . . . . . . . . . . . . 141

5.5.2.2 Onboarding styles . . . . . . . . . . . . . . . . . . . . . 141

5.5.2.3 Code review and Minutiae disconnect . . . . . . . . . . . 141

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Instruction for Software Engineering Students . . . . . . . . . . . . . . . . . 147

6.1 Agile Communicators: Cognitive Apprenticeship to Prepare Students for

Communication-Intensive Software Development . . . . . . . . . . . . . . 147

6.1.1 Introduction: Communication in workplace and classroom . . . . . 148

xiii



6.1.2 Goal: Agile communicators in software development . . . . . . . . 149

6.1.3 A Cognitive Apprenticeship Approach: Inquiry, Critique and Re-

flection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.1.3.1 Inquiry . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.1.3.2 Critique . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.1.3.3 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.1.3.4 Cognitive apprenticeship . . . . . . . . . . . . . . . . . . 154

6.2 Instruction in Software Project Communication through Guided Inquiry

and Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2.3 Course Communication Activities . . . . . . . . . . . . . . . . . . 158

6.2.3.1 Analysis of project-external communication . . . . . . . . 159

6.2.3.2 Activities reflecting on internal communication . . . . . . 162

6.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2.5.1 Class Discussion . . . . . . . . . . . . . . . . . . . . . . 169

6.2.5.2 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.2.5.3 Written Assignments . . . . . . . . . . . . . . . . . . . . 171

6.2.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . 173

6.3 Relationship with goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

xiv



6.3.1 Build awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.3.2 Incorporate skills . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.1 Our research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.2 Main takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

xv



xvi



List of Figures

1.1 Denise’s hand-drawn chart . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Waterfall model with documentation . . . . . . . . . . . . . . . . . . . . . 10

1.3 Central concepts of Communities of Practice . . . . . . . . . . . . . . . . . 14

3.1 Change in lines of code with version number and major events. Code ver-

sions in descending order along the x-axis. . . . . . . . . . . . . . . . . . . 40

3.2 Phases of TAI evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Natalie’s team membership . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 All Kanban work time breakdown pie chart . . . . . . . . . . . . . . . . . 87

4.2 All Maintenance work time breakdown pie chart . . . . . . . . . . . . . . . 87

4.3 Pre-release work time breakdown pie chart . . . . . . . . . . . . . . . . . . 88

4.4 All Scrum work time breakdown pie chart . . . . . . . . . . . . . . . . . . 88

4.5 Sprint 1 work time breakdown pie chart . . . . . . . . . . . . . . . . . . . 89

4.6 Sprint 2 work time breakdown pie chart . . . . . . . . . . . . . . . . . . . 89

4.7 Sprint 3 work time breakdown pie chart . . . . . . . . . . . . . . . . . . . 90

4.8 Sprint 1 Timeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.9 Pre-release Weeks 1-3 Timeline. . . . . . . . . . . . . . . . . . . . . . . . 100

xvii



4.10 Fruchterman-Reingold with groupings for all interaction at TAI. . . . . . . 101

4.11 Fruchterman-Reingold with groupings for all interaction at TAI. . . . . . . 102

4.12 Fruchterman-Reingold with groupings for all the Maintenance team. . . . . 103

4.13 Fruchterman-Reingold with groupings for all the Pre-release team. . . . . . 104

4.14 Fruchterman-Reingold with groupings for all the first sprint cycle. . . . . . 105

4.15 Fruchterman-Reingold with groupings for all the second sprint cycle. . . . . 106

4.16 Fruchterman-Reingold with groupings for all the third sprint cycle. . . . . . 107

4.17 Per bug process filtered to a 50% activities and 50% of paths for Mainte-

nance Team work, output from process mining tool Disco . . . . . . . . . . 108

4.18 Per bug process filtered to a 50% activities and 50% of paths for Prerelease

Team work, output from process mining tool Disco . . . . . . . . . . . . . 109

4.19 Per bug process filtered to a 50% activities and 0% of paths for Maintenance

work, output from process mining tool Disco . . . . . . . . . . . . . . . . . 110

4.20 Per day process filtered to a 80% activities and 50% of paths for Prerelease

work, output from process mining tool Disco . . . . . . . . . . . . . . . . . 111

5.1 Mentoring pattern relation . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2 Shape of Sprints pattern relation . . . . . . . . . . . . . . . . . . . . . . . 136

6.1 Sample communication pattern inquiry worksheet. . . . . . . . . . . . . . . 152

6.2 Sample student reflections: “How They Scrum” [40]. . . . . . . . . . . . . 154

xviii



List of Tables

2.1 Mentor as Interrogator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Artifact facilitated discussion and Mentor as interlocutor . . . . . . . . . . 34

2.3 Code as Conversation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Selected people at TAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Different categories and attributes for processing the event data . . . . . . . 84

4.3 Different categories and attributes for processing the event data . . . . . . . 85

6.1 Email from student project case study . . . . . . . . . . . . . . . . . . . . 161

6.2 Sample communication pattern . . . . . . . . . . . . . . . . . . . . . . . . 165

6.3 Survey questions and analysis, with margin of error for a 95% Confidence

Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.4 Sample of codes used in group assignments . . . . . . . . . . . . . . . . . 172

xix





Preface

Chapter 2 is a modified version of the paper Communication Strategies for mentoring in
software development projects by Kumar and Wallace, presented at the 44th Annual Fron-
tiers in Education (FIE) IEEE Conference, 2014. Kumar and Wallace co-wrote the paper
and collaboratively performed the data analysis after Kumar collected the data.

Chapter 3 is a modified version of the paper Among the agilists: Participant observation
in a rapidly evolving workplace(in press) by Kumar and Wallace to be presented at the
9th International Workshop on Cooperative and Human Aspects of Software Engineer-
ing(CHASE), 2016. Kumar and Wallace collaboratively wrote the paper based on Kumar’s
experience and data collected as a participant observer.

Chapter 6 is a combination of two published papers. Sections 6.1 is a heavily modified
version of part of the paper Agile Communicators: Cognitive Apprenticeship to Prepare
Students for Communication-Intensive Software Development by Kumar, Ureel, and Wal-
lace, presented at the Agile 2015 conference. This paper was collectively written by Kumar,
Ureel and Wallace. Kumar and Ureel contributed their experiences of experimenting with
their modified computing courses that were designed with Wallace, who brought the whole
work under the Agile umbrella. Section 6.2 is a modified version of the paper Instruction
in Software Project Communication through Guided Inquiry(in press) by Kumar and Wal-
lace, to be presented at the 38th International Conference on Software Engineering, 2016.
Kumar and Wallace wrote the paper together based on the specifics of their communication
based Team Software Project course.

xxi





Acknowledgments

This work would not have been possible without the contributions of a vast support net-
work.

My advisor, Dr. Charles Wallace For his constant guidance, encouragement and pa-
tience. For creating an atmosphere where I felt excited to wake up and work every
day. For making this a rewarding journey.

My committee members For agreeing to lend me their time and for their expertise in
improving our research, encouragement and enthusiasm. For inspiring me with their
groundbreaking work that we were able to leverage for our research.

TAI For allowing me to study their software development practices, making me feel wel-
come and enthusiastically supporting my research.

My husband, Randy For his unwavering love and support. For his constant encourage-
ment and for never letting me feel alone in this process.

My family and friends Who kept me sane and motivated, reminding me that there is light
at the end of the tunnel.

xxiii





Abstract

Some of the greatest challenges in the relatively new field of software development lie in
the decidedly old technology of communication between humans. Software projects re-
quire sophisticated and varied communication skills because software developers work in
a world of incomplete, imperfect information where teams evolve rapidly in response to
evolving requirements and changing collaborators. While prescriptive models for software
process such as Agile suggest ways of doing, in reality these codified practices must adapt
to the complexities of a real workplace. Patterns, rather than rules of behavior within soft-
ware process are more suitable to the varied and mutable nature of software development.
Software development communities are also learning communities, attempting to sustain
themselves through internal ambiguity and external changes.

We study different types of software development communities to fulfill our goal of under-
standing how these communities implement and evolve different communication strategies
to sustain themselves through change. We observe student software development projects,
open source software development, and a professional, rigorously Agile software devel-
opment community. We employ Wenger’s concept of Community of Practice to frame
our understanding, especially focusing on the notions of identity, participation, reification,
negotiation of meaning and trajectory of the participants of the software development com-
munities. From these different sources, we identify the emergent themes of mentoring and
knowledge management as critical for sustainable communities.

Through our long running, immersive, participant observer, ethnographic study of the Agile
software development community, we contribute both a quantitative and qualitative analy-
sis of the their communication practices and depict the evolving nature of their onboarding
and mentoring strategies. We share our experience of implementing such an immersive in-
dustry ethnographic study. We employ a pattern language approach to capturing, analyzing
and representing our results, thereby contributing and relating to the larger bodies of work
in Scrum and Organizational Patterns.

This work also informs our concurrent efforts to enhance our undergraduate computer sci-
ence and software engineering curriculum, exposing students to the communication chal-
lenges of real software development and help them to develop skills to meet these chal-
lenges through practice in inquiry, critique and reflection.

xxv





Chapter 1

Introduction

In this chapter, we illustrate the complexities of software development communication
through real world examples and discuss the background and framework, especially Com-
munities of Practice, for our research. We present our research questions and we briefly
describe our research subjects, tools and methodology. We describe our initial research
efforts studying student software development projects and open source software develop-
ment in chapter 2.

In chapter 3, we describe our experience of observing a dynamic, co-located software de-
velopment community over a long term using immersive ethnography. We describe the
methodology employed for them and the challenges faced in taking on the endeavor of
long term participant observation. In chapters 4 and 5, we share our observations from the
study and the pattern-form results from the ethnographic study.

In chapter 6, we share our efforts of integrating communication intensive coursework into
the computing curriculum and plans to expand it. We summarize our research story, our
primary takeaways and discuss future directions in chapter 7.

1.1 Communication in software development: Two vi-
gnettes

Communication in any software development community can be complex, nuanced and
varied. Making a communication choice can have unintended consequences or can be a

1



strategy for successful interchange of ideas and unambiguous decision-making. We offer
two examples of communication in software development, one from academia and one
from industry.

Vignette 1:

Setting: As part of their senior capstone project, a team of three software engineering stu-
dents are working on a project for the US Navy. Their client and technical expert is Hank
Taylor, a professor in the Mechanical Engineering department. An earlier team had met
with the client several times and tried but did not succeed in producing the code needed.
The current three person software development team has taken over from them and is at-
tempting to finish the project with Hank. Several weeks into the project, the current team
finds itself facing similar issues to the first team - they are behind schedule in presenting a
requested analysis of the existing legacy code.

In this vignette, Denise, one of the software engineering students shares a rough hand
drawn data dependency and control flow chart (see Figure 1.1 on page 3) of the legacy
code with Hank. They use the hand drawn chart to point at areas of the code represented
by boxes, to be able to clearly articulate their questions and responses, using the chart
as context for their questions. Together, they read the chart and mark it up as they go along.

Hank (client): Is this your chart?

Denise (student CS team member): Yes

Hank: It looks exactly like his (another chart from a
company that is a navy contractor, to keep track of the
code)

Denise: No, his chart is much nicer.

Hank: So have you folks started ‘divvying’ it up?

Denise: This is where we need some help. So this is what
happens in the code (pointing at Denise’s chart) [Denise
explains on her chart that she has color coded based on
which blocks are her responsibility and how the chart
describes the blocks]

2



Figure 1.1: Denise’s hand-drawn chart

Hank: Can you show me some example within the code? This
is great. Don’t throw this out. Is this hand-drawn?

Denise: Yes, I love the colors.

Vignette 2:

Setting: Audacity is a popular, open source, cross platform, recording and audio edit-
ing tool. The Audacity project has been running for many years and has been exercising
software development communication using email as the primary means of communication
and decision making. The project is profoundly distributed in nature, with members from
different countries. They have a core team of four to six people and receive code con-
tributions from an assortment of programmers. Anyone in the developer list can start a
discussion. Some of the participants on the forum may be regular contributors but not on
the Core Team. The participation ranges from extremely regular to sporadic for some of
the developers. The replies on the forum can be complex in style and are often inline with
varying degrees of quoting.

In the following email exchange, Campbell is an occasional contributor and Benjamin,

3



who has been regularly contributing for two years, has recently been inducted into the
Core Team. Cambell brings up the question of code style and Benjamin enthusiastically
agrees with him. Leland and Vaughn are long time contributors in the Core Team where
Vaughn could be considered the most active on email. Vaughn disagrees with the suggestion
and eventually reveals that this type of discussion has occurred before and decided.

The project has just wrapped up a code freeze and the developers have some time to reflect
on the bigger picture. This is a discussion post code freeze time when developers have
time to reflect on the bigger picture. Benjamin supports another new developer Campbell,
who brought up the idea of following standard code style in the programming. The idea
is debated where some relative newcomers are in support of imposing coding standards
and some of the more experienced developers in the community are against the idea and
do not want to continue the discussion as this issue had been discussed and decided before.

Campbell Barton wrote:

Hi,

I was curious if Audacity has a preferred style guide.

----------------

Richard Ash wrote:

Hmm, google: audacity code style

first hit

http://wiki.audacityteam.org/wiki/CodingStandards

(and link in the second section of the Developer Guide).

———————–

Benjamin Drung wrote:

4



The coding standard says:

three spaces per indent

Why? Every other software project that I know uses either
two, four, eight spaces per indent or tabs. Some code/text
editors do not support three spaces per indent.

---------------

Leland wrote:

Here’s a little more background:

http://audacity.238276.n2.nabble.com/How-about.html

And I’m sure it was discussed way before that. For those
that don’t know Dominic was one of the original authors of
Audacity.

---------------

Benjamin Drung says:

Maybe it’s time to discuss it again. Old developers retired
and new joined. So the overall preference could have been
changed. Who of the Audacity developers has strong opinions
regarding coding styles and who does not care (as long it’s
consistent)?

Three spaces for indentation was a compromise between two
and four. Who is for two spaces and who is for four?

———————–

After several emails, Vaughn wrote in response to Leland:

5



On 2/8/2013 2:48 PM, Leland wrote:

On Fri, Feb 8, 2013 at 2:01 AM, Vaughan Johnson

We’ve had many developers over the years who participate for
a short (sometimes long, often infrequent) time, then move
on, or become lurkers. (Ahem, like the guy who started this
thread, and admitted he’d diverged from prior style when he
contributed - much love!)

If this is a reference to me, then I was just doing what I
thought you wanted...to keep quiet.

(Vaughn:) Thanks, Leland. I appreciate that, too.

Your original response was quite clear and nothing more
needed to be said. Basically, the Audacity project is
flexible, to some extent, when it comes to coding style.

Why have you kept the thread alive? It’s really
simple...don’t respond.

(Vaughn:) I kept alive to engage the new posters, who
apparently weren’t getting what I said in my original
response, and diverged into other topics. Sorry it’s not
more pleasant, but I get frustrated repeating myself and
being argued against the same thing. I’m glad you found it
clear what I was saying, but yes, I did feed the troll.

Thanks, Vaughan

These seemingly ordinary scenarios are complex under the surface. They are a product of
choices, conscious or unconscious, on the part of the participants. In the capstone project
vignette, the use of an artifact, in this case Denise’s chart which started off as a tool for de-
veloping her own understanding of the legacy code, to facilitate a design and code specific
technical discussion is an innovative way to disambiguate questions and explanations about

6



code. The artifact also expresses to the client the ability of the student to understand the
code. It gives the student a chance to show her work and inspire confidence in her abilities.
When the same hand drawn chart was used in a class activity in Team Software Project as
an artifact of software development, many students reacted to the chart by calling it “messy
and unprofessional” and “something (we) would never use with a client”. However, in this
instance, Hank, the client was very impressed with the chart and in turn with Denise, the
student. He exclaimed that now Denise is the person who knows the most about the code.
Upon learning of the context some more, the capstone project students understood its place
as an artifact for personal consumption, therefore messy, but being used to demonstrate
knowledge to the client.

In the Audacity vignette, when Benjamin supported the question of enforcing style guide-
lines, he was taking initiative and encouraging a discussion. However, as the discussion ran
very long and eventually became unpleasant, it did not serve the originator in expressing
his vision and attempt to foster a healthy discussion. Instead, some of the more experienced
developers in the community were annoyed at the persistence of the discussion that they
were trying to resolve quickly.

Also, at one point Benjamin poses a question about who supports which decision regarding
coding style. “Three spaces for indentation was a compromise between two and four. Who
is for two spaces and who is for four? ” This is an awkward way to move the discussion
forward before the more mature developers on the project have even given assent. The first
issue with this type of statement is that it is a premature challenge to the status quo of no
specific coding style and it calls for broad input which is awkward in a medium like email,
where a specific question about who supports 2 spaces versus who supports 4 spaces for
indentation, when the current standard is 3 spaces. This raises the questions: what would
be a good alternative to the poll taking, and how does one determine that the poll taking is
done? In this project, email poll taking is a common practice. However, questions do not
often get more than a few responses, and those responses can be a factor in the decision,
dependent on who supports it.

These are both examples of communication that have a significance beyond just the simple
act of the communication, influenced by the context. Both are cases of communication
which is strategically planned overall – planning a meeting, preparing a chart, starting a
discussion about code style; however the participants have to improvise the specifics of the
conversation, thinking tactically. The details of the communication require consideration,
and there is no template or process that participants could follow to determine that. They
can plan what the activity is going to be, and while engaged in the activity, they make
smaller choices about their communication and can also have a great impact on the outcome
of their communication.

7



1.2 Speech Act Theory: Speaking and Writing as Doing

Software engineers are accustomed to the idea of text having more power than the simple
words used. Similarly, spoken and written words can have significance beyond the mere
text. This brings us to a powerful idea that we do things by simply saying and writing.
Software developers in an implicit way have to consider the impact of their words, which
can lead to problems if not considered carefully. Following Austin’s speech act theory [4]
we can think of the communication acts as having a locutionary significance – with the
utterance of the questions and answers in the student- client discussion, or the sending of
the email in the open source community and the simple, immediate and direct meaning of
the communication; as well as an illocutionary force – where the social significance of the
utterance is considered, with the client asking questions or Benjamin making a suggestion
as a social act of expressing or questioning for the benefit of the receiver; and the perlocu-
tionary significance of the act where the actual effect of the utterance is considered, where
Denise gets a chance to prove her knowledge or prove that she has done the work asked of
her, or Benjamin is encouraging discussion with a simple suggestion about code style but
also showing that he is thinking about the bigger picture as an active and core member of
the team.

1.3 Communication in Software Development

There is a consensus among software professionals that some of the biggest challenges
in this relatively new field lie in the decidedly old technology of communication - oral,
written, and otherwise - between humans. Software development is complex, due not only
to the functionality of the software itself, but also to the competing and often conflicting
goals of different stakeholders. The wide range of application areas draws together stake-
holders with different backgrounds. Moreover, software developers work in a world of
incomplete, imperfect information, and they must be proactive in seeking input from other
stakeholders [10]. Among software professionals, the quality of team communication is
widely acknowledged to be a key factor in the success of failure of software projects.

In most real software settings, there is no comprehensive, rote communication workflow to
follow. Developers must be able to think strategically and tactically about their communi-
cation, selecting the appropriate material, location, timing and manner to suit the context.
This involves analysis of the context and of candidate solutions, along with a synthesis of
communication elements. Agile development methods in particular stress the importance
of flexible communication practices, deployed as the developers see fit (in contrast to the

8



static organization and communication practices of waterfall development).

The essential intangibility and malleability of software present unique communication chal-
lenges in its development, compared to other engineered products. The intangibility of
software mandates sophisticated communication to convey requirements and changes, in
ways that accommodate multiple stakeholders’ mental models and goals. The malleability
of software leads stakeholders to expect change at low cost with high impact. The software
industry is characterized by constant personnel turnover, making software development
even more dynamic. Consequently, the meaning of the software is something that needs
to be negotiated continually. The members of a software development community must be
empowered to convey and negotiate meaning through effective communication practices.

1.3.1 Communication and Software Process

In the early days of software engineering, the first decade after the term was coined at a
seminal NATO meeting in 1968 [48] the notion of software process and the importance of
communication in the process were emergent ideas. Code bases were smaller and even de-
veloper communities were smaller, often there were few precedents to follow in designing
system behavior or interface. Disasters like the Therac-25 incident [46] occurred about two
decades after the NATO conference. The Therac-25 causes can be traced back to a lack
of thought or rigor in creating a reproducible process and lack of an overarching structure
to the software process. This started to motivate the need for more rigor and process in
software development. Software was starting to become more complex and entering newer
domains and being made for different types of users.

In his seminal work on software development, Royce [52] proposes the waterfall model as
a theoretical basis for a software process. It is not clear how viable even Royce consid-
ered the model, but it served as a hypothetical model in the lack of anything better. He
was driven by the need for better documentation and more communication. Figure 1.2
on page 10 represents the stages of the software process and the documentation produced
as a linear sequence of steps with limited backtracking. As other software development
models were introduced (spiral, iterative, etc. ), they were all based on adding structure to
the communication and documentation practices, emphasizing the importance and impact
of communication in the software development process. What is interesting and often ig-
nored when discussing waterfall, is how many formal documents are produced at the end
of each step. It is however, left unclear what one is supposed to do within each step beyond
generating documents.

The 1980s and 90s witnessed a move away from a strictly linear structure of the waterfall

9



Figure 1.2: Waterfall model with documentation

model and away from strictly document-oriented processes. Carroll’s work on minimalist
design [16] motivated thinking about software interfaces to assist the user’s abilities instead
of placing the cognitive burden of necessarily going through lengthy documentation on the
user. There was less emphasis on the preferred template style communication prescribed
by the waterfall model. XP[5] put forth the somewhat radical notion that the documents
laid out in waterfall are not necessary and may even hinder progress on the code.

As Agile software development has emerged, supported by the Agile manifesto [6], it also
emphasizes the need for change in communication practices within the team, exemplified
by XP, and between the development team and the product owner. Scrum incorporates
very structured communication practices like the Daily Stand Up meeting, the Sprint Ret-
rospective meeting and the Burndown chart. The purpose is to value “Individuals and
Interactions” and “collaboration”. There is greater emphasis and value placed on flexi-
bility (agility). We observe a shift from documentation driven waterfall models to more
interaction driven Agile methodology.

The structured communication practices are a starting point for practices, not a cookie
cutter solution. This is a step further from the cookie cutter template model of software

10



communication, instead the drive was to describe a way of doing something and leave
room for improvisation and choosing style. This is illustrated by the Scrum Patterns [20]
and the Organizational patterns work [22] where libraries of patterns of Scrum and Agile
organizational practices and guidelines are used to prescribe overall behavior with room
for picking which patterns apply best and using them as guidelines to determine practices
for one’s specific team. For example from the Scrum Patterns library, the “Developer Or-
dered Work Plan” pattern which depends on the “Sprint”, “Sprint Backlog” and “Product
Backlog” patterns and would benefit from employing the “Spirit of the Game” pattern.
Similarly from the Organizational patterns library, the “Self-Selecting Team” pattern is
related to the “Developer decides process” pattern, which define specific practices for self-
managing software teams. We discuss these pattern libraries and their inter-relationships
later in section 1.6.4. The industry has witnessed a change in its ability to produce software
by changing the processes and procedures observed during software development.

1.3.2 Communication in Software Engineering Education

Instruction in communication has long been part of the computer science and software
engineering curricula, but typically there has been a divide between the formal, highly
technical documentation taught within the computing disciplines and instruction in team-
work and communication (invariably referred to as “soft skills”) that is typically provided
through ancillary courses. Instruction by experts in writing and communication has an es-
sential place in computing education, but it must be matched with similar instruction within
the computing disciplinary courses. Software engineering instructors are in a unique posi-
tion to ground the material in authentic practices and validate communication by attending
to it.

The importance of communication in the software process is beginning to be acknowledged
in the software engineering education community. The most recent version of the Software
Engineering Body of Knowledge (SWEBOK) [9] has an expanded treatment of communi-
cation, compared to previous versions, with breakout sections on “reading, understanding
and summarizing”, “writing”, “team and group communication”, and “presentation skills”
– though still little in the way of specific recommendations.

“Some communication can be accomplished in writing. Software docu-
mentation is a common substitute for direct interaction. Email is another but,
although it is useful, it is not always enough; also, if one sends too many mes-
sages, it becomes difficult to identify the important information. Increasingly,
organizations are using enterprise collaboration tools to share information. In

11



addition, the use of electronic information stores, accessible to all team mem-
bers, for organizational policies, standards, common engineering procedures,
and project-specific information, can be most beneficial.” Page 11-11 [9]

We see that the report hints at the need for being more strategic about communication
skills, but does not provide much information on what those strategies should be. This is
a good observation and a move in the right direction, but there are no overlying principles
developed. The daily communication is something that students still have to figure out
for themselves. They get little instruction or practice in daily tactical project communica-
tion. This section of SWEBOK raises the concern about the design of the communication
strategies, but there is little in place to prepare students for it.

A recent positive development is a project funded through the NSF CPATH program to
bring the expertise of writing instructors into the computer science and software engineer-
ing curricula [29]. This project has produced a repository of assignments that engage stu-
dents in authentic communication activities. Some effort has been made to categorize the
genres of communication that arise in software development settings [15].

While these activities acknowledge that communication is important, they motivate the case
for careful communication design and a treatment of communication as problem solving,
which requires choosing from different forms of communication based on context, need
and style. The challenge is – How do we place students in an authentic decision making
role before they get to their senior capstone project?

1.4 Communities of Practice

Our topic deals with learning in complex, changing, social settings. Vygotsky’s social con-
structivism gives us a way to view learning as a social activity. Vygotsky’s notion of social
constructivism of knowledge [62] talks about how information is processed into knowl-
edge affected by the learner’s social and cultural environment and how one’s community
is important for “negotiating meaning”. Social constructivism stands in contrast to some
positivist approaches of understanding learning which are based on the assumption that
meaning is absolute and static. Positivist approaches are parodied through the idea of the
Nurnberg funnel where the transfer of knowledge is presumed to happen from the teacher
to the student in the form of facts and theory which the student consumes through a figura-
tive funnel in their head. We favor Vygotsky’s social constructivism and its interpretation
of learning, which assumes that meaning is dynamic and is better conveyed in the social
setting where it is created.

12



In the computing field, we often think in frames that treat meaning as static; however, code
is only a manifestation of the negotiated collective understanding of requirements, arrived
at through interaction among multiple stakeholders with different roles and involvement in
the software development community. A community member’s role, influence and contri-
bution in a software development community of practice may also be negotiated over time
as members join and leave and work in different capacities over time.

Some of the main challenges that software developers or software engineers face in industry
are related to their lack of experience or knowledge in the soft skills related to communi-
cation and teamwork, as described in the works of Begel [7] and Begel and Simon [8] on
novice software engineers. In addition, Hall et al.’s [32] research about employee turnover
in software engineering projects describes the negative impact on the motivation in and
success of a project. Zanetti [57] talks about the influence of social factors in turnover,
where employee turnover is a reality of the typical software project experience. The soft-
ware industry is a dynamic set of communities characterized by high turnover. Therefore, it
is important to study the essence of how these software development communities manage
and sustain themselves.

When one thinks of software development in an abstract form, one thinks of developers as
a homogeneous group of skilled and experienced programmers following predetermined
processes to deliver a product, however in practice, the developer community is always
in flux as new members are learning the ropes and experienced members are taking on
larger tasks or moving on to different roles. In addition, the meaning of software is always
changing based on changing requirements and resource limitations.

We interpret communication in software projects as a negotiation of meaning. Wenger
[67] captures this negotiated quality of meaning in his concept of Community of Practice.
Wenger describes Communities of Practice as “groups of people who share a concern or a
passion for something they do and learn how to do it better as they interact regularly”. He
views meaning as essentially linked with identity within a practitioner community. Those
who identify as community members contribute to the shared negotiation of meaning, and
participation in the negotiation of meaning reinforces identity.

Wenger says “Practice is about meaning as an experience of daily life”(pg. 52)[67]. He
asserts that negotiation of this meaning or lived experience happens through participation
and reification. That the experience of meaning occurs when established patterns of daily
behavior are produced anew, allowing the pattern to either be confirmed or disproved or
extended or replaced. This becomes the significance or negotiated meaning associated
with that everyday practice. Wenger argues that all forms of engagement are a negotiation
of meaning - the process by which we experience and engage the world.

13



Wenger describes the concept of participation as social engagement in a community as
a member, where this experience is both personal and social. It can manifest itself as
thinking, being, doing, talking, feeling of social relations and emotions. Our participation
in a community shapes our experience of the world and in turn also shapes that community.
Participation can take many forms and may be formally acknowledged or occur informally
or even subconsciously. One may not perceive their participation as contributing anything
to the community, but their mere participation helps shape that community in some way.

Wenger’s notion of reification refers to either concrete products or conceptual products
as well as the process of producing the products of participation. Reification can occur
by making, declaring, recasting, perceiving, articulating, designating, representing, using,
etc. It can take many forms, for instance, it could be awarding someone a formal title
or position, creating an intangible formula, an articulation of a political sentiment in a
slogan, a scientific specimen, a piece of code, etc. and the process and practices involved
in producing these products. A risk associated with reification is that it can possibly fail
to capture the true or intended meaning and trivialize a complex nuanced sentiment with a
catchphrase or by categorizing people it may designate a stereotype.

Figure 1.3: Central concepts of Communities of Practice

Participation and reification exist in a duality, where they complement each other as a bal-
ance. Participation produces products that are recognized as reification, and together they

14



allow for the negotiation of meaning. The products alone may be useful but not completely
meaningful. For example, a piece of code and the process of writing the code can serve
as reification of the programmer’s participation in the software development community.
Even though the code can be used without the programmer, it serves to legitimize the pro-
grammer’s efforts and in turn forms her contribution to the community. Conversely, the
programmer may be needed to do a code walk-through to explain the code to her peers or
even other stakeholders. Similarly, laws can exist stand-alone, but a lawyer or judge may
be needed to interpret or represent them to the rest of the community. The title of lead pro-
grammer may help reify the programmer’s success in the team, but without the programmer
occupying that position, the position is meaningless. The balance between reification and
participation can sometimes be subtle. Too much reification with little participation may
serve to undervalue the participation and the products of participation. However, too little
reification when a lot of participation in the community has occurred can discourage and
alienate the members of the community.

Wenger also talks about Identity as a combination of the meaning negotiated through partic-
ipation and reification in a community, as well as the learning trajectory into a community.
Wenger argues that Identity is always being shaped and is temporal. It is constructed in
social constructs and reflects how one perceives themselves personally and socially as well
as how one is perceived in a community. One’s trajectory in a community of practice is
always in flux. A participant can start as a novice and move into a more central role in
the community, and then graduate to vertically successive positions. The participant may
eventually feel saturated in interest and contribution in that role and move to a different role
in the community or move out of the community altogether. A participant might even de-
termine that they wish to perform a more peripheral role in the community and shape their
trajectory accordingly. Figure 1.3 on page 14 depicts the interconnected and interdependent
nature of the central concepts of communities of practice.

In software development communities of practice, communication has a profound effect on
both meaning and identity. Members are continually and rapidly having to choose between
multiple communication options. The right choices at the right time can help bring partic-
ipants in and facilitate convergence of meaning, while the wrong choices can marginalize
participants’ identity and confound the negotiation. Although there are many norms and
standards of communication that help, members still have to be creative in their context sen-
sitive communication choices on a daily basis. Agile software developmentworks within a
framework of communication rituals which also indicates the importance of communica-
tion to the software process overall. The rituals and artifacts are not meant to be a manual to
resolve all communication issues, they are a loose framework to facilitate better and more
creative communication.

Wenger describes how identity is defined by participation as well as non-participation and

15



how different communities may have different means to reify identity. Some communi-
ties may opt for formal and structured reification methods and some might employ more
implicit means. Participants in a community also determine their identity by choosing
different types of trajectories into the community. Participants thereby contribute to the
definition of their identity by choosing a combination of different trajectories, levels of
participation and negotiating the meaning of their identity through their quantity and type
of contribution.

Considering software development communities as communities of practice is not a novel
idea. Paasivaara and Lassenius [50] study “large, distributed agile software development”
as a community of practice at Ericsson. Their work describes a large software company
designing their processes aware of Wenger’s notion of Community of Practice. In Wenger’s
work, the term Community of Practice is descriptive rather than prescriptive. So even a
dysfunctional Community of Practice is a legitimate Community of Practice. It is important
to note that even a software development community that does not identify itself with the
term Community of Practice is still a community of practice where members join and
leave and work together to share and shape knowledge and negotiate their role and the
meaning of the system they are building. Even though the term “Community of Practice”
is starting to be used prescriptively to describe self-aware communities, reflecting on how
to maintain and improve process through member inclusion, software projects are already
active communities of practice. They may be very good and effective communities of
practice already without associating with the terminology.

1.5 Research Overview

In this dissertation, we investigate the mechanics of how meaning is negotiated in the con-
text of software development. This negotiation is mediated through language and other
forms of communication and can occur in different settings and amongst different types
of participants. We focus on how identity within the software development community of
practice affects participants’ communication choices and how in turn, these communica-
tion choices can affect others’ sense of identity. This effect on others’ identity can be either
strengthening their connection to their role in the community and encouraging deeper par-
ticipation and facilitate meaning negotiation or by marginalizing their identity.

We also want to investigate how an individual’s notion of identity is affected by their ‘trajec-
tory’ in the community, taking from Wenger’s notion of trajectories. We observe how com-
munity members’ roles can be determined by their participation and their non-participation
and its relationship with the chosen trajectory.

16



We also want to leverage different pedagogical practices to expose software development
students to the complexities of real world software project communication to prepare them
for their eventual roles in it.

1.5.1 Research Questions

Our overarching goal is to study how software development communities sustain them-
selves through change in personnel and priorities and to educate the larger software devel-
opment community towards their communication choices.

Our objective is to study the way communication choices affect the ability of a software
development community of practice to sustain itself. We use the framework of community
of practice, we study aspects of the community like identity, trajectory, participation and
negotiation of meaning. We study the interplay of these aspects and their relationship with
communication choices.

We hypothesize that relationships exist between aspects of a community of practice like
identity, trajectory, participation, negotiation of meaning and communication and organi-
zational strategies and patterns.

We articulate our research goals in terms of relationships between aspects of communities
of practice:

Question I: Investigate the relationship between choice of communication strategy and
negotiation of meaning.

Question II: Investigate the relationship between communication strategy and identity.

We articulate the goal of educating the larger software development community at large
towards their communication choices:

Question III: Pedagogical - How can we build awareness of strategic communication
among community members like software development students and give them the skills
to think of communication as a problem solving?

17



1.5.1.1 Refined Questions

For questions I and II, we understand that negotiation of meaning, identity, participation,
trajectory and reification do not exist in isolation, and are best studied together, affecting
each other.

We recombine Questions I and II to reflect the intermixed nature of these aspects of com-
munities of practice.

Ethnographic Goal: Investigate the relationship between communication strategy and the
elements of communities of practice (negotiation of meaning, trajectory, identity, participa-
tion and reification) within the context of a software development community of practice.

Considering question III, which talks about using what we learn from the software de-
velopment communities of practice to educate the larger software industry and education
community. There are two distinct sections of the larger software development community
- software industry practitioners and budding software engineering and computer science
students.

Pedagogical Goal: Use our findings from the software development community of practice
to build awareness of and develop skills in strategic communication among community
members like software development students and industry professionals.

1.5.2 Our approach

To satisfy the combined questions I and II, we start by applying a grounded theory ap-
proach, discussed later in Section 1.6.3, on the open source software development email
data, focusing on a carefully selected window of observation which contains noteworthy
incidents, and our existing student software development project data to identify instances
of mentoring and communication choices.

We then apply a grounded theory approach to parse the data collected from the co-located
agile software development communities of practice, and identify instances depicting
participation, identity, trajectory, reification, negotiation of meaning and communication
choices in any combination of subsets and document them, converting them into a format
consumable by practitioners.

18



To satisfy the refined question III, we first consider industry practitioners. We build on a
large body of knowledge - existing and sometimes overlapping libraries of scrum patterns
and organizational patterns.

We see our contribution to further the knowledge that the software development industry
practitioners and experts maintain to share with the larger community about their commu-
nication choices.

Considering the audience of software practitioners in training in the form of software en-
gineering and computer science students, we work on adapting the existing computing
curriculum to incorporate exercises that sensitize students to their communication choices
through exposure to a scaffolding of instances of real world communication examined
through the lens of a rubric such as our home baked communication patterns.

1.5.3 Subjects of Study

Our goal is to build and contribute to the body of knowledge allowing us to identify and cre-
ate patterns of communication. There is no simple, direct answer to what communication
characterizes software projects, which makes the grounded theory approach appropriate
for this work. We have intentionally chosen different types of subjects to study, to observe
what constitutes legitimate software development communication in different settings. We
study two main types of software development communities of practice, the open source
software development community model and the small industry Agile software develop-
ment model. We also bring our learnings into the software engineering classroom to teach
students to be more conscious of communication choices.

1.5.3.1 Open Source Development Community

One type of community we study is open source software development. We focus on their
discussions on collaborative, long-term software projects. The restricted, asynchronous,
text only medium of communication presents unique challenges to developers. They are
often communicating on high risk issues across different time zones and with different
agendas and goals. Some such discussions are better suited to face to face interaction
- like troubleshooting while looking at code together. Participants have to find creative
substitutes for these practices within their restricted context. Here, we are using discourse
analysis techniques to find recurring rhetorical forms in their communication and study the
overall structure of the decision-making process.

19



We observe that in the chosen open source software development communities, for ex-
ample Audacity development, there is an implicit hierarchy, even though any participant
developer, old or new is encouraged to contribute. There is a core “Audacity Team” which
often has the final say in major decisions, or can decide what matters need experts to con-
sult. We see examples of community members with an inbound trajectory, newcomers with
the intention of full participation, who contribute as a developer over a long period of time
and may be finally reified as an official member of the Audacity Team or as an expert con-
tributor in a particular area. Some members choose a peripheral trajectory, where they only
intend to participate as an outsider, never as a full participant. These members define their
role and identity through their non-participation. They may choose to never participate in
decision-making, and confine their contribution to small patches of code. Some partici-
pants choose a boundary trajectory, serving as a bridge between the developer community
and the quality assurance team or as a bridge between different developer communities
like the unix development and the windows development team or the mathematical domain
developers and the user interface developers.

Reification and recognition may appear in different forms for members of the community
on different trajectories. Some may feel the need for official reification or recognition of
their named roles and some might be content with being recognized as a contributor without
an official “expert” title.

1.5.3.2 Industry Agile Team

In contrast, we also study a co-located, highly synchronized and structured, Agile team. We
focus on a time when the team is transitioning in size and scope after having been ardent
and loyal followers of Agile for a few years. They operate within a cohesive team with a
strong common vision and a rich range of communication options available to them. They
are also a set of developers that have to frequently work together with scientists, engineers
and other domain experts, which can present its own challenges. Some of the development
teams operate in one location and some other developers work remotely, either from a
distant office location or from home. Many of their practices take advantage of face to face
interaction and they practice many Agile prescribed communication acts.

Here, we are using semi-structured interviews, observations and capturing the daily ex-
perience of software developer through participant observation. We are focusing on how
newcomers are “onboarded” or brought into the team and how the communities sustain
themselves through change. We take a positivist, quantitative approach of analysis with the
developer’s daily communication activity data and a we take a qualitative approach for the
data collected through interviews and observation.

20



We observe that the team has a more explicit structure and the hierarchy within the team
is identified through formal roles, positions and named responsibilities. An individual’s
trajectory is more obvious and explicitly discussed. Roles and identity are reified through
formal titles and changes in role and position.

Compared to the open source development community of practice, this community has a
more structured format for participation and negotiation of role. They also have a formal
“onboarding” period and communication rituals attached to it, followed by integration into
daily work by pairing with a more experienced programmer. We study mentoring, critique
and reflection practices in the different development communities.

1.5.3.3 Software Engineering Student Community

Software projects require sophisticated and varied communication skills, but computer sci-
ence and software engineering students tend to get little communication training within the
discipline.

Another very different type of “onboarding” occurs when we educate software engineering
students to prepare them for a professional role in the software community. Undergraduate
software engineering students are trying to find their identity in this community. We take
our learnings and explore how to help students find their identity as Agile communicators.
We bring the discussion on the complexities and nuances of communication in the software
project context and the set of communication skills required into the undergraduate CS
software engineering curriculum. We do this by bringing in examples of communication
from real software projects. We employ a guided enquiry process to assist the students in
discovering and analyzing the nuances of these interactions. Then, as the students engage
in their own software project experiences, we guide them to reflect on their communication
practices. Our goal is to prepare students not just in effective genres of communication but
also in sensitizing them to their communication choices.

Our earlier research explored the benefits of using “homegrown” Computer Science student
case studies [65] as a tool for students to learn about communication practices in the context
of a software project [11] [10].

The third-year Team Software Project course, a requirement for the computer science and
software engineering degree programs at our institution, is an ideal venue for communi-
cation related instruction to help the students find their place in the software development
community of practice. Here, students are exposed to different means of being part of
their software community and are given tools to help them engage with their community of

21



practice better.

Building on two years of experience with programming, software design and computer
systems, students take on a semester-long project, with the instructor acting as client. The
technical toolset developed in introductory courses is brought to bear on a real software
problem. Here is where the notion of software process – the practice of creating software
products in a replicable, reliable way – can be addressed and put into action. Techniques
for effective communication are obviously an important component of this agenda.

Our Team Software Project course includes an introduction to the concept of software pro-
cess, focusing on the Scrum framework [55]. One advantage of placing our instruction
in this context is that Scrum explicitly acknowledges the importance of repeated, well-
constructed communication [64]. Many of the iconic practices of Scrum – stand-up meet-
ings, sprint retrospectives, planning poker – are designed to increase discussion, reflection
and debate, all of which help to strengthen the software process. The message that we wish
to add is that Scrum, or any other process framework, can provide only broad guidelines for
communication, not narrow, comprehensive rules. For instance, team members may follow
the practice of daily standup meetings, but it remains to their creative powers to determine
what activities follow from the information shared at the standup.

We use a process of guided inquiry [47], where students construct their own interpretations
of the subject matter through critical thinking and problem solving. This approach fits the
topic well: the search for meaning within a given communication setting is complex, and
different observers may see different patterns of communication in play. Guided inquiry
allows students to take ownership of their interpretations; at the same time, we consciously
steer students away from rote, simplistic answers that ignore the complexity of commu-
nication. In the Process Oriented Guided Inquiry Learning (POGIL) [34] model that we
adopt, students work in small groups with individual roles: a process framework similar to
that of Scrum. The problem solving conversations within the groups give students further
practice in team communication.

1.5.4 Data Sources

Our data looks different for the different communities being studied. For the open source
software development projects, we have the full account of the email communication in the
forum for the windows of time that we have selected. In addition, we have some supple-
mentary data in the form of bug reports, and forum wikis which are sometimes referenced
in their email communication.

22



For the small Agile industry team, we conducted ethnographic study through participant
observation and the data collected is in the form of structured and semi-structured partici-
pant interviews, an account of the communication events the participant observer attended
and reflections of the participant observer concerning “onboarding” and communication
style.

For the Team Software Project class, the data collected is in the form of anonymized stu-
dent submissions for communication centric in-class and homework activities and student
feedback on the courses, in addition to our evaluation of student submitted material.

1.6 Tools

We describe the combination of different tools we are using in our research. Depending on
the subject, the tools have different degrees of applicability. Our tools help us use tried and
tested approaches to guided instruction, conduct research with an evolutionary approach
towards refining research questions and to organize our results within an established body
of knowledge and add to it.

1.6.1 Cognitive Apprenticeship

Collins [19] outlines cognitive apprenticeship environments where different types of ap-
prenticeship models are implemented to allow knowledge and skill share. Lave talks about
situated learning [43] and legitimate peripheral participation [44] where working alongside
an established expert, a newcomer to the community learns the practices and acquires the
knowledge common to their community. We observe the cognitive apprenticeship model
extensively in our study of the agile co-located team. We also employ this model when
bringing our communication interlaced curriculum to the software development or com-
puter science classroom.

The basis for our inquiry based curriculum is the POGIL (Process Oriented Guided Inquiry
Learning) approach, which originated in undergraduate chemistry education twenty years
ago and has been introduced to the computing disciplines with the NSF-funded CS-POGIL
initiative. At the heart of POGIL is a guided inquiry learning cycle of exploration, con-
cept invention and application. Students work in small groups with well-defined roles âĂŤ
similarly to teams in agile software development âĂŤ to encourage accountability and en-
gagement. Each POGIL assignment has a common structure: supply students with initial

23



data, guide them through leading questions that allow them to construct a unifying con-
cept explaining the data, then provide means for them to apply and validate their newly
constructed concept. It is in essence an application of the scientific method in a carefully
crafted classroom setting. In addition to learning the core concepts at the heart of the as-
signment, students get practice in team problem solving and communication.

1.6.2 Discourse Analysis

Discourse analysis is a blanket term for a different set of analytical techniques based on
communication analysis, with a preference for real communication text, rather than sim-
ulated or invented communication. Discourse analysis has been used in several fields to
study patterns in communication behavior. We adopt some of the principles and practices
described in the work of James Paul Gee [30]. Gee’s work talks about studying communi-
cation for its linguistic aspects as well as ways of participation and representation with its
linguistic nuances.

Gee makes a distinction between discourse with a small d to mean any text or speech
being studied, but Discourse with a capital D implies both the text being studied and it’s
context which together forms a way of doing, being or identifying, thinking, liking and
perceiving. Discourse analysis thus is not just to study language used but to process any
discourse in terms of who, when, what surroundings, what precedes it, how it is intended
to be perceived, what it portrays about a way of thinking or being.

It is important to study discourse with respect to the “socially situated identity” of both the
creators and receivers of that discourse. What one perceives their identity to be affects the
discourse they produce and for whom they produce. Gee also asserts that different, seem-
ingly endless Discourses exist and they are not separated by clean boundaries. Discourses
may overlap and interleave and come together to form larger Discourses. A single per-
son may participate and identify with several different Discourses. For example, the larger
recognized Discourse of being a software developer may be composed of several different
Discourses of novice software developers and more experienced software developers, sys-
tems software developers and web developers, database software developers and artificial
intelligence developers, user interface developers and animation software developers, etc.

To delve further into Discourses, they can include social language - where different lan-
guage constructs form part of different Discourses and used with different people. For
example, as a software developer, one might use informal language to describe the same
issue to a fellow software developer and team member, as they share a common under-
standing of the system and their tools - the context of the project, but the same software

24



developers may use more formal and less technical language to describe the same issue to
a client or a manager. People engage in different social languages for different audiences,
sometimes without even realizing that they do so.

Discourses can also include Conversations - which are often popular social debate which
may be about a topic relevant to their Discourse and historically and socially related to their
identity. For example, some software developers identify strongly as Apple developers and
users, whereas some software developers may identify strongly as a Windows developer
and user. These seemingly similar Discourses within the larger software developer Dis-
course sometimes evoke passionate feelings of being in opposite Discourses, where the
software developers might even argue diametrically opposite values, practices and styles.
People may own and portray their identity with clothing that indicates through clever in-
side jokes which camp they belong to and through their participation in different opposing
forums where they might voice strong opinions against the other camp.

Another important aspect of Discourses is Intertextuality, where texts from one Discourse
may be referred to in another Discourse with the assumption that the recipient of the text
have knowledge of the other Discourses. The other Discourses may even be seemingly
unrelated, but the participants are aware of the likely link between the different Discourses.
As software developers, the obvious common social language would include jargon com-
mon to the programming constructs and tools that are used, however it may also include
references to different types of gamins Discourses, where it may be assumed that most
software developers play certain types of video games or are at least familiar with some
common gaming themes and memes.

All these concepts come together in Critical Discourse Analysis where we study the utter-
ance, situated meaning and social practice which together forms the context. It also asserts
that the language used both reflects social practices and in that process, it helps create the
social context further.

1.6.3 Grounded Theory

Our focus is on communication as a representation of activity in the software develop-
ment community of practice. We start without knowing in advance what specific aspects
of communication would be most appropriate to reveal the kinds of activity in software
development that would satisfy our queries. So, instead of starting with a specific hypothe-
sis, we are employing a grounded theory approach, where we start with a generic question
and analyze the data in different ways to arrive at the more specific research questions. We
adopt the version of Grounded Theory that Strauss and Corbin [58] describe, with three

25



phases that can overlap.

In the first phase, open coding, that data is tagged using conceptual codes that are developed
by studying the data initially. In the second phase, axial coding, the relationship, especially
causal, between the codes is explored. In the third phase, selective coding, a subset of the
codes and relationships are used to make a theory.

The software development community is vast and diverse, encompassing people from dif-
ferent parts of the world, different academic backgrounds, different skills and communica-
tion styles.

The success of a software project, however, is dependent on many factors, one of the most
important of which is communication within the software development team and with other
stakeholders, compounding the variables in the software process. The same team working
on two similar projects with the same timelines and toolsets, may have different outcomes
for the two projects.

In the past, we have used ethnographic studies of student software development projects
to study patterns and strategies of communication in two almost identical student projects,
with common stakeholders and timelines and product, with different outcomes. Using
the grounded theory approach there allowed us to develop the notion of communication
patterns.

In Computer Science, many aspects of software engineering have been studied using the
grounded theory approach. Zieris and Prechelt [70] use the grounded theory approach to
study knowledge transfer in pair programming as part of Agile software development, as do
Coleman and O’connor [18] in studying software process and software process improve-
ment. Adolph, Hall and Krutchen[32] have used grounded theory to study social interac-
tions in software engineering and [2] share their experiences of using grounded theory in
analyzing software engineering practices and communities.

1.6.4 Pattern Languages

Patterns are a tool familiar to the software development community, starting from the very
popular Design Patterns [28] to Organizational Patterns [22]. In addition, practices in
Scrum have been identified as a pattern language formed of different Scrum Patterns by
the Scrum PLOP community [20].

26



Pattern languages describe relationships between different patterns, even across different
types of pattern libraries. Standalone, patterns can describe the players, artifacts, phenom-
ena and practices of software development. Patterns by themselves are even prescriptive
limited to a small granularity. However, it is when patterns relate with one another through
causal or directing connections, that their extensive descriptive and prescriptive abilities
can be exploited. Through their interdependencies and interconnections, pattern languages
illustrate the complex web of possible practices and their resulting contexts.

For example, the Yesterday’s Weather Scrum pattern describes how Scrum development
teams can determine how much work they can accomplish within a Sprint, using Esti-
mation Points from the previous Sprint. In this example, the Sprint pattern describes an
iteration of the structured time period to allow the development with a fixed set of work,
the Sprint Backlog. The Estimation Points describe the point based system of effort esti-
mation associated with a chunk of work, either a User Story or a collection of user stories
in a Sprint Backlog or a Product Backlog. However, Yesterday’s Weather pattern describes
a prescriptive and a predictive technique for determining work boundaries for the current
iteration of development.

Together, through their interrelations, the pattern languages describe and prescribe the vast
variances in practices and outcomes possible within different forms of software develop-
ment.

Ward Cunningham’s WikiWikiWeb, the “original wiki”, contains a wealth of named pat-
terns for agile practices, many of which fall into the domain of communication [23]. The
Scrum framework is notable in this respect for the way in which it names - and therefore
honors - particular communication practices (standup meetings, retrospectives) that would
otherwise remain tacit and invisible to students [64].

We have developed the notion of communication patterns [63], designed to capture what is
relevant to the software development community about common communication practices
and specific communication acts.

The primary way we organize and present our results such that they would be accessible
and familiar to the software industry is by building upon the existing and validated body
of knowledge comprised in the Scrum Patterns and Organizational patterns work. Our
work with Communication Patterns and the aspects of software development that we are
studying, fall somewhere in the overlap of Scrum patterns and Organizational patterns.
These two sets of pattern libraries are also designed to be compatible with each other,
allowing interplay and interrelations between them.

27





Chapter 2

Initial studies

In this chapter, we present our initial work examining different software development com-
munities and learning about the potential of such data sources and their limitations. The
work described in this chapter allowed us to determine the next step in our study - a fully
immersive ethnographic study of a software development community of practice. Our ini-
tial studies helped us shape our strategy for studying other communities and determine
what we capture and how we capture it. As we will discuss in chapter 6, we also use this
work to harness examples of authentic, software development communication for use in
educating budding software developers.

2.1 Communication Strategies for Mentoring in Software
Development Projects 1

As with professionals in all engineering disciplines, software developers new to a project
must be given the implicit and explicit knowledge they need to be productive, in an effec-
tive and appropriate way, due to fluid team dynamics, geographical distribution, and other
factors. As part of a broader study of communication in software development, we focus
here on communication strategies for mentoring. We explore some examples of mentoring-
oriented communication, in an educational setting and in an open-source consortium of
academics and professionals. We plan to draw out recurring patterns of communication
between mentors and protégés.

1The material contained in this chapter was previously published in the proceedings of the 44th annual Fron-
tiers in Education (FIE) IEEE Conference, 2014 under the title Communication Strategies for Mentoring in
Software Development Projects

29



2.2 Introduction

In collaborative creative endeavors like software development, newcomers must be brought
up to speed not only on matters of fact but on deeper issues of rationale and motivation.
The concept of mentor – the experienced guide, conveying knowledge and “know-how”
to the protégé – is a time-honored tradition in management. Whether through established,
codified practices (e.g. explicit mentoring initiatives by professional engineering organi-
zations [25]) or the more implicit processes captured in legitimate peripheral participation
[43], mentors provide instruction, counseling and interaction to impart understanding in a
way that “reading the manual” (or the source code) cannot.

Software development, however, occupies a unique position in this space, due to its innately
fluid and fast-changing nature. Software teams are formed and reformed at a rapid pace, in
response to evolving requirements, business alliances, and personnel changes. Moreover,
the flexibility afforded by software development, exemplified most vividly by open-source
projects [69], allows theoretically limitless numbers of collaborators, problematizing the
notion of team altogether. In this context, the concept of mentor must be expanded beyond
its customary definition. Mentoring relationships may be ad hoc and transitory, with little or
no clear delineation between those eligible for mentor status and those seeking mentorship.
Begel and Simon [8] discuss the importance, advantages and challenges of mentoring for
novices in the software industry.

Several scholars have identified communication as a central aspect of the mentoring pro-
cess. Beyond the “simple exchange of information and accomplishment of ability” which is
the primary goal of mentoring, Kalbfleisch [35] likens the process of establishing a mentor-
ing relationship to “the initiation of friendships and love relationships in terms of communi-
cating appropriate relational expectations”. Buell [13] expands on this idea by categorizing
mentoring relationships in terms of cloning, nurturing, friendship and apprenticeship, and
noting the importance of “turning points” where the nature of the mentoring relationship
changes [14].

In this section, we explore the communication choices that developers make as they initiate
and conduct mentoring activities. Our study samples include a student software develop-
ment project, with regular face-to-face interactions with a client/mentor, and a globally
distributed open source development project that primarily communicates via email. We
apply our notion of communication patterns [38] [39] to characterize mentoring activities,
employing Buell’s mentoring models [13] as a guide.

30



2.3 Student Mentoring

In this section, we describe our observations of the “Nurturing model” [13] of mentor-
ing and the communication acts and strategies associated with it in two student software
projects, where the communication context was characterized by face to face interaction
and accessibility to the client/expert/mentor.

Our two student software projects were each a semester long each and consisted of a team
of three software engineering students working on a US Navy-sponsored project named
“Seabase”. The project centered on development of a controller for a ship-mounted crane
and involved conversion of some legacy code. The client was “Hank”, a professor in the
mechanical engineering department who originally developed some of the legacy code.
With fresh, inexperienced teams and a short project duration, it is difficult to establish
repeatable practices for project work. Students did however have the benefits of physical
colocation and a readily available and involved client.

In the two student projects – Seabase I and Seabase II, we witness the “Nurturing Model”
[13] of mentor relationship where the mentor facilitates an environment for the protégé
to learn and provides help and encouragement with guidance, as opposed to the “Cloning
Model” where the mentor issues commands to be followed. So how does the “Nurturing”
relationship manifest itself in communication strategies? We see two strategies – an initial
Mentor as Interrogator strategy and a more mature Mentor as Oracle strategy, supported by
a variety of communication tactics.

Mentor as Interrogator: The classic view of mentor, as illustrated memorably in Socratic
dialogue, is mentor as asker of questions, carefully chosen to reveal gaps in knowledge or
provoke awareness among protégés. In this pattern, the interrogation is typically followed
by advice or sharing of strategies to overcome the identified gap. In his exchange with
Seabase II team member “Bob” in Table 2.1 on page 32, Hank is trying to determine Bob’s
plan for soliciting information from another student team. In fact, for the first few weeks
of the project, most of the team’s meetings with Hank followed this pattern interspersed
with giving advice and taking progress updates. Interestingly, Hank’s mentoring in this
exchange is encouraging Bob to think strategically about his upcoming communication
with the team.

Mentor as Oracle: This is the strategy of learning in the presence of a mentor with the
protégé posing questions and the mentor answering them. The Seabase II software engi-
neering team, when tasked with learning MATLAB, spent some time trying to learn from
their client and technical expert, Hank’s directions and reference material, but solicited
Hank’s time to ask specific questions about the language and platform where Hank (in the

31



Table 2.1
Mentor as Interrogator

Seabase II – Week 4

Bob expresses that he might meet a different student team that the SE team need
data from

Hank: What do you hope to get out of that meeting?

Bob: See how they are testing code, and how they are using Simulink

Hank: The reason to have that meeting with them was to understand their system,
right? Specifically.

Bob: Trying to see what values they are using for Simulink

Hank: Like sensors...

Bob: Yes, like sensors, values for testing

Hank: So what you might want before that meeting is the things you need, like the
sensors list that you would need. You won’t have a list and they won’t have a list,
but since you folks have the diagram for that block. Do you know from that what
values you will need?

They look at the diagram and discuss some input parameters like sway, swing angle,
hoist, lock, etc.

Hank: It might be a good idea to have this picture when you talk to them.

(Bob and Hank together make a list of the values)

Hank: Ok, here is a low-level question. How do you want to go about it when you
meet them then? You are at the interface, you provide them the list of things you
need. Keep in mind that they are a senior design team just like the platform team. It
would be good if you have that dialogue with them. I guess what I am trying to say
is that you might not get a quick answer. They should know, but they might not.

32



role of the mentor) resolved their queries through demonstration.

In Week 7 of Seabase II, Denise, a leading member of the SE team, meets Hank to learn
MATLAB, which was a project requirement. After going through the reference material
and code examples that Hank shared, the team is having trouble with a specific portion of
the code regarding the damping mode block. Hank suggests using one block to calculate the
damping values instead. The team watches Hank work on his computer as he demonstrates
how some flags are being set in different S-functions of the code. He then tells the team they
can choose to use whichever method they like best. Denise then asks about the placement
and detection of logical breaks in the code to structure it better and Hank makes suggestions
to structure the code better.

We observe a use of the Over The Shoulder Learning [61] tactic in the context of the
workplace where the team observes Hank as he works step by step through examples of
flag setting in the code. This is easily implemented in the face-to-face synchronous setting
available to Seabase II. In Seabase II, we observe an unmistakable “turning point” in Hank’s
relationship with the team, from the “Nurturing Model” to the “Friendship Model” [13].
In Buell’s conception, the Friendship Model is characterized by “collaborative, reciprocal,
mutual engagement” and weak or nonexistent hierarchy in the mentor-protégé relationship.

The turning point in Seabase II occurs during a meeting where team member Denise brings
an elaborate hand drawn chart to depict data dependencies between blocks of the original
legacy code. The chart was something Hank had repeatedly requested of the Seabase I
team and finally found to his satisfaction with the Seabase II team. The hand-drawn chart
plays a crucial role in demonstrating commitment to the client. Interestingly, the chart
originated as a pedagogical tool for Denise, helping her to “get her head around” the legacy
code. As such, it is messy and difficult for other readers to understand; however, Denise
takes advantage of the synchronous, face-to-face communication with the client to “talk
him through” the document, thereby mitigating any confusion caused by its hand-drawn
nature. We call this tactic Artifact Facilitated Discussion.

Artifact Facilitated Discussion: This tactic is observed when the presence of an artifact,
like a diagram, or piece of code, or design document becomes the center of discussion
and facilitates and captures the understanding of the participants. It is associated with
communication situations where participants have large gaps in their shared knowledge,
where the problem of articulating the question and discovering the right question to ask is
difficult.

It is typically found in a synchronous communication setting, so participants can confirm
understanding with each other through the “catalyst” of the artifact. This is also an example
of incidental learning [21] in the presence of an artifact - the hand drawn chart that Denise

33



Table 2.2
Artifact facilitated discussion and Mentor as interlocutor

Seabase II – Week 6 –

(Denise and Hank are looking at her chart together.)

Denise: This is where we need some help. So this is what happens in the code
(pointing at Denise’s chart)

Denise explains on her chart that she has color coded based on which blocks are her
responsibility and how the chart describes the blocks.

Hank: Can you show me some example within the code? This is great. Don’t throw
this out. Is this hand-drawn?

Week 9 - (Hank and Denise are looking at the chart and Denise is explaining how
init runs and affects other S-functions. Hank asks what some of the functions do,
especially init. Denise explains the purpose)

Hank: Oh that is sweet! That makes sense now. So when this one is high, that value
becomes high and this one goes low, that value is low. I finally get it.. what is setup?

(Denise explains what setup is.)

Hank: I love it. I love it! The beauty of something like this is that I can understand
it. Someone with a high level of knowledge of how the code or the function works
can look at it and completely understand it.

made to trace flow of code module dependencies. In this pattern, the presence of the artifact
allows for more questions to be asked and promotes collaborative learning. The ability to
point at places on the artifact to explain or better ground one’s questions is valuable.

Mentor as Interlocutor: Denise’s chart initiates a turning point in Hank’s relationship
with Denise, toward a “Friendship Model” of mentoring. In communication terms, a new
strategy emerges – one in which questions arise from both the mentor and protégé and they
play off each to share knowledge. Most meetings from the Artifact Facilitated Discussion
onwards followed this strategy, where the team, implicitly led by Denise would brainstorm
with Hank about strategies for arriving at solutions to identified obstacles.

34



2.4 Open source mentoring

In our student project case studies, we find that the student teams clearly benefit from the
physical colocation of mentor and team and frequent synchronous communication – factors
that facilitate more traditional mentoring approaches. How do mentoring strategies change
when this easy access to communication is not available? In this section, we describe the
mentoring strategies we observed in an open source software project where the communi-
cation landscape was drastically different. It allows us to study similar mentoring strategies
in contrasting contexts to appreciate the essential attributes of the mentoring strategies that
work for different situations.

We are currently studying an open source visualization software project with developers
distributed geographically (primarily in Europe and South America) and varying in their
levels of experience and of commitment to the project. Communication is conducted almost
exclusively on a common list serve. The project has an implicit core group of programmers,
who often take on an implied mentoring stance for the “newcomers”.

We observe the same mentoring models as the student project – Nurturing and Friendship.
The Nurturing model is seen typically between the experienced programmers and the new-
comers and the Friendship model exists between the core programmer group. We witness
turning points where novice programmers become experts and switch to a mentor role from
that of a protégé. However, in this asynchronous medium of communication, we focus on
how these mentoring models translate into communication patterns.

We also observe the Mentor as Interrogator and Mentor as Oracle mentoring strategies very
often, where when a new or less experienced programmer would pose a question, typically
the host would acknowledge it, start with appreciation and encouragement and then pose
questions to arrive at the core of the issue. When satisfied that the question is valid and
properly articulated, the host would typically answer with a solution along with advice,
often with code detail and steps to follow. Email is a less than ideal, asynchronous form of
communication and the project members have to use it even for interaction that is typically
conducted face to face.

In the student projects, an important recurring communication strategy was the Artifact
Facilitated Discussion, which is impossible in the open source project as the project mem-
bers are geographically distributed and spread across different time zones. We examine
how they cope to still facilitate incidental learning. The participants are typically proficient
programmers, many of whom are well versed with the library they are working on with
many years of experience, code as part of the email body very frequently becomes part of
the conversation. On a closer, more qualitative look, we observe the Code As Conversation

35



Table 2.3
Code as Conversation

(“Novice” replies with corrections)

thank you for the navigation. There is the script:

<script code pasted in email>

(“Host” appreciates the script)

Thanks! Now, it will be easier to review :)

(“Host” critiques and guides “novice” gently towards other solutions)

Hi, I looked at it a bit. It’s a start, but I think the direction is not quite right yet.
Let’s take a look at one of your examples:

<code example here>

I like that you are using a matrix model.

But, what is not so clean is mixing shapes and elements. Right now, you are creating
elements within the definition of the shape (i.e., instVarNames).

A rule of thumb should be that shapes should be interchangeable. Consider the
following Mandorian example:

<code example here>

pattern, where participants on the forum ask a question related to the code and paste a code
snippet in their email. In turn, respondents also use code in their email to share or propose
solutions, along with some text as explanation. This exchange is often used to arrive at
implementation strategies, make design decisions or even to debug code together.

In Table 2.3 on page 36, we observe a combination of the Code As Conversation pattern
and the Mentor as Oracle and Interrogator mentoring strategies. We share an excerpt from
an email thread started by a programmer with comparably less experience on the project

36



than some of the senior team members. The “novice” programmer wants the “host” to re-
view his code implementation. The “host” starts with encouragement and shares the correct
procedure for collaboration. When the “novice” creates the correct script, the “host” pro-
grammer informs him that he will examine his code, he soon replies with some comments
– he talks to him about the direction of the solution and uses the novice’s code example to
illustrate what should be different. He then shares his own code example to demonstrate
how to accomplish what the “novice” was attempting.

Although the mentoring models observed in both the student and open source projects have
similarities, the change of medium to email only affects the tactics. When tone is not easily
conveyed and the ability to point at a collectively viewed artifact is missing, we see that
both the “host” and “novice” carefully craft responses with lots of information included,
sometimes step by step directions to overcome the lack of a face to face interaction, where
even partially articulated questions accompanied with gestures and pointing convey one’s
meaning. Pointing at common code is replaced by copying and pasting code fragments.
We see that “Over The Shoulder” learning is not possible but “incidental learning” assisted
by the code fragments takes place.

Finally, we note that protégés eventually become mentors as an example of the “turning
point” where we see a “novice” programmer used to pose questions to the forum very
frequently accompanied by statements like “I am very confused” and “I am sure this is a
stupid question”. Over the years, the “novice” has turned into an “expert” where we notice
him responding to and encouraging “novices” with statements like “It is great that you are
working on ... and let us know if you need any help”.

2.5 Discussion

We found that instances of mentoring were easy to identify in the student project and the
open source community materials, as for the student projects we had detailed ethnographic
‘fly on the wall’ records and with open source projects, we had records of their email
conversations. However, with both these data sources, we found that we were missing a
context, that perhaps only interviews of greater immersion into the communities of practice
would provide.

We take our basis of understanding of mentoring ‘in situ’ from the student projects and
the open source software communities, and employ them in studying and understanding a
more involved software development community of practice with greater detail and more
immersion over a prolonged period, to better understand the nuances of communication and
mentoring within the community, especially the practices that allow these typically heavy

37



churn communities to sustain themselves.

2.6 Conclusion

From these initial studies, we learn that mentoring in software development communities
can exist in a multitude of forms and is an integral part of the community practice. We also
learn that without reliable and extensive access to the software development community
being studied, we can only get partial interpretations of the stories of these communities.
Using, static data snapshots from the communities, a lot of what we understand may be
through inaccurate extrapolations. These studies help us determine that our next step is to
study a community with greater access, in a more immersive way, to learn about its stories.

38



Chapter 3

TAI - Participant observation

In this chapter, we describe our methodology and process for conducting ethnographic
study of our selected software development community of practice at TAI(name changed
to protect its identity), through participant observation. We also share our challenges and
limitations in this endeavor. For the sake of the study, we will refer to our participant
observer as Natalie where the TAI study is concerned. The names of all the subjects of
study at TAI - developers and other roles, have been changed.

3.1 TAI: An evolving development practice 1

TAI was formed in 1996 as a spinoff from Michigan Technological University, in Michi-
gan’s Upper Peninsula. The domain area of the firm — thermal modeling for engineering
applications — has remained constant through its history. TAI’s identity, however, has
changed as it has grown in scale and scope. Market forces have shifted the product vision
and the focus of activity. Successful products have led to an increase in scale and therefore
a change in makeup and identity of the employees. (Figure 3.1 on page 40 gives an indica-
tion of the increased complexity of the code base.) This in turn has led to adoption of new
practices and approaches to process.

1The material contained in this chapter is a modified version of material accepted for publication in the
proceedings of the 9th International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), 2016 under the title Among the agilists: Participant observation in a rapidly evolving workspace.

39



Figure 3.1: Change in lines of code with version number and major events.
Code versions in descending order along the x-axis.

40



Fi
gu

re
3.

2:
Ph

as
es

of
TA

Ie
vo

lu
tio

n

41



The rough timeline below and represented in figure 3.2 on page 41 gives a sense of the
interplay between these forces.

1996–1998: The firm operates in a way similar to its roots as an academic research group.
Funding is primarily from government contracts, leveraging SBIR (Small Business Inno-
vation Research) awards. Researchers work essentially in an autonomous fashion on the
shared code base, interacting only occasionally through ad hoc code reviews.

1998–2002: Corporate funding leads the firm in a more targeted direction. With a specific
need for a commercial radiation transfer analysis solution, the first commercial application
is born. At this stage, TAI still identifies as an engineering firm, not a software firm.
Developers have backgrounds in science and mechanical engineering rather than software
engineering. Basic software development mechanisms (e.g. revision control, bug tracking,
formal code reviews) are brought in, prompted by commercial development. Development,
however, still proceeds in a largely decoupled fashion among researcher/developers. There
is still no explicit acknowledgement that a principled software process is needed, though
individuals are starting to recognize this.

2003–2007: The firm moves to an international market. It positions itself as providing
engineering services for hire: TAI employees are hired to model customer engineering
scenarios, using the internally developed and used software product. This period is marked
by an increase in development, with more people brought on due to external funding. An
internship program is started in 2003, and dedicated software developers (not engineers or
researchers) are added. Three of the eight developers have CS degrees. Mentoring of new
developers is done in an implicit fashion by “pioneers” who did the original exploration
of the space. With the increase in scale, addressing issues of personality fit and matching
skills to needs proves more difficult. With a new constituency of developers not steeped in
the history of the company or the research, further guidance is needed. In 2006 Scrum is
adopted as a development framework.

2008–2010: Customer demand exceeds the engineering service model, and the firm piv-
ots toward providing a consumer product, to be offered side by side with service. User
experience issues take on greater importance. (Before, dual use applications - use in mili-
tary and transfer to other domains). In 2009 a formal onboarding process is introduced for
development interns.

2011–present: As scale increases, special needs and cross-cutting concerns are identified.
The time scale implicit in Scrum is considered too long for basic maintenance — “trying to
tango to dubstep”, in the words of Philip — so in 2013, a team dedicated to maintenance is
formed, using Kanban with weekly cycles. A challenge emerges: how to balance the time
commitments of the pioneers between development and mentoring? These team members

42



have deep knowledge of the code base and can make valuable contributions to the code, yet
that knowledge also makes them the best choice for mentoring newcomers. New employees
must now rely on non-pioneers for their onboarding experience.

The engineering services and research department members or the product owners often
serve as proxy clients. Depending on the strength of the software development department,
big stories like feature requests and major bug changes are taken up by the 4-8 person
teams following Scrum, where the team commits to a set of stories for a 3 week sprint
cycle. Depending on the size of the story, an appropriate number of developers self select
to work on a story.

With 20 developers now on the team, Philip finds that he cannot handle all as direct reports.
In his account of the early days, “you had to know everything about everything”. Now with
2 million lines of code, this is not feasible. He notes a struggle with Scrum: while avoid-
ance of narrow silos is advantageous, how general do you have to be? For real employee
satisfaction, there must be a certain catering to personal interests and a vision of ongoing
professional development.

The decision is made to set up skill teams with domain areas of expertise. Organizational
patterns using the Spotify model [37] are adopted. Vertically, squads work as cross func-
tional teams on future feature sets. Horizontally, chapters are formed on the basis of cross-
cutting subject matter expertise. For instance, the physics chapter includes more science
and engineering focused personnel, interested in numerical methods; the presentation chap-
ter deals with user facing issues and technical documentation; and the productivity group
discusses process issues: testing, DevOps and agile. Each chapter has a leader with tradi-
tional management responsibilities. Chapter leads determine who (among those who have
expressed interest and commitment) can join a chapter. Philip is mentoring chapter leads.
The mentoring process for chapter members is a work in progress.

Philip relates his account of the current onboarding process: small groups (one on one
or two on one) work on a specific project for 2–4 weeks, writing a utility program or an
exploratory feature, or working on maintenance of the product line, fixing defects. On-
boarding is experiential learning, with indoctrination into process woven into the technical
work. During the first week, newcomers read up on Scrum and coding standards. With
a customer proxy and their mentor, they define stories, then requirements, acceptance cri-
teria, design solution, and implement/test. Newcomers engage in pair programming, two
screens, one for code writer, other for test writer. Reflecting on his own mentor role, Philip
describes a sensitivity to personality and skill level, and deliberately “driving” less as he
senses greater confidence on the part of the learner. Mentorship is a rotating responsibility:
mentors are called off of their other duties for extended periods: multiple weeks or months.
Philip assesses potential mentors for fit to the work: “we wouldn’t do that to every person”.

43



3.2 Methodology

One member of our research team worked as a software developer in the industry software
development team for eight months, studying the team as a participant observer and con-
ducting occasional interviews with key team members, especially those that work closely
and have varying degrees of experience and serve different roles. In preparation, our par-
ticipant attended a graduate level course on ethnographic methods, and attempted to derive
what subset of methods would be most useful for our particular situation.

In studying TAI, we opted for a mix of immersive ethnographic field study over a long term
observation window, with participant observation and informed interviews [60]

3.2.1 Types of data collection

Our goal was to study the software development community at TAI using a mix of both
quantitative and qualitative methods. The quantitative data give us insights into the kind of
communication activities developers typically engage in, under different software method-
ologies, over their initiation time and during regular operation. The qualitative data help
answer our questions about events and motivations of the developers based on their indi-
vidual journeys, trajectories and level of experience.

Our plan was to capture three types of data: 1) the participant observer’s daily communi-
cation activity data for questions like how often do developers work together or alone and
for what kind of work; 2) personal reflections of our participant observer about the com-
munication and teaming practices regarding onboarding, role and knowledge sharing; 3)
interviews of selected team members to capture their experiences and journeys.

The participant observer tracked the daily communication data by using a calendar and
adding entries for the time blocks that they worked in different modes: e.g., a different time
block for when Natalie was working alone on a task, a separate time block for when Natalie
paired with another developer for the same task, a separate time block for when Natalie
attended the Daily Stand Up meeting, a separate time block for a design discussion with
two other members. This calendar data was then converted into a format more appropriate
for analysis.

44



3.2.2 Participant observer trajectory

Our participant observer started working at the company as a software developer intern
in January of 2015. It was the first day for two other software developers as well. They
were given a tour of the offices and were introduced to other software development team
members. They had a short session with the HR, followed by an IT introduction, getting
access to their computers, software and the common code base. The three developers are
then given their team assignments.

Figure 3.3: Natalie’s team membership

Figure 3.3 on page 45 shows the teams that Natalie was a member of, the duration of her
stint in each team and her team members. Our participant observer Natalie was placed in
the maintenance team along with Nathan. The maintenance team followed Kanban and now
consists of one experienced member, Davin and the two newcomers - Natalie and Nathan.
As part of their regular process, it is not unusual for developers to move between the Scrum
development and the Kanban maintenance teams. The maintenance team at TAI has been
transient in nature. New developers and interns are often placed into the maintenance team
when they first join. After a few months or so, they are moved to the Scrum development
teams and other developers are brought into the maintenance team. There are times when
the maintenance team is dissolved altogether and the functions performed by the team are
distributed among other members.

At the time that Natalie and another newcomer developer joined the maintenance team,

45



there was one other developer working in the team, who helped onboard Natalie and the
other developer. They held a stand up meeting every morning, but it was more for the
benefit of the department manager. The team members sat close to each other and worked
on most bugs as a pair. They communicated with each other multiple times a day and as the
team was small, everyone knew what work was being done. However, as two of the three
team members were still learning how to do the maintenance work, less work was being
done overall than what a fully functional three developer team can manage. Some primary
features of Kanban like the work in progress limit were not used, as a scenario to use them
did not come up. There were times during the next month and a half, when the team grew
to four and shrank to one breifly.

After one and a half months of working on maintenance as a three-person team, three to five
new members previously working on the development team were added to the maintenance
team and the work was re-prioritized to bug squash for a major version product release.
This team was rebranded the “pre-release" team. In a larger team, a more authentic Kanban
practice was possible. In this larger team, more rigorous Kanban practices were adopted,
like revisiting the work in progress limit periodically based on team size and availability.
This was also a time when Natalie and the other new developer had learned how to handle
the development work and were able to contribute meaningfully. A more rigorous template
for bug resolution reporting was followed and it was determined that there should be a
formal requirements gathering discussion and demonstration of the resolution to client for
all bugs. This was not something the maintenance team had been doing for the month or
so before that, but when other developers had been on the maintenance team a year before
that time, these were common practice. Over the month and more, the pre-release team
also grew and shrank in size periodically, depending on availability of developers and need
on other projects.

After working in the maintenance team for a total of about three months, Natalie and
Nathan were assigned to one of the scrum development teams, where a lot of the other
pre-release team members were also assigned. They worked on Scrum style development
for the next three months. Even in the Scrum teams, the team composition changed from
time to time. In the scrum teams, practices like daily stand up, estimating, retrospective, etc.
were adopted. During this time, a new software departmental structure was being planned
and started to be implemented in small waves, where reporting and expertise groupings are
changed.

46



3.2.3 Selecting candidates

For the interview data, our approach was adaptive. Initially, we were just observing by
listening and casually asking questions about the different developers and roles, to identify
suitable candidates. We decided to employ informal interviews[53] which are typically
used as an early observation tool to gain a working understanding of a new social setting.
Informal interviews are typically unscheduled and conversational, not following a script.

In the first few days, as part of her introduction to the people working in the company,
Natalie let them know that she was working as an intern to serve a selfish purpose of
studying the software development at the company for her research. She was also gauging
who seemed more likely to talk about it at a later time. She remembered to engage people as
she worked with them. A convenient time to engage them was when an open conversation
would start about some polarizing topic that occasionally many people from the software
development department would participate in. After such a conversation would come to
its natural close, it would be a time to ask people if they wanted to have lunch together
with a larger group. Many people would eat by themselves at their desk or in the common
break room if not asked otherwise. It was prudent to engage developers and other roles at
lunch about how long they have worked for the company, what their background has been,
whether they have any views on software methodology, etc. There were some developers
who were aware of our intentions before we started working at the company, and expressed
a lot of enthusiasm for supporting the study. Some of these developers were the first few
that were considered viable candidates for the study.

Working in agile teams, where the teams are self-managing, and all developers are suppos-
edly peers, and different teams all report to one department manager made it challenging
to identify what different implicit roles the developers were playing. There wasn’t a tra-
ditional corporate ladder where people at different rungs had different positions. Conver-
sation and observation were the tools we had to determine who does what in the teams.
Initially, while working on a new bug, Natalie would notice whose name would be recom-
mended often for getting advice or help. She would also notice whose advice was most
useful and seemed most insightful. She would also notice which developers would share
advice and an explanation for that choice. Something Natalie was surprised to find was that
confidence was not a good predictor of actual knowledge. Many young and inexperienced
developers would also very confidently give advice that may not work and very experienced
developers might give great advice but might not appear as confident when they do.

Natalie would notice when a developer’s name would be touted as a good source of in-
formation on a variety of subjects and would also notice whom other, more experienced

47



developers would go to for advice. Natalie also noticed the variation in opinions and ad-
herence to rigorous process. This was a criterion in selecting different candidates who seem
similar in experience and knowledge but follow process differently.

After a few weeks of getting to know the different developers in different teams, and getting
to a place where Natalie was comfortable with the work herself, she spoke to the gatekeeper
for the study, who is also the head of the development department and has worked in the
company for a long time. She ran the list of proposed candidates for the study by the gate-
keeper, and he recommended more names based on their different trajectories and working
style. From that list of names, some of the candidates were approached. We intentionally
picked developers with vastly different levels of experience, ranging from someone who
has been a developer for decades, to developers who have a few years of experience as part
of this company, to developers who are in the process of being inducted into the community
during our observation window. Not all the potential candidates identified through discus-
sions with the stakeholders were included in the study. Some candidates were willing to
participate in the study but were largely unavailable due to time conflicts and work related
travel and vacation time.

Our final small set of developers were selected also based on the likelihood of their working
regularly on the same team with our participant observer, thereby allowing us to study them
in their normal business day and also study them through the interviews. It would also be
more convenient to find interview time with developers whose daily work schedules are
being closely monitored by us, as part of our daily operation.

3.2.4 Asking the question

The initial question of asking someone to be part of the study was tricky, as it meant getting
time alone with a developer while you are not talking about development work. For the
sake of privacy, the question of participating in the study needed to be asked alone and all
subsequent interviews needed to be conducted alone as well. The way the developers are
seated, it is rare that one would be out of earshot of everyone.

In preparation for asking developer candidates to agree to participating in the study, we
had to anticipate what their concerns would be. Their primary concern would be time and
availability, which is something we would have to work around. Their other concerns,
potentially about being judged or misrepresenting the company, were far easier to allay.

Natalie’s preferred time for asking developers to participate in my study was in the later
half of the day, or just after lunchtime. These would be times when developers would take

48



a coffee break and it would be possible to catch them alone as they walked towards the
break room. Once we got past navigating when to ask developers, the actual ’asking’ was
relatively simple. Natalie would start with a reminder and brief description of her study
and ask if they would be willing to participate. She would describe what their participation
would entail, stressing on how it would not get in the way of their work and we would
work around their time. She would also make it clear that they are not being judged and
neither is the company, and that we are interested in studying software development. She
would tell them that her intention is to occasionally conduct about five to fifteen minute
interviews, based on a convenient time for them and to let them know that they could end
their participation whenever they wanted.

3.2.5 The first interview

The interviews were conducted with some planned seed questions and more probing spe-
cific questions constructed ‘in situ,’ meant to guide the interviewee to elaborate on their
story. For the regular, more in-depth interviews, we initially considered a semistructured
interview approach [33] [45] where for the most part, a script of pre-determined open ended
questions is used, with careful ordering and phrasing for later comparability. Semistruc-
tured interviews are more suitable for studies where multiple interviewers study many dif-
ferent subjects and the interviewers do not have a lot of knowledge about the subject’s
social context. We also considered the unstructured interview approach [53], where for-
mal, scheduled interviews follow more of a conversation format than an interview where
the nature of the questions can be open ended, and it is encouraged to ask follow up ques-
tions based on the answers received. As our goals were to capture the participant’s stories,
journeys and motivations and we were less concerned with comparability the open ended
questions served our purpose. We adopted a mix of semistructured and unstructured in-
terviews, leaning more towards the semistructured format described by Leech [45]. Like
the semistructured interview approach, our interviews depended on forming a rapport with
the interviewees, asking grand tour questions like “Describe your onboarding experience at
the company.” and prompts when there is more to explore on the current topic, even if the
pre-determined question has been answered. For the common questions about background
and trajectory, the format and order of the grand tour questions was kept consistent, but the
follow up prompt questions differed based on the interviewees’ answers.

Our judgment sample of interviewees was also small, and our participant observer was fully
immersed into the field’s context, which made unstructured interviews ideal.

The first interview for each of the participants was rather long, compared to what we had
indicated we would normally want to engage their time for. It involved explaining the user

49



consent form and again explaining all aspects of what they were agreeing to and their rights.
This took about five to fifteen minutes on its own. In some cases, the user consent form
was signed on some day before the first interview. It was also important to tell participants
that they did not have to answer based on what they think we would want to hear, that their
actual experience is more valuable.

Then we finally started with the interview. For most participants, we started by asking
them about their background before they joined the company and their initial experience as
part of that company. We had to be cognizant of time, even though the participants seemed
engaged and sharing well, to not discourage their future participation based on how the first
interview was longer than what we asked for.

From the first round of interviews about the developers journey into the software develop-
ment community, we realized that many participants credit, in part the different forms of
help or guidance they received from other developers. This guided our subsequent ques-
tions at later interviews.

3.2.6 The Routine

After the first interview, a lot of the participants realized that the interviews are fairly sim-
ple, albeit longer than they may have planned for. However, finding time for subsequent
interviews proved to be tricky. We kept in mind how the end of the sprint tends to be busier
and leaves developers with less time to spare. We aimed for earlier in the sprint to ask
for interviews, and continued favoring the later half of the day. It usually helped to ask
the candidate in the morning if they would have time for a five minute interview later in
the day. It also helped to have most of the questions determined beforehand. This helped
participants feel like they are not wasting their time during the interviews. However, during
the interviews, it was useful to pursue an answer with a follow up question, even if it was
off script. Especially if it was a part of a story that the participant appeared excited abut
sharing. It was sensible to allow the participants feel heard, even if that line of questioning
did not directly relate to our focus.

We would also follow up with more questions whenever the participant would talk about
their identity in the workplace, or their role or relationship with others, especially how these
may have evolved over time. We found that the more experience the participants had, the
more comfortable they seemed and the more verbose their answers were.

50



3.3 Challenges of the ethnographic process

Through this ethnographic study, we did not expect to capture everything that defines the
software development community of practice at TAI. It is a community that has evolved
over a long time to its current state and is still continuously evolving. The community
has grown through different phases, priorities and skill sets, employing different practices
and models of software process to find the combination that works for them and then con-
sciously improving upon it. This dynamism made the community more attractive as a
subject of ethnographic study, but also posed challenges. As the core concepts of com-
munity of practice like participation, reification and identity are different for everyone, the
community in general has different meaning to its participants. We attempted to capture
what the community means to some of its selected participants through their experience of
it.

3.3.1 Dynamic teams

For a small development firm, it was a very dynamic workplace in terms of team composi-
tion, nature of work and roles, which posed some challenges in studying it. The pre-release
and the scrum development teams had a mix of developers with variable levels of expe-
rience. What we found was that they had all carved their own niche and developed their
areas of specialization, based on their experience, interest and abilities. However, these
roles were mostly implicit and there was no place where they were formally described. It
was only through a combination observation and multiple rounds of strategic interviews
that we were able to learn about them.

As the developers have been working in the development team for a while, some of them
had to think about how to articulate the things they do and the implicit roles they play, as
they might be taking it for granted themselves.

One of the developers mentioned how even within the small set of less than twenty ac-
tive developers, when teams are formed, different teams end up having different dynamics.
There have been instances where certain teams were intentionally changed in their com-
position, as they found different combinations of developers to work more effectively or
happily together. Sometimes, the implicit roles involve more than just knowledge sharing
responsibilities. Some implicit responsibilities could include playing an arbitrator when
small disputes in the self-management of the team may occur, or to serve as a calming,
equalizing force when the team is tending towards discord. Karoline reports of a case

51



when Oswald’s tone in correcting other members of the team was causing different mem-
bers to feel disparaged, especially considering that Oswald was the youngest team member.
After Gerome, who is older but has comparative experience on the code base, was added to
the team, they found that Oswald’s tone was not leading to minor disputes as often within
the team.

These were aspects of the implicit roles that would not be possible to discover at all without
open ended interviews and observation.

3.3.2 Company culture

As part of a rigorous agile workplace, there is emphasis on extracting a lot of value from
the time spent at work. This manifests itself as an explicit and an implicit focus. This time
based efficiency is deeply ingrained in the company culture as well. There are a few aspects
of the company culture that make the workplace very effective but also made it difficult to
find time to talk about things other than work. It is heavily encouraged that everyone only
work for forty hours a week, and no longer. Many developers come in early in the morning
to get some time alone to work and then leave when their day’s work is done, sometimes
even in the late afternoon time. Most developers are encouraged to not work late often and
are not allowed to take their work home, unless they are among the few remotely working
developers.

Perhaps because of their government contract work background, the company requires de-
velopers to document how they spend their time, for the interest of bookkeeping and billing,
down to the granularity of minutes. This means that it is rare for developers to spend time
on anything other than work and even more rare for developers to linger at work after their
hours in the week are done or if the work for a day is done. So asking anyone to participate
in the study or have to give an interview meant that we are asking them to spend their time
on work that they are not getting paid for and work that is probably delaying their return
home for that day.

The workplace where the developers sit is usually a quiet space, where most people have
their headphones on while working. Another reason the workplace is so quiet is because
some researchers sit near the developers’ workplace and are disturbed if loud conversa-
tions take place. There are times when developers start an impromptu conversation and
others chime in with their opinions. These are usually followed by a complaint from the
researchers sitting nearby. Most conversations occur between two to three people in prefer-
ably soft voices or inside the meeting room.

52



3.3.3 Multiple identities

During the interviews, it was important to not let our personal opinions about people guide
our questions. It was important to be cognizant of not allowing the interviews to drastically
change our relationship with the participants. It was also important to not let the interviews
affect our observations during our daily work. It was important to remain cognizant of
our different identities - developer, observer, interviewer, recorder of interviews and daily
activities. There was another identity - that of a friend, colleague and confidante.

There was occasional conflict in the multiple identities. When an aspect of the commu-
nication was shared as part of a formal interview, where one or the other developers were
not presented entirely positively, as a participant observer, it was important to attempt to
remain unbiased and report faithfully, however, as a friend, it was difficult to not put a
positive spin and occlude the facts.

When unfavorable opinions about other developers were shared, it was difficult to not feel
like reporting on them is somehow a betrayal of trust from a confidante as our participant
observer was a confidante to both the reporting party and the subject of the opinion. Sim-
ilarly, it was important to not skew a story to make your friend the hero, when something
positive is revealed.

As an interviewer who is also a colleague, it was important to not let our choice for a daily
lunch companion or teammate be affected by the backgrounds and histories revealed during
the interviews.

53





Chapter 4

TAI - Data and Discussion

4.1 Evolving meaning, evolving identity

We interpret communication in software projects as a negotiation of meaning. Wenger
[67] captures this negotiated quality of meaning in his concept of Community of Practice.
Wenger describes Communities of Practice as “groups of people who share a concern or a
passion for something they do and learn how to do it better as they interact regularly”. He
views meaning as essentially linked with identity within a practitioner community. Those
who identify as community members contribute to the shared negotiation of meaning, and
participation in the negotiation of meaning reinforces identity.

In computing disciplines it may seem unusual to think of meaning as negotiated, as its
roots in mathematics and use of programming languages and algorithms makes us think of
meaning as precise with little ambiguity in behavior, as with code. However, in software
engineering, code is only a manifestation of the developers’ or designers’ mental model of
the system and that model in turn is a representation of users’ and clients’ requirements.
To arrive at the precise code, interaction is needed among multiple stakeholders with dif-
ferent roles and involvement in the software development community or that particular
software project community, and the “meaning” is negotiated through different and possi-
bly conflicting interpretations of the requirements and design specifications. In addition, a
community member’s role, influence and contribution in a software development commu-
nity of practice may also be negotiated over time as members join and leave and work in
different capacities over time, leaving the community in flux.

When one thinks of software development in an abstract form, one thinks of developers as

55



a homogeneous group of skilled and experienced programmers following predetermined
processes to deliver a product, however in practice, the developer community is always
in flux as new members are learning the ropes and experienced members are taking on
larger tasks or moving on to different roles. In addition, the meaning of software is always
changing based on changing requirements and resource limitations.

At TAI, the meaning of onboarding and mentoring has evolved. This is partly due to market
demands — as their software becomes a full fledged consumer product, and researchers no
longer have the luxury of total independence they once had. It is also due to scale, as new
developers outside the area of expertise need to come up to speed. The evolving meaning
is partly articulated through explicit changes from management (Karoline and others), but
as we shall see, it also occurs in a tacit manner, as newcomers improvise new activities and
relationships to get what they need.

Examples of negotiated meaning in the TAI case (which we discuss at length later):

† The maintenance team becomes a pre-release team and increases in size from three to
eight, with a switch from Scrum to Kanban. The larger team, is a mixture of newbies
and more experienced employees. How does the new way of doing maintenance get
defined?

† Within the maintenance team, a discussion emerges concerning the template for clos-
ing a bug. What is the appropriate level of rigor for such a template?

† In the maintenance retrospective, it emerges that some bugs require work that exceeds
the bounds of Kanban. Should bugs be sized as stories? Is the Product Owner the
appropriate arbiter for bug size?

Examples of evolving identity at TAI:

† Pioneers find themselves in a difficult situation: with their intimate knowledge of
physics and code, they are extraordinarily productive in terms of story completion.
But ultimately, they have more value in serving as mentors and educating others.
Later we focus on Alex’s journey from researcher to programmer to implicit then
explicit enabler.

† Similarly, employees who were onboarded in an earlier era, receiving their mentoring
from pioneers, are now put into role of mentor. Karoline, who experienced different
mentoring styles as a protégé, reflects on that difference in producing her own style
when she becomes mentor.

56



4.2 Mentoring

In collaborative creative endeavors like software development, newcomers must be brought
up to speed not only on matters of fact but on deeper issues of rationale and motivation.
The concept of mentor — the experienced guide, conveying knowledge and “know-how”
to the protégé - is a time-honored tradition in management. Whether through established,
codified practices (e.g. explicit mentoring initiatives by professional engineering organi-
zations [1]) or the more implicit processes captured in legitimate peripheral participation
[44], mentors provide instruction, counseling and interaction to impart understanding in a
way that “reading the manual” (or the source code) cannot.

Software development, however, occupies a unique position in this space, due to its innately
fluid and fast-changing nature. Software teams are formed and reformed at a rapid pace, in
response to evolving requirements, business alliances, and personnel changes. Moreover,
the flexibility afforded by software development, exemplified most vividly by open-source
projects [69], allows theoretically limitless numbers of collaborators, problematizing the
notion of team altogether. In this context, the concept of mentor must be expanded beyond
its customary definition. Mentoring relationships may be ad hoc and transitory, with little or
no clear delineation between those eligible for mentor status and those seeking mentorship.

Several scholars have identified communication as a central aspect of the mentoring pro-
cess. Beyond the “simple exchange of information and accomplishment of ability” which is
the primary goal of mentoring, Kalbfleisch [35] likens the process of establishing a mentor-
ing relationship to “the initiation of friendships and love relationships in terms of communi-
cating appropriate relational expectations”. Buell [13] expands on this idea by categorizing
mentoring relationships in terms of cloning, nurturing, friendship and apprenticeship, and
noting the importance of “turning points” where the nature of the mentoring relationship
changes [13].

4.3 Qualitative Data Analysis

4.3.1 Stories

We selected some participants of the software development community of practice, to study
in greater detail and inspected their trajectories through the community, their experience of

57



Table 4.1
Selected people at TAI

Characteristics Alex Karoline Ivan Casey Philip

Formal educa-
tion

Mechanical
Engineer-
ing

Computer
Engineer-
ing

Computer
Science

Computer
Science

Mechanical
Engineer-
ing

Years of expe-
rience prior to
TAI

0 2 yrs >10 yrs 0 >5 yrs

Years at TAI >15 yrs >2 yrs >2 yrs <1 yr >10 yrs

Starting role
Software
developer
intern

Software
developer
intern

Software
developer

Software
developer
intern

Software
developer

Current role
Senior
software
developer

Software
developer

Software
developer

Software
developer
intern

Software
Depart-
ment
Head

Mentoring
role

Pioneer
Early
onboarder

Early
onboarder

Newcomer Pioneer

onboarding, their identity and its evolution over time, their participation and how it has
changed over time. We list them in table Table 4.1 on page 58 which describes their basic
differences in experience and background. We briefly describe their stories here and discuss
aspects of their stories in subsequent sections.

4.3.1.1 Alex

Alex started as double major with mechanical engineering as one of his degrees. He iden-
tified as a mechanical engineer when he first started interning at TAI to work with Leon,
who had recommended him for the position. This was very early in the inception of TAI
as a company, and business still operated a lot like a research group. The main portion of

58



the program was Leon’s thesis, and Alex was assigned to work on a GUI for it. He was
told to design and build the GUI as a single project, which was a mammoth task in itself.
At that time, the internship model at TAI was such that interns did not have to attend work
all day. Alex would work for a few hours at a time based on what his coursework schedule
and other priorities allowed.

He then left TAI and went to work on the west coast as a drafter for a couple of years. At
that point, the TAI founders offered him a job back in Michigan and Alex accepted and
joined TAI as a full-time employee.

Reification and identity: Even though Alex identified himself as a mechanical engineer
who programs, when presented with a formal full time software development position, it
compelled him to leave a traditionally mechanical engineering specific position as a drafter
and commit to the identity of of a software developer. We see how formal reification
can induce a change in identity. Alex now self identifies as a software developer with
knowledge of mechanical engineering.

In those days, there were just a few software programmers, most of whom were mechanical
engineers. Each person would get a very large part of the whole product to make. They
would occasionally communicate with each other, but mostly worked independently.

Eventually, practices like code review and common code base, revision management sys-
tems were incorporated into the community. The development team grew to about 5-7
developers. The nature of the company was starting to change. TAI was switching from an
entirely government or industry research projects based company to a product and services
company.

Participation: As the community of practice grows, Alex’s participation in the community
changes from working solo mode to a role of more interaction with the other developers.

The software development team leader, Hal, decided to move from a development team
leader role to a research centric role and Philip, who was also a development team member,
became the new software development team leader. Philip felt that the unofficial waterfall
model of development was better suited for mechanical engineering, not for their needs of
software engineering. Philip worked closely with Alex over time to convert their devel-
opment practice from a loosely structured waterfall process to a structured Agile software
development with Scrum and eventually also Kanban. The number of software develop-
ers grew and the structure and practices adopted within agile software development helped
shape how work is done.

59



Participation and Negotiation of meaning: Motivated by the needs of the software develop-
ment community of practice, Philip and Alex worked together to redefine what participa-
tion in the community means. Adopting a formal model of software development process
and committing to it reifies the process for the community as a whole and negotiates the
meaning of the community.

Alex started noticing that he was often the most experienced person on most teams and
spent a considerable amount of time helping others with their work or get up to speed. He
would not get as much time as before to work on his programming tasks. Over time, with
help from Philip, Alex realized that he served the TAI software development community
better by helping others get up to speed and by ensuring that the work is getting done in the
best way possible, considering its effect on all system components and in a way that allows
it to be readable and maintainable and consistent with other overarching design choices.

Alex participates in almost all major design decisions, helps assess any potential work
affecting the primary code base before the company even commits to it, sometimes works
directly with clients to negotiate undertakings. He helps train the newcomers while working
on teams with them, and also works on development teams with other, less experienced
developers.

Identity and Participation: Alex, through participation in the community, realizes that the
nature of his participation was changing and not allowing him to participate in the com-
munity commensurate with his identity as a software developer. He redefines his identity,
through participation and interaction with Philip, to become a mentor, a facilitator and soft-
ware developer. His new identity allows him to serve and participate in the community in
a way that serves the community best.

4.3.1.2 Karoline

Karoline’s first degree was in mathematics and after over a decade, she went back to school
to get a degree in computer engineering. She briefly worked at a big software company
where the software development did not follow any formal software process. Then Karoline
joined TAI as an intern software developer.

Karoline started working at TAI at the same time as a software tester, Jenna. They were
both seated in the common bullpen area initially, where everyone could see their computer
screens. Karoline would often feel uncomfortable sitting in the common area, where she
would want to search for any of the new and unfamiliar terminology, but feel watched and
judged.

60



The senior programmers would come and work alongside Karoline, assigning tasks, some-
times explaining code or company history and design. She worked with almost all of the
senior developers, getting one on one time with them.

In three months, she was offered a full time position, given an office space sharing with
other senior developers. She was also made the team leader for the maintenance team
where two new development team members had just joined.

Identity and Reification: Karoline’s identity changed from a mathematician to computer
engineer intentionally. She then joined the software development community of practice at
TAI as an intern. Her lack of privacy and her own space caused her to not feel confident
in her role in the community. Her ability to participate effectively was affected. Then she
received formal forms of reification like being offered a full time position and was given
her own shared office, away from the common bull-pen area where interns sit. This helped
solidify Karoline’s identity as a developer in the community and she felt more confident
and effective in her abilities since then.

Participation and Reification: After some time, Karoline became the team leader of the
maintenance team, which served as another form of reification. This formal reification and
change in identity also changed Karoline’s participation in the then pioneer heavy commu-
nity community. it solidifies her position in the community and identity as an established
software developer, within a primarily pioneer heavy community.

After more than a year of working at TAI, Karoline was asked by the department manager,
Phlip, to attend a high level meeting about software process, a meeting she would not
typically be party to. Being asked to attend a high level meeting motivated Karoline to
learn everything she could find about software process in preparation. After attending the
meeting, she felt even more motivated to explore the concepts of software process. Over
time, Karoline has become one of the strongest proponents of rigorous software process.

Participation: By encouraging participation in a meeting, Philip led Karoline to explore
and examine different means of being in the community. Over time, Karoline’s interest
in software process grew to the point that she is now one of the more active and vocal
proponents of rigorous adherence to software process.

61



4.3.1.3 Ivan

Ivan had extensive experience in the software development industry in several different
types of teams and different type of software companies, from working for a global soft-
ware giant, a small start-up, an open source-like software development community, etc. He
also had some experience with Agile software development prior to joining TAI.

Ivan joined TAI around two years ago, shortly after Karoline, as a full time software devel-
oper. Unlike Karoline, he was given his shared separate office space when he joined.

Participation: Having worked in the software industry for a long time, he felt like his
identity as a software developer was already well established. He did not require formal
reification to realize his identity in the community of practice.

Like Karoline, Ivan got extensive one on one time with all the pioneer developers and sub-
ject matter experts and process experts and learned a lot about the history of the company,
decisions related to overarching design, some design rationale, etc.

Participation: Ivan has worked on the UI and graphics related functionality before and
wants to learn more about the physics and math involved in the application.

Negotiation of meaning: Contrary to common practice at TAI, Ivan sometimes tends to like
working on multiple tasks at the same time. Ivan also tends to work on proof of concept
on his machine locally before committing the changes in batches to the shared code base.
This can sometimes cause some strife among Ivan and some other developers who feel that
it can hinder overall team progress.

4.3.1.4 Casey

Casey is an undergraduate student, who has worked in some small software teams like stu-
dent teams or worked remotely for a software team, but had not worked in full time software
development before his internship. TAI is his first time working in full time software de-
velopment in a co-located industry team. Casey joined the team as a software development
intern.

He reports that his first few days were very stressful. He was not very happy with the
‘onboarding’ process and that he would have found more information about the product

62



and software process and code base useful.

Casey joined the Scrum development team, where he was paired with pioneer developer
Quinn on a story. Quinn, who worked remotely, would spend most of the day on the phone
and screensharing with Casey, walking him through the problem description and the steps
for the solution. Often in the process of describing the solution and assigning it to Casey,
Quinn would directly implement the solution. Casey reports that he learned a lot about the
code base and design from the extensive, direct, albeit remote contact with the pioneer.

Participation and Identity: Casey found himself struggling during his first few days in the
community of practice. He felt ill-equipped and watched. He did not feel like he belonged
to the community. He felt that he did not know how to participate and that his identity was
not related to that community.

That changed over time as Casey got extensive one on one mentoring from pioneer Quinn,
who taught Casey how to participate in the community of practice. Also, by associating
with Quinn who is a pioneer, and learning directly from him, Casey’s identity in the com-
munity was established. Equipped with knowledge and direction from Quinn, Casey felt
more comfortable and confident, and finally felt like he was a part of the community of
practice.

4.3.1.5 Philip

Philip has a degree in mechanical engineering and has even taught at the university level.
He started working at TAI as a software developer and worked on the team under Hal.
When Hal decided to move to a different area, Philip was asked by the founders if he
would be interested in leading the team and he accepted. Eventually, Philip went on to
become the head of the software development department.

Some work is in maintaining and enhancing the primary code base, for their central range
of thermal analysis products. There are typically two to three development teams of four
to seven developers each and occasionally one team two to three developers working on
maintenance on the primary range of products. There is also a team working on a new
product line altogether, which is a different code base. This team is in the new product
development phase. It works closely with new and potential clients to help design their
product and to market it.

Philip also leads smaller duration projects and contracts to engage new clients, which are
often performed by a temporarily assembled team from the existing development teams on

63



a need basis.

Participation, Reification and Identity: We see that Philip’s identity changed from a me-
chanical engineer to a practicing software developer with mechanical engineering knowl-
edge when he enters the community of practice as a developer. When he was reified for
his work by being asked to become the team leader, his identity changed again to that of a
team leader with both mechanical engineering and software development experience. This
changed his participation in the community as well.

Over years, Philip worked with Alex and chose to switch the software development process
over to Agile software development. He intentionally grew the development team in size
and organized them into separate sub teams, following Scrum for main product develop-
ment and Kanban for maintenance. As the skill set grew, it became necessary to have a
formal system that facilitates knowledge and skill management, thereby adopting the orga-
nization of skill teams into chapters and guilds.

Philip, with input from others, determines the hierarchical skill organization and reporting
structure of the software development department. Philip is also participates in making
major strategic and tactical decisions about the direction of the company. Philip also meets
individually with all members of the software development team to discuss their concerns
and help frame a path to achieve their personal goals. Philip usually attends the daily stand
up meetings of all the development teams as the client representative, and is the proxy
client for many different projects or features that the team works on. Philip decides which
developers should be part of which projects or should share their input in endeavors besides
their primary project work.

Philip also holds occasional meetings where he introduces a new process or new tools to the
developers and encourages them to use it. Philip also encourages the developers to share
anything they use or find interesting and which could potentially benefit other developers or
encourage conversation about their own processes, practices and tools through knowledge
sharing.

Negotiation of meaning and Participation: By intentionally introducing Agile software de-
velopment process to the community of practice and then years later organizing skill teams
into chapters and guilds, Philip changed how participation in the community of practice
took place and changed what it means to be a community for all the other community
members as well, even though his own participation was different from the other develop-
ers.

64



4.3.2 Themes

We study themes of changes in process over time to accommodate the growing team or the
changed focus.

4.3.2.1 Participation and Negotiation of Meaning: Internship changes over time

The internship program and what was expected of the software development interns drasti-
cally changed in the community of practice. In the earliest days of the company when Alex
was an intern, he could work a few hours a week, alongside his other coursework. His time
at the workplace was largely self-determined as his work was primarily performed alone.
There was occasional interaction with the other developers, but solo work almost all the
time.

After the adoption of Agile software development process, the was the developers partici-
pate and worked together changed to a model which was interaction heavy. To effectively
contribute in the community, the means of participation now included the day starting with
a daily stand up meeting and required many points of interaction throughout the day, in-
cluding paired programming and design meetings, requirements meetings, customer proxy
demos, etc. The earlier model of participation for a few hours a week would not serve the
newly negotiated meaning of what it means to be a community of practice.

So the internship model was changed to have interns spend a full forty hour work week
and participate just like the other full time developers do, by spending all day, working
together with multiple points of contact and forms of interaction with other developers,
testers, customer proxies, Scrum masters, Product Owners, etc.

4.3.2.2 Trajectory: Pioneer’s journey

Alex was recruited by Leon to work at the company as an intern while he was getting his
mechanical engineering degree. The company was very small then. Only the core founding
members and a few interns worked in the company.

“.. I was working from three to six (pm) one day, the next day not at all. It was a part time
job at that time where you are kind of setting your own place.”

65



Alex was given the task of making the GUI. He often worked alone for a long time. “.. I
was just given some tasks, go off and figure out things and gui related tasks. I was basically
told that go off and do this work. I had access to the stack of x11 reference books."

Alex then finished his degree and internship and went to work in the mechanical engineer-
ing industry for two years. Then he decided to come back and work for the company full
time. “.. There were four software developers and essentially we were given a task, which
was more like a project. Back then I was given the task of starting over to implement the
(base) application. It wasn’t so much a task as it was a project. .. It was kinda figure out
what you want to do, talk it over with the three others, and then you work on it.”

This is the mode the development team operated in for “.. a large number of years.. We
would meet in all hands meet, and report that we were 90% done. 90% till you are all done,
whether you were done that much or not.”

Alex would typically work alone with little input from others, and rare communication
within the “team”. Other programmers would also work separately. Hal was in charge of
the software development team. The process “.. was kinda waterfall but still ad hoc.”

Alex recollects how collaborative design was not done with the granularity that the team
now adopts. “We did some high level design and made tasks that were bigger than the high
level stories we do now” and how the team operated. “It was a team, but it was a loose
team and you get a lot of autonomy. One of the ways you get all that is if the people working
on it are the de facto experts. But it could take five to six months to release, integrating
would take a lot of time.”

Once it was decided to start integrating the code all the developers had been working on
separately, several integration issues would arise and new bugs would be discovered. This
was also the case for running their software on different platforms. Before release time,
bugs specific to platforms that the original development was not performed in would be
discovered and sometimes some features would have to go back to the design phase. Most
of the work was contract funded and specific to a particular funding agency’s needs. So the
team would sometimes be supporting features no one was using anymore.

As the code base grew in size, the team started using better tools to manage their software
like version control and build systems. And incorporating practices like code walkthroughs
and reviews. Hal eventually transitioned out of the software development role to a research
oriented role. Philip who was also part of the team was asked to lead the team. He eventu-
ally brought in a radically different process - Agile with Scrum for the development team.
Alex recollects that it took “.. it was many years worth of learning..” to get fully engaged
in Agile.

66



Alex found that “.. the way that we do in agile here had helped tremendously .. specially
from a management side, of being able to see when you are ready or getting a true state
of the application.” Overall, Alex finds that Agile was successfully adopted and served
its purpose of being able to efficiently manage and produce code, however there was a
tradeoff, “We kept the ability to say how are we going to do it, not whether it is done.”

Over time, Alex becomes one of the few people - Alex, Leon and Quinn who know the
code base almost completely and have been involved in most major design decisions. Leon
started working on other projects and has been away from the traditional development team
work in the code base for a few years.

Alex realizes that he tends to be the most experienced person on the most teams, and a lot
of his time is spent helping others. He gets less time than before to do his own share of the
programming work. He has become a silo of knowledge, perhaps to his own disadvantage.
“I used to complain to Philip that I don’t get time to do my job. Because I defined my job
as writing code. It took me three to four years. I realized that my job is not exactly writing
code but in getting the team writing that code, testing and development done.” Over several
discussions and reviews, Alex realized, with guidance from Philip that his role is not just to
work on his own code anymore, it is to enable the team to produce good design and quality
code.

As Alex gets comfortable with his newly realized role, he talks about changing his strategy
for task management. “I have evolved a pattern that if we are working on a scrum team
with multiple people on the same story, unless necessary, that I will not take up a task, if I
cannot do it in a timely manner, it will become a blocker or dependence for others”

The new strategy is to mitigate the risk for contention of resources, where the resource
could even be time with someone like Alex. “.. I have to have a plan in place for what
we are going to do for this story, figure out what the sub tasks are and try not to take the
ones that, if this one doesn’t get done, then it will prevent other tasks from being done.”
Following his own strategy for resource contention mitigation, sometimes Alex has to have
the greater vision and intentionally choose to not do something he enjoys. He sees his
responsibility “to kind of be cognizant of what others are doing and even if it is something
I would enjoy doing, back away from doing it.”

Discussion: We notice that even though Alex did not originate from a software engineering
discipline, he used his mechanical engineering and programming knowledge to enter this
particular software development Community of Practice. He received some guidance from
the existing developers but largely had to figure things out on his own.

He often worked on very large areas of the code and functionality by himself. He gained his

67



expert status with a lot of work over a long time. This was a phase of participation through
reification, where being offered a full time position, being trusted to work independently
on high impact projects defined his role and interaction. He did work with other software
developers, but in a limited and sporadic capacity.

He continued to stay constantly involved in most areas of the code and participate in most
major code and functionality decisions. He actively participated and supported in the
change in process and teamwork practices. Through discussions with a mentor, he rec-
ognized his role in the team was changing from being defined largely by reification like
produced code to being defined more by participation like enabling the team to make de-
cisions and plan work better by using his expertise and experience.

4.3.2.3 Early onboarders: Divergent trajectories

We now examine some trajectories of participants joining this specific software develop-
ment community of practice and learning from the pioneers but forming their own distinct
identities through participation and reification.

Background: Karoline and Ivan have been working in the software development team for
over 2 years and joined the company at about the same time. Ivan had extensive and varied
experience in the software industry and joined the team as a full time software developer.
Karoline had relatively less industry experience and joined the team initially as a software
development intern.

Alex reflects on how the internship model had changed due to introduction of process.
“Now how the internship works is that just dropping in and out is not effective, there is so
much more communication.” Interns were now expected to work the same amount of hours
as full time employees would.

In their initial days at the company, Karoline and Ivan got their information for the job from
the pioneers. When they joined, there was one software development team and most of the
onboarding process was to get dedicated time from the experts to learn the ropes and the
history of the software.

Placement: Ivan as a full time employee was given his designated shared office space and
Karoline as an intern would be placed in a common open area seating which is surrounded
by the more private offices.

68



Karoline, who joined as an intern describes sessions of sitting in the "bullpen" like open
seating area where her computer screen was fairly visible to everyone in the team. Occa-
sionally, more senior team members would come and sit next to them and give them a task
to do. Then the senior member may sit on the computer next to them for the day. “ ... Alex
would come up and sit right next to you. .. it was terrifying.. I mean initially I didn’t know
what to do and I would google everything I didn’t know and they are right next to me, and
I felt like that was quite awkward”

Karoline reports that this was both helpful and in some ways, nerve-racking as she would
feel very visible to everyone, almost watched. She would be embarrassed that everyone
could see her possibly fumble and attempt to figure out the jargon and the task assigned to
her. However, she says that sitting and working with different members of the team was
extremely helpful and she learned a lot about the code base from the different pioneers as
they all offered a different perspective based on their expertise. She also felt embarrassed
to ask many questions, not knowing if what she was asking was common knowledge or
something not many others would know.

Ivan recollects spending long sessions with the senior programmers learning in depth about
a topic about the product or code base at a time, along with the historical rationale for
making decisions. He said he found those sessions very instructive and helpful.

Ivan describes what most knowledge transfer was like when he joined, “ The general feel
was that Philip, at least, had more time for one on one interaction. Alex had time for
one on one interaction.” and what aspects of his interaction with the pioneers helped him.
“Initially I felt that being able to ask Philip more general and esoteric questions about the
application - like the history of the components, the trajectory of development in the past, I
felt that was useful for my perspective stepping in. ”

Formal reification: Karoline getting her own office space, and not having to work in
the common bullpen area made her feel accepted into the community. Karoline reflects
“..What’s fun about it is when I got an office and I still got an office with Alex, but I was
really like .. with my computer.” Karoline also shared that being made in charge of the
maintenance team where she was responsible for onboarding other newcomers made her
feel accepted, appreciated and more confident in her abilities. Karoline says “.. it definitely
made me feel responsible. I didn’t have someone else to defer to. It’s scary at first for sure."

Participation: Ivan describes how an external consultant who engaged the team in different
activities, about a year after Ivan started working at the company, made him feel engaged
with the team members. Ivan says “ ...there is comfortability among the workers that you
get from banter and pleasantries and personal conversation.”

69



He adds that feeling needed professionally helped him feel like a part of the team, “ .. there
is also your sense of being on the team that you get from professional interactions like
going to somebody for expertise or people coming to you with questions builds that sense
of like, oh, I am needed or this is who I go to or I go to this person for these questions.. I
guess just knowledge of resources - human resources and brain trust resources and feeling
once in a while like you can provide some value to someone else as well, really makes you
feel like part of a team”

Encouraging process proponents: Philip asked Karoline to attend a high level discussion
meeting about software process, a meeting she did not think she would normally be invited
to. This made her curious about software process, and she read up on it in preparation
for the meeting. She found that being included in that discussion has made her an even
stronger proponent of software process than before.

Process negotiation: Karoline and Ivan may sometimes disagree on process and commu-
nication expectations but through the retrospective and a third party mediator, they are able
to come to a better understanding of their differences in expectations.

Ivan sometimes enjoys problem solving on different tasks at the same time. Karoline, who
is a software process proponent, is often of the stand that team members should typically
finish and commit their current work or current task before moving on to the next task,
unless there are obstacles or external delays in the current task, allowing others in the team
to take up the next task when they are free and avoid bottlenecks. In the past when working
together, Karoline and Ivan have had disagreements about task management within the
team. Through discussions and even third party mediation, they have come to understand
their differences in expectations better.

Karoline reports that since Alex and Calvin have been working on the team with Karoline
and Ivan, that Alex and Calvin frequently work together with Ivan to ensure obstacles to
task completion are collaboratively handled, mitigating Karoline’s stress over task manage-
ment.

Mentoring styles: Some team members reflect on different mentoring/teaching styles of
different team members.

Karoline says about Alex’s presence in the team when she first started working “.. (Alex) is
a calming influence, anytime he speaks, everybody listens .. everything goes very smoothly
when he is involved."

Karoline reflects on her experience of Alex’s critiquing style. During a code or design re-
view, Alex consciously prefers to pose potentially failing scenarios as questions for whether

70



the current solution would account for it, instead of saying outright what is wrong. Karo-
line finds that Alex tends to authoritatively question code choices which make the less
experienced programmer feel like they made the wrong code choice. The less experienced
programmers can feel put on the spot.

In contrast to Alex’s code review style, Leon, who is just as experienced with the code base
has a different reviewing style which is more casual. He tends to say, “I think this is good,
but I would suggest substituting this class for that here”. Karoline and Natalie appreciate
all they learn from Alex’s technique but prefer Leon’s style as it feels more casual and
conversational.

Karoline also reflected that Oswald, who is a much younger but still experienced member
of the team, has a very different teaching style. When asked to explain some concept,
Oswald would explain like one would to a child, breaking it down to the basics and not
making assumptions about what the other person might know. Karoline appreciates this
style of explaining. Calvin has a different code critique style where during code review, he
would point at things and say “This is wrong” or “That is bad”. Karoline appreciates that
Calvin helps make her code better by pointing out flaws, but says she often has to ask many
questions to get at what specifically Calvin thinks should change. The process can often be
long.

Similarly Karoline finds that when asking Alex to explain something, she often has to
ask many subsequent questions to get at the full explanation, as Alex tends to explain
sometimes assuming that everyone else also knows the context of the solution, which is
often very familiar to him. Leon however, is not very talkative on the phone and it takes
several questions to get a more detailed explanation from him, but in person he is able to
communicate more easily and is more forthcoming with his explanation.

Discussion: We notice how what helped Karoline assimilate and feel accepted in the
community was formal forms of reification, like being offered a full time position and being
made in charge of the maintenance team where newcomers would be onboarded or being
given an office space. This may be due to the fact that Karoline entered the community
with less industry experience than Ivan in a temporary internship role and was immediately
surrounded by very knowledgeable and confident pioneers.

In contrast, Ivan entered the community fairly confident of his abilities from his vast in-
dustry experience prior to joining this company and entered as a more permanent full time
employee. So perhaps he did not need any more formal reification to feel assimilated. He
felt more a part of the team from the informal participation and banter in the team and from
being asked questions professionally and feeling needed.

71



4.3.2.4 Onboarding: The next generation

Natalie, Nathan and Casey joined the company a few years after Karoline and Ivan. At this
time, the software development department had undergone a significant expansion. There
were now four development teams working across two primary product lines. There was
now a dedicated Scrum Master and dedicated test and documentation resources.

Placement: Nathan joined as a full time employee and Natalie and Casey joined as soft-
ware development interns. Nathan and Natalie joined the maintenance team that follows
Kanban. This team was initially located in one room with IT and dev ops specialist Moss.
Casey joined one of the development teams that follows Scrum and was located in an
adjacent room. This room seated all the other developers, test and documentation team
members along with the Scrum Master and Product Owner.

This batch of newcomers got their knowledge from a mix of "secondary sources" - com-
paratively newer people teaching newly hired people creatively like Ivan, Karoline, Davin
- relatively less experienced and Quinn - far more experienced.

Reification: The newcomers are asked to commit code and file a bug report within the
first few days of joining the software development team. This act of reification shows them
how to participate and they realize that even as early as the onboarding process, they are
participants and contributors instead of just observers. Philip also recommended that the
newcomers take time everyday to go through the product tutorials to understand how the
product works.

Secondary source mentoring: It was originally planned that there would be two members,
Davin and Aurora when the two new members join, and Aurora would be responsible for
"onboarding" the team. However, Aurora could not be there for the first day that the interns
were joining and Davin was suddenly responsible for onboarding the two new employees
in the maintenance team. Davin had been working at the company himself for a little over
a year, including his internship experience.

As part of the role based onboarding, Davin, who was left to creatively share knowledge in
the absence of Aurora, gave Natalie and Nathan the option of either looking at a new bug
themselves or watch over his shoulder while he works on a bug. Natalie and Nathan opted
to look over Davin’s shoulder while he worked on a bug.

Natalie and Nathan worked together, either looking over Davin’s shoulder while he worked,
thinking aloud or working on a separate bug. After Natalie and Nathan spent some time

72



investigating, their bug, Davin sat with them, looking over their shoulders and guiding them
as they continued their investigation. Davin then discussed options for a solution and gave
Natalie and Nathan a lot of help implementing the solution. In the process of working
through that first bug, Natalie and Nathan came across their first bug as well. They spoke
to the tester about it and she confirmed that it was an unreported bug and gave them advice
on how to file a bug report.

Typically, Natalie and Nathan would pair to work on different bugs, occasionally also pair-
ing with Davin. From time to time, Natalie and Nathan would ask questions of other
specific development team members that had more knowledge of that area of code and
occasionally they would talk to customer proxies and testers where the bug behavior was
not clear. In this way Natalie and Nathan had limited and sporadic exposure to more ex-
perienced developers and pioneers, but did not work with any for an extended period of
time.

Ivan reflects on how the onboarding process changed from how he experienced it “I think as
the team grew, instead of spreading thin, I think that a lot of the interaction didn’t occur at
all and hopefully that hasn’t been too detrimental... Hopefully some of the less experienced
engineers, that was Philip’s intention and plan, pick up that slack. The new hires and
interns tend to rely more on everybody as opposed to a few. And so, we(secondary sources)
are not as familiar with providing that kind of direction, nor do we necessarily know all the
answers to questions that an experienced engineer would.”

Pioneer and secondary sources mentoring: Casey reports feeling very lost and stressed
the first couple of days at the company. He felt overwhelmed with the jargon and trying to
understand new tools and systems all at the same time. Casey joined the Scrum team and
worked with senior programmer Quinn on a small story for a while when he first started on
the team. Quinn would be on the phone and screen share with Casey and would walk him
through the problem and solution for the new feature. He would also work on the code in
front of Casey so that Casey could follow along Quinn’s work. Casey found the extended
one on one sessions extremely helpful and started to feel like he knew how to start working
with the code base more easily.

Team reorganization: After about a month and a half from the time the newcomers joined,
the teams were reorganized. The maintenance team following Kanban was renamed to
be the pre-release team and many members of two of the Scrum development teams were
placed in the pre-release team, to prepare for a major version release. The pre-release team
became larger with about six to ten members at any given time.

As part of this team, Natalie and Nathan got the opportunity to work closely with other

73



developers more regularly. Here they had access to one pioneer Alex and sometimes an-
other highly experienced member Quinn. And other secondary sources like Karoline and
Ivan. Casey who also joined the pre-release team got to experience what it is like to work
in vastly different areas of the code and to work on smaller pieces of work, where most
bugs were smaller than user stories worked upon in the Scrum model.

After almost two months of working in that model, the teams got reorganized again. A new
Scrum development team was formed, that included Alex, Karoline, Ivan, Natalie, Nathan
and Casey. At a later time, Calvin also joined this team later as Nathan moved on to work
on a different team. In this model, Natalie and Nathan got to work on larger stories for
extended periods of time, which was a different style and pace of work than most of their
Kanban work.

Natalie reports that she enjoyed the pace of the Scrum work more than the Kanban work, as
she got to further her knowledge and really understand something and work more closely
with more people in the Scrum format.

Participation: She felt that the larger but close knit team in the Scrum format made her
feel more like a part of a team and more confident. In the Kanban format, she felt that she
got to speak to many of the developers, but in very minimal capacities and did not feel like
she got to properly pair and work with anyone except Nathan. So the smaller team Kanban
work felt more like working independently in a team as opposed to working together in a
team in Scrum.

Reification: Natalie also reports that working on stories which were new features or new
enhancements to existing features felt more rewarding than the bug fixing mode, perhaps
because in the Scrum team, her work felt more creative and she produced a more significant
volume of code for that amount of work whereas in the bug fixing mode, she may work for
a whole day to find the cause of a bug and fix it with just one line. The work felt more like
critiquing and correcting than creative.

The three newcomers recognized that one of the disadvantages of not having access to the
pioneers was that the overview of the product, the code architecture and organization and
the historical context and rationale behind major design decisions was not obvious for a
long time. Casey reflected that the lack of detailed documentation where one can go and
learn some of these things initially hampered his ability to confidently understand the code
and its organization.

Discussion: We find that for the newcomers to the community, the change in team size and
organization meant that they did not always have as much free access to the pioneers and
primary sources of knowledge. They had sporadic access and took longer to understand

74



things like the reason behind certain design decisions and the historical context of the code
organization, etc. The early onboarders got this information from the pioneers not so long
ago. Perhaps in the rapid team expansion and segregation, some of that historical context
and rationale that Ivan and Karoline found so useful was not written down to be formally
passed down the generations of developers.

4.3.3 Events

Here is a description of events that show how these different developers engage with each
other and the challenges they face and work through together.

4.3.3.1 Process tug of war

There is occasionally some negotiation between Ivan and other team members like Karo-
line, Alex and Calvin. When working in the same team, Ivan had assigned himself multiple
important tasks at the same time. Team members like Karoline or Alex expressed some
concern initially about those tasks being such that other tasks would be dependent on them
and consequently held up. After discussion with the whole team in the daily meeting, Ivan
decided to take up the two potentially bottleneck causing tasks.

When all the non dependent tasks got taken up, and the two bottleneck tasks were still
in progress, preventing further work from being done, Alex and Calvin spoke to Ivan and
helped him determine how to share some of the work to dissolve the bottleneck. Some of
it was to convince Ivan to submit the work he had already done locally but not committed
to the shared code base, allowing others to continue with some of the other tasks.

In the past, Karoline and Ivan had clashed over a similar situation, where Karoline sup-
ported strict adherence to process to prevent one person working on mutliple tasks as the
same time and Ivan wanted to take on multiple tasks. In that instance, the negotiation to
distribute work did not occur during the sprint. At a later review of the sprint during the
sprint retrospective, there was a disagreement about process, which was then resolved with
third party mediation.

So later when Alex and Calvin resolved the task allocation issue with Ivan, it was a relief
for Karoline to not have to attempt to manage that communication as before and see the
team actively manage task allocation and balance during the sprint, and working together

75



to resolve issues early on.

Through these events, we see how the unwritten process evolves through experience and
communication.

4.3.3.2 Team deciding work for itself

In the sprint planning team, when five new members were being added to the existing three
member team and the process was being switched from Scrum, which the new five mem-
bers had been using to Kanban which the existing three members were using. A meeting
was organized to discuss protocol and agree upon practices where developers shared their
concerns and brainstormed solutions for effective team communication.

The Scrum Master and the software department manager shared their concerns with the
team and advised them to keep a small work in progress limit to allow for true paired
programming and collaborative opportunities.

The team however felt that a small work in progress limit would leave them bored and
would leave gaps in the flow of work. So in spite of the advice they received, the team
reminded the others that it is supposed to be a self managing team, and that it chooses to
have a larger work in progress limit. This was an instance of the team asserting their vision
for how they choose to operate, even though it is not the same as the manager’s vision.

4.3.3.3 Learning to work with different mentoring styles

Alex and Leon with very similar levels of experience have different mentoring styles. Alex
and Leon have worked together in the company since it was established. They both have
intimate knowledge of the code base and for well over a decade, they were both actively
involved in almost anything to do with the primary shared code base. About two years
ago, Leon started working on enhancing certain specialty features of the code through
research and was not working in the main developers team anymore. Leon’s specialized
research meant he was working with other collaborators and not the primary product’s
regular development. Alex worked with the product feature development throughout.

The comparatively less experienced developers noticed that when working with Alex, they
feel sometimes put on the spot to explain their rationale behind certain decisions or to

76



answer what their code would do under certain situations that the developer may not have
considered in the original design. All the developers know that Alex does this to make their
code more robust and consistent with the rest of the code base, but they sometimes still feel
put on the spot. Alex says he intentionally asks questions about what the developer’s code
would do in different scenarios as he doesn’t want to come right out and say "This is wrong,
change this." Alex uses the question asking method to spare the feelings of the developer
and to allow them to come up with the change themselves.

However, with Leon, the same type of conversation tends to be more casual, where if he
wants the new developer to do something differently, he will say he likes their code and
will offer a straightforward suggestion asking for something to be changed. Surprisingly,
many of the less experienced developers prefer this approach, as they feel less scrutinized.

Some of this could also be a result of how Alex is almost always colocated with the de-
velopers and Leon works remotely and primarily communicates over the phone, so he may
feel like he does not know the developers as well as Alex.

4.3.3.4 Knowledge transfer

Among the primary development team members, Alex and Quinn have the most knowledge
of the code base. There are other developers who also have as much knowledge but have
moved on to other projects to use their expertise. The company has expanded in the last
few years and has acquired many different customers and different types of contract work.

One of the many motivators for hiring new developers and expanding the team was to
facilitate knowledge transfer from Alex to other members. Often, when Alex is working
on a task with another developer, the other less experienced developer participates but is
usually aware that there is a lot to be learned from that experience. There can be times
when the less experienced developer may watch as Alex is coding. Typically, when Alex
is part of a team, he usually does the design for most stories and shares it with the rest of
the team in the design phase. With his vast experience, Alex is best suited to take the lead
on the design, as he would be conscious of how the design affects other components of the
software and he would also be able to implement the design fastest, as he has knowledge of
the entire system and would not have to spend time looking for the most appropriate place
to implement the solution.

However, this also means that the relatively less experienced software developers are not
able to get as much experience coming up with design. The process of distributing knowl-
edge and moving away from the silo model of knowledge is slowed down.

77



4.3.3.5 Minutiae disconnect

Alex will sometimes ask less experienced developers to redo a piece of working code to
be consistent with how things have been done in other parts of the code or due to other
overarching coding decisions.

The less experienced developers are often told to redo their code at the time of code or
merge review. This often makes the other developers feel less confident about their choices
or that whatever they decide now will not matter as much, as they will be asked to change
it later.

Alex’s suggestions are always followed, and are often very helpful. However, when other
developers are sharing their code with Alex for review, it is often at a stage that the code
does what it is supposed to functionally. Often the changes that Alex is suggesting are not
in functionality, but in a style or in using a different but equivalent component to perform
the same task. This type of change often requires extensive rework, to accomplish the same
task.

Sometimes some less experienced developers feel that their code and design choices were
valid and that the suggested changes are unnecessary. That their choices are sometimes
trumped by Alex’s stylistic choices, even if they are just as good.

Overall, the lesser experienced developers feel like they do not have as much ownership of
the code base as Alex does, as his choices often override theirs.

4.3.3.6 The burden of onboarding

All the developers in the software development department have linux workstations. The
department manager and others saw value in having at least one developer on the windows
platform. Most of the clients use windows and almost all the development is done on
linux. This leaves primarily the automated testing in Windows to be the only windows
use and exposure the product gets in house. Having a windows development machine
means that more scenarios than just those in the automated tests are exposed on windows
machines. It also means less overhead when there is a windows specific feature or bug
being implemented, as most developers have to perform some set up to run, develop and
test on Windows.

78



Karoline was put in charge of the maintenance team when it had some new interns. This
was a new experience for Karoline, to lead a team. Aurora, one of the new interns in the
maintenance team then had a microsoft workstation, as was decided by the upper manage-
ment. However, an intern learning the ropes on windows machines posed other challenges
for both the intern and Karoline, as many standard tools and environments would not be as
easily set up on windows. Most of the in house instructions for setting up and accessing
different systems and tools were also only written for the linux workstations.

It often meant that even Karoline or other developers did not have helpful answers for
Aurora when she encountered problems setting up her system. It also meant that the appli-
cation sometimes behaved differently on Aurora’s workstation than the rest of the team’s. It
made it harder for her to feel like she is up to speed as easily as others and it made Karoline
feel less able to help her team member.

4.3.3.7 ‘Pair’ programming over time

It is very common and highly encouraged as part of the company culture for developers
to ‘pair’ on a task. Until the year before our observation window, this form of ‘pairing’
often involved the developers discussing the task or design, then dividing up the sub-tasks
between them, and they go and work separately and eventually regroup, to discuss further
and divide tasks further.

Over the last year, the software development culture is starting to change. When the three
newbies joined, two interns and one full time employee, some of what was considered
‘pairing’ started to be redefined. Davin who was onboarding two of the newbies asked
them to look over his shoulder as he works and then he looked over the newbies’ shoulders
when they tried to work on their first task. While looking over their shoulders, Davin
guided them through the problem discovery process, and helped identify a solution while
the newbies drove the screen navigation.

This different style of ‘pairing’ continued in the maintenance team, where two people
would work on the same task together at the same workstation, while each occasionally
drives. Then as the newbies started working with other developers, they followed this new
model of ‘pairing’ with them as well. Over a few months, some of the existing, more ex-
perienced developers also started ‘pairing’ in this new way, where they would work on the
same workstation together.

79



4.3.3.8 Pace discrepancy

Right after Nathan’s stint in the maintenance team, when he first started working in the
pre-release team with Karoline, she found that he took longer than she was used to to go
through the investigation step for any bug. She found that perhaps because of his lack of
confidence in knowledge of the code base, he would revisit different parts of the concerned
code repeatedly, but would not confidently draw conclusions for a day or two. Karoline,
who is far more conversant with the code base and the programming language would be
accustomed to typically half a day of investigation at the most. In working with Nathan,
she would identify the cause of the defect quickly and recommend a solution for it. How-
ever, Nathan would continue investigating, unsure of the root cause or solution. He would
not be confident that a subroutine being used is actually doing what it should and start in-
vestigating subroutine after subroutine, even ones used extensively by many different parts
of the code. Then after two days, Nathan would propose the same solution that Karoline
would have proposed before. After working in this mode for a few days, Karoline carefully
spoke to Nathan, and asked him to trust the code he sees and not try to question everything,
especially if it has been proven to work in other parts of the code.

Eventually, Nathan asked Philip for time to learn and become more confident in his lan-
guage understanding abilities. Philip encouraged Nathan to take a course for that purpose.
Some time after the course, Nathan appeared more confident in his conclusions about prob-
lems in the code.

4.4 Quantitative Data Analysis

4.4.1 Collecting the data

The standard company process at TAI is to record what contract related work one is working
on for every part of the day, to the granularity of 6 minute intervals. Different developers
use different methods to track their time usage. Some make notes on paper, some document
it in a saved text file, so that their activity is searchable later. Our participant observer,
Natalie initially used notes on paper and then transitioned to documenting time used as
events on an online calendar. She used the hand written information from the first few
weeks to backfill the events missed on the calendar.

80



The events were usually named to indicate whether Natalie worked alone or pair pro-
grammed with another developer. Sometimes the event names included which bug or story
she worked on. When the bug or story information was missing, Natalie would use commit
logs and bug reports to determine for each activity which bug or story it was related to.
Events like the daily stand up meeting or a sprint demo meeting, which were related to
multiple bugs or stories at the same time, were categorized as multiple.

To track which events were related to each different bug or story work, Natalie would either
record part of the name in the event, or would check which story or bug was worked on that
day by looking at a combination of commit logs or bug report updates or emails, to ensure
only the correct story or bug gets associated with each event.

This data was collected to understand what happens in the course of a bug or story for a
developer in different models of software development and through the onboarding experi-
ences. How often do developers work by themselves, how often do they pair program, how
does the software development process affect communication type and frequency?

From the data, we could potenatially answer questions like - how often did Natalie work
with someone or work alone? what was the nature and frequency of Natalie’s work like
in different teams and different software development processes? What was the nature of
Natalie’s interaction in the onboarding stage and post onboarding? Keeping the nature of
the questions in mind, we examined every event and described it using different aspects of
the data events like the number of attendees, the type of interaction, the type of meeting,
etc.

4.4.2 Description of the raw data

The daily communication data that was collected by our participant observer was in the
form of calendar events titled with a brief description of what the participant did during
that time. Most of the events were only for the benefit of tracking activities, there were
some events that were created to invite attendees to the events, like the development team
being invited to the daily stand up.

The calendar data had the name of events, like ‘paired with Alex’ indicating that the partici-
pant observer was pair programming with another developer Alex during that time or ‘alone
on bug’ which would indicate that the participant observer programmed alone, working on
a bug. The date and start and end time of the event, the name of the organizer, which in
most cases was the participant observer, as most of the events were created by Natalie after
they occurred.

81



Some of the calendar events were created towards the end of the day, on the day of the event.
And some events were created in the calendar a few days after the event occurred. The other
events were invitations from other members of the software development community for
meetings.

There were some events like the daily stand up meeting for different teams or different
requirements collection meetings or sprint planning meeting or demo and demo planning
meetings which were organized by someone else in the team, usually the scrum master, and
had multiple attendees.

4.4.3 Processing the data

The calendar data was extracted to a list, and patched with missing pieces, where some
recurring events like the daily stand up had not been replicated based on their recurrence.
Some events were initially named inconsistently and were renamed to match the style of
other event names. Most event durations are rough estimates as different events related to
the same work sometimes had difficult to distinguish or overlapping time boundaries.

4.4.4 Processing the data by hand

Then for each of the almost 550 events captured, the participant observer went through
each event to categorize it in terms of – Meeting Type - whether it was a ‘Pairing’ session
where the participant observer was pair programming with another developer, or a ‘Solo’
programming session or a ‘Meeting’ of multiple team members, or a ‘Presentation’ like an
information session or a demo, where one party presents information to the attendees.

Tables 4.2 and 4.3 on pages 84 and 85 describe the different attributes and categories used
to categorize each calendar event.

For ‘story type’, the attribute category Company is used for events that are related to general
company work or welfare like a general meeting; User Stories is used for events related to
user story work in a scrum team; Onboarding is for events related to the initial onboarding
of the newcomer; Bug is for events related to work on a bug; Kanban is for events related
to kanban process; Planning is for events related to planning; and Team is for team related
events.

82



The attribute of ‘attendees’ represents the total number of attendees for the event in ques-
tion. In some cases this is an estimate, like for the general meeting where all company
employees attend, we estimate a number like 30 whereas the number could be closer to
50. These events would typically not be linked to any bug or story. Other meetings would
typically only have the a subset of the developers on the team

‘Story ID’ is a unique identifier given to each story or bug that potentially multiple events
could be associated with. This identifier was only used to compare events and other at-
tributes of events across different stories.

The attribute ‘CommType’ describes what type of communication the event is associated
with like whether it is a meeting where different people participate or a directed presenta-
tion or solo work, akin to the Alone Meeting Type, of if it is a pairing session or a consult
with another developer, or some combination of solo work with a brief consult.

The ‘Directed?’ attribute reflects whether the style of the communication in the event was
directed, like in a presentation or undirected, where different parties communicate with
each other.

The ‘Structured?’ attribute describes whether the communication in the event followed
a pre-determined structure, like a daily stand up meeting has standards about procedure
where all the development team members answer the three questions each. Unstructured
meetings tend to be freestyle. Similarly the ‘Formal?’ attribute describes whether the style
of the meeting was formal or not. Sprint demos tend to be formal and structured meetings,
whereas paired programming structures tend to be informal and can be either structured or
unstructured.

The ‘Repeated?’ attribute describes whether that event is a one off or a regularly or irregu-
larly repeated event. The ‘Ritual?’ attribute describes whether the event is part of a ritual
like something that happens at the beginning of the sprint or the end of the sprint or a before
story start ritual or a reflecting ritual.

The ‘Expert present?’ attribute describes whether in the interaction in the event, there is
an expert or authority on the current knowledge discussion present. Like a pioneer devel-
oper present at a consult session or a customer proxy or requirements expert present in a
requirements discussion.

The ‘Information Flow’ attribute describes the flow of information and the kind of informa-
tion flowing in the event, like if the information is discovered together by the participants
in the event or reported by a party to others like in a daily stand up meeting where every
development team member reports on their status; or whether information is exchanged or

83



Table 4.2
Different categories and attributes for processing the event data

Attribute
Name

Description – Attribute Categories

CommType
The type of communication interaction of the event. – Meeting, Presen-
tation, Solo, Pairing, Consult+Solo, Party, Consult, ClientDiscussion

Story ID

An identifier that connects each event to a story or bug, if different
events are related to the same story or bug. 0 otherwise. – A specific
story number or bug number, 0 - if not related to any bug or story work,
Multiple - if related to multiple bugs or stories.

Story Type
Type of story the event is associated with. – Company, User Stories,
Onboarding, Bug, Kanban, Planning, Team

Meeting
Type

Format of the meeting – Alone, General Meeting, Demo Meeting, Meet-
ing, Setup - related to onboarding,
Programming, Using - learning to use the application, Design, Dis-
cussing, Estimating, Planning, Reflecting, Requirements

Linked to
story?

Whether that event is linked to a story or bug, or unlinked.

Attendees Total number of attendees for the meeting

Directed?
Whether the meeting is a directed presentation, where one party is di-
recting information towards the attendees.

Structured?
Whether the format of the meeting was structured. Whether it followed
a predetermined set of rules.

Formal? Whether the format of the meeting was formal or informal.

Face2Face? Whether the meeting is face to face or telephonic or a mix of both.

84



Table 4.3
Different categories and attributes for processing the event data

Attribute
Name

Description – Attribute Categories

Repeated?
Whether this was part of a repeated event – Y- repeated, One-off, Y-
Irregular, Impromptu, Monthly

Audience?
The audience of the event – All, Design+Dev, Newbies, Developers,
Team, Self, Client+Developers, Modeler+Developer

Ritual?

Whether the event is part of a ritual – Monthly, End of Sprint, Onboard-
ing, Pairing, Daily, Demo, Reflecting, BeginningOfTeaming, StoryBe-
ginning, BeforeStory, Coordinating, StoryEnd, Assigning, Pre-Sprint,
SprintStart

Expert
present?

Whether an expert was present in the meeting. The expert position is
subjective, depending on what is being discussed.

Information
Flow

What type of information flow occurs in the event – Reporting, In-
forming, Socializing, Instructing, Discover together, Exchange, Self,
Reflecting, Clarifying, Ratify, Estimating, Planning, Devise together

Team
Which team I was a part of when that event occurred – Maintenance,
Pre-release, Sprint Cycle 1, Sprint Cycle 2, Sprint Cycle 3

My Partici-
pation

Whether my participation was active or passive.

Activity
Type

Type of activity that takes place in the event, this is a mix of CommType
and some specific meeting names – Demo Meeting, Meeting, Setup,
Programming, StandUp, Using

Duration Duration of the meeting in minutes

Person
Names of three attendees, apart from Natalie, or Team if the team at-
tended.

85



clarified or ratified like a customer demo to ratify the solution.

4.4.5 Processing the data with tools

Software process mining tools like Disco was used to reveal the structure of communication
types over the course of a typical day as part of each type of team and over the course of
a bug or a story for different types of teams. Disco allows the average communication
flow structures to be filtered by the percentage of activities or paths identified to adjust the
readability of the graphs. As the flow diagrams generated are an average of the activities
used to generate them, filtering effectively creates a flow diagram which is still an average
representation of the communication, but is generated from a smaller set of entries.

The social interaction graphs use different types of graph layout algorithms like Harel Ko-
rel or Fruchterman-Reingold to describe the frequency of Natalie’s interaction with other
developers as part of her work in different teams. Figures 4.10 on page 101 till figure 4.11
on page 102 describe the frequency of Natalie’s interaction with other developers, where all
developers have been placed in different groups, indicated by boxes. The group boxes indi-
cate the level of expertise or the level of centrality to the community of practice. Pioneers
like Alex, Quinn, Philip, Leon and Douglas form a group. Early onboarders like Karoline,
Calvin, Oswald, Ivan and Davin form a group, which has relatively less experience than the
pioneers, but were onboarded by the pioneers and have an identity that is less central to the
community of practice than the pioneers but is more central than the newcomers. Natalie,
Nathan, Casey, Jenna and Samuel are newcomers to the community of practice and form
their own group. This group has the least experience and has an identity that feels the least
central to this software development community.

Timeline creation tools were used to graph the course of events over the normal functioning
of a team. Pie charts were used to graph the percentage split in duration of time spent on
different types of activities during different phases.

4.4.6 Observations from the data

The pie charts depict the percentage breakdown of time spent on different types of activities
by the participant observer during her work in different teams.

Timelines: The timeline diagrams show in chronological order, the activities the participant

86



Figure 4.1: All Kanban work time breakdown pie chart

Figure 4.2: All Maintenance work time breakdown pie chart

observer engaged in during the three week period of the first sprint following Scrum 4.8
on page 99 and the first three weeks of the prerelease team work following kanban 4.9 on
page 100. The bars at the bottom show the duration of different stories or bugs.

87



Figure 4.3: Pre-release work time breakdown pie chart

Figure 4.4: All Scrum work time breakdown pie chart

We notice that in the timeline for the first sprint, our participant observer only worked on
two user stories, which took several days each. Whereas, the participant observer worked
on a greater number of bugs during the first three week period in the pre-release kanban
team.

88



Figure 4.5: Sprint 1 work time breakdown pie chart

Figure 4.6: Sprint 2 work time breakdown pie chart

89



Figure 4.7: Sprint 3 work time breakdown pie chart

4.4.6.1 Story scope creep

The second user story from the first sprint depicted in figure 4.8 on page 99 almost reaches
completion in the first sprint but does not make the deadline on the last day of the sprint, and
gets pushed into the next sprint. The story work received a thumbs up from the customer
during the first sprint, but after the demo time, therefore was moved to the second sprint to
complete the final commit part of the story. However, the customer proxy for the story in the
first sprint was not available in the second sprint and a different customer proxy was used.
One of the developers on the story was also not present during the beginning of the second
sprint. When the story was presented to the new customer proxy in its ready to commit,
reconfirming approval stage, the new customer proxy added on additional scenarios for
input to the code, that the customer proxy in the first sprint had not added to the acceptance
tests. This caused the scope of the story to increase in the second sprint. While working on
it, a developer was assigned to the story who had not worked on that story in the previous
sprint. So some time was spent bringing the newly added developer up to speed for a micro
onboarding at the story level.

90



4.4.6.2 Re-estimating

We notice from the timeline diagram figure 4.8 on page 99, that the relatively smaller story,
initially estimated to require an ‘effort’ of five units or be ‘a five’, from the first sprint lasted
about a third of the three week sprint, and was not considered finished even then and took
some time in the subsequent sprint. In comparison, we see from timeline figure 4.9 on page
100 the bugs Natalie worked on during the three week period of the pre-release kanban
were supposed to last a shorter duration, as most bugs are typically automatically assumed
to be rated as an effort of one unit. We observe that some of the bugs, however, took as
long as a shorter story from sprint one which was estimated for an effort of five units. Most
of the developers agreed that the treatment of bugs that were too big to be bugs in kanban
and perhaps would have been more appropriately presented as user stories.

4.4.6.3 Proportion of communication

In the event data, most of the activities except the ones labeled ‘Programming,’ which
indicates time spent programming alone, are activities that require communication and in-
teraction with others in different forms and styles. The pie charts depicting time breakdown
of activities like figure 4.1 on page 87 where more than 60% of the time was spent on activ-
ities involving communicating with others and figure 4.4 on page 88 where more than 50%
of the time was spent in communication related activities depict how large a proportion of
a developer’s time is spent in communicative activities. All activities other than the ones
labeled ‘Programming’ were communication related and communication intensive activi-
ties, including but not limited to ‘Pair Programming’, which is most often the second most
commonly occurring activity by time spent.

The social interaction charts depicting whom Natalie interacted with and process charts
depicting the average flow of activities that take place in each team phase, collectively
demonstrate that communication based activities and interaction characterize a lot of the
work that happens in all forms of software development - maintenance(figure 4.2 on page
87 and figure 4.3 on page 88) or feature development( figures 4.5, 4.6 and 4.7 on pages 89,
89 and 90 respectively), Scrum or Kanban, small or medium sized teams, bug squashing or
feature development, newcomer onboarding or business as usual, etc.

91



4.4.6.4 Perfunctory and evolutionary process

When Natalie was part of the Maintenance team following Kanban, it consisted of only
three developers, of whom two were newcomers. Initially, most of the work was done
together, and the newcomers frequently consulted with the third, more experienced devel-
oper on most bugs. At least two of the developers would work together all day and the
third would be in discussion with them on multiple occasions. The three developers sat
close enough to talk to each frequently.

We see in the interaction diagram in figure 4.12 on page 103 that Natalie worked very
closely with Nathan who was the other newcomer, and Davin, who was the early onboarder
developer in the Maintenance team and was helping onboard both Natalie and Nathan. The
connections between Natalie and Philip depict the daily stand up meeting that they were
part of where Philip was the Scrum Master. The other connections indicate communication
where Natalie and Nathan consulted with other developers on different bugs. As we see
from figures 4.17 and 4.19 on pages 108 and 110 respectively, the typical work for a bug
or the typical day of work in the maintenance team included programming alone, pair
programming, occasionally a consult with other more experienced developers, attending
stand up and presentations for some of the bugs.

In a team so small that worked together all the time, the daily stand up meeting was a
practice that the developers felt was more for the benefit of their Scrum Master, Philip,
who was also the software department head. In the daily stand up meeting, Philip would
sometimes even advise the newcomer developers on which other developers they could
consult with.

Daily Stand up meeting: When the team changed from the Maintenance team to the Pre-
release team and three to five other developers were added to the team, the Daily stand
up meeting became very useful. It was a great way for the developers to update each
other on progress and plan, to decide who will work together, who wants help and what
needs to be done. In the larger Pre-release team, the daily stand up served its original
intended and prescribed purpose. Even though, Kanban with daily stand up meetings were
followed in both teams, the change in team size and dynamics made the same practices
more meaningful.

WIP limit: In the Maintenance team, as two of the three developers were newcomers,
the throughput of the bugs resolved in the team was lower than it would be for three fully
operational developers. In this slow progress mode, the ’Work In Progress’ or WIP limit,
which is a core aspect of the Kanban process, is not something the team ever had to consider
or change. It did not affect the team’s ability to work in any way, as the two newcomers

92



spent their time learning the system.

When the Pre-release team was formed from the Maintenance team, with a larger number
of developers coming in, and the two newcomer developers from the Maintenance team,
able to contribute fully, the need for considering terms like WIP limit to determine flow and
manner of work completion arose. The team discussed at length about different options for
the WIP limit and decided on one where they felt they would be able to work at a brisk
pace, with the understanding that they would revisit it when necessary. The team discussed
and set their WIP limit at least once a week to keep up with changes in the number of
developers and the type of bugs they were working on.

Customer demo: In the Maintenance team, the developers would conduct an open demo
for bugs they worked on once every couple of weeks. However, the sentiment in the team
was that the demos were not very useful, as presenting fixed bugs did not seem as inter-
esting as presenting newly built features to customers. Often in the Maintenance demo,
the developers would be demonstrating normal and common uses of the product, some-
thing customers are typically familiar with. As the bugs demos were usually demonstrating
the bad behavior followed by the fixed, normal behavior; the demos felt lackluster when
compared to sprint demos where interesting, new features were demonstrated. The demos
served as good practice tools for the newcomers in presenting their work, but did not seem
very useful as demos to the customers or other developers.

When the Pre-release team was formed, the work still came into the team in the form of
bugs, but the developers felt that the work seemed like medium sized user stories disguised
as bugs. The team decided that it was important to conduct customer demos before closing
a bug and considering it resolved, especially considering that the bugs were more involved
and elaborate than the normal crop of maintenance bugs. This led to a process where the
developers would capture and document requirements with the customer or customer proxy
for each bug and would confirm resolution of the the bug with the customer through a demo,
and would eventually also demonstrate the resolution to the larger developer and mechan-
ical engineering community at TAI during the common demos. In their more accelerated
and involved mode of work, where bugs were elaborate and often resolved core issues be-
fore the major product release, the customer demos seemed more useful and meaningful.
We also observe from figure 4.13 on page 104, that in the pre-release team that Natalie’s in-
teraction changed from how it was in the Maintenance team. She did not work with Nathan
anymore, she worked with a lot of different developers, and this working together was no
longer just in small consult sessions, it involved more extensive pair programming sessions.
Natalie now worked with Karoline, Alex, Moss and Douglass. Philip’s interaction with the
team changed to an intermittent supervisory role and Natalie and the team worked more
closely with Steve, the Product Owner.

93



When the team started working on user stories in Scrum style sprints, the involved pro-
cess of customer requirements capture, deliberate design and implementation and multiple
customer demos, was the norm. The customer demos were more elaborate and substantial
as they were often demonstrating new functionality which elicited a lot of questions, dis-
cussions and revisions. In this format of development, customer demos were a crucial and
essential part of the development process and felt appropriate and necessary to all devel-
opers, and was no longer considered a perfunctory practice. As we see from figures 4.18
and 4.20 on pages 109 and 111, the per bug process in the Pre-release team has evolved to
include gathering requirements and customer demos or presentations, along with the pro-
gramming activities. In addition, the team attends the Stand up every day - a practice that
suits their evolving team needs now.

4.4.6.5 Shapes of sprints

There are some differences in the separate phases of software development team work that
Natalie experienced, in some ways defining a characteristic for each phase. We consider
these characteristics a ‘shape’ of the software phase. We find that not all sprints are created
equal.

First sprint -The initial turbulence sprint: This was the first sprint experience of that par-
ticular mix of developers, it was a departure from the Kanban style Pre-release work that
preceded it. In the first sprint, the developers started new stories, some of which were the
beginning of some long running, multi-part feature sets. This first sprint was characterized
by lots of communication - several bursts of discussion, design, redesign, repeated under-
standing and questioning requirements, etc. All the developers were trying to get on the
same page about process and operational details. The sprint involved lots of planning, a
lot of inevitable and unavoidable planning for future sprints, even though that is explic-
itly not the intent. The developers try and choose different pairings and combinations. In
the end, a lot less work was accomplished in the first sprint than the team planned for in
the sprint planning meeting. The user stories the developers worked on, which seemed
straightforward in their estimation and planning phases, ended up being more complicated
in its implementation. We see in figure 4.14 on page 105 which describes Natalie’s inter-
actions during the first sprint, Natalie pair programmed extensively and mainly with Alex
and Karoline on two long running user stories, as we see from timeline figure 4.8 on page
99. Natalie consulted breifly with some other developers.

Second sprint - Path to normalcy sprint: After a shaky first sprint where the developers
were learning to work together in this new format and realizing that they initially underes-
timated this brand new work, in the second sprint, the team learns to complete work carried

94



over from the first sprint and finish the testing of things that they barely got the time to
build in the previous sprint. In this sprint, developers starting some other new feature sets
and were understanding how to improve their work strategy. The second sprint had a com-
paratively less need for discussion than the first sprint. It still involved a lot of working
together with other developers and with more testers as well to complete work that was
started in the first sprint. We see in figure 4.15 on page 106 Natalie worked with Karoline
and Calvin, with some interaction with Jenna, the tester.

Third sprint - BAU sprint: In the third sprint, the development team operated like a well-
oiled machine. The developers spent time wrapping up or continuing the feature sets started
in sprints one and two, so a lot of the major design discussions and decisions had already
been made and everyone knew what needed to be done. By the third sprint, the team
knows how to work together. Everyone knows what needs to be done in the sprint, as prior
sprints helped clear most of the doubts and questions. The third sprint had a limited need
for pairing, the developers in the team implicitly chose to work independently more. The
atmosphere is a quiet and calm, almost sleepy. We see from figure 4.16 on page 107 that
Natalie had very limited interaction with other developers, as she mostly worked alone, as
depicted in figure 4.7 on page 90 which shows primarily programming alone.

4.4.6.6 Process in practice - Kanban vs. Scrum

Our participant observer and some of the developer subjects worked in both the Kanban
style Pre-release team working on bugs and the Scrum style development team working on
user stories. Through developers reflections and our participant’s observations, we found
that during the pre-release work, some of the bugs that they worked on felt like they entailed
work more substantial than bugs typically do, and felt more like “stories disguised as bugs”.
Some developers expressed their dislike for it, as the bugs being too substantial hampered
their ability to leverage the spirit of Kanban. Notions like the Work in Progress limit and
the In Progress queue were not functioning as thy normally would. One to two developers
would be tied to one bug for a relatively longer period of time than other bugs and the queue
would have one to two slots blocked for a substantial period of time. The typical pace of
Kanban work is fast and the longer running bugs made some of the work feel slow.

Another reason some developers said they preferred the Scrum work to the Kanban work
is that there is a clear time line and end of sprint in Scrum. The developers worked in
the Kanban team before a major product release and was supposed to be in bug squashing
mode with Kanban, taking work input from a large bucket of bugs. The team was told
their work will end when the product owner agreed that the code quality was good enough
and enough bugs had been fixed. The developers felt that they did not have a good idea of

95



whether they were spending an appropriate amount of time on the bigger bugs. The same
work in a Scrum user story would have an estimate associated with it, and the developers
would have an idea of how long it should reasonably take. The developers also expressed
guilt, saying they felt responsible for delaying a major product version release. The product
owner and scrum master assured to them that the developers are not to blame for the delay
and they are, in fact, helping deliver good product quality, which is needed for a major
product version release. Overall, the effective open-endedness of the Kanban bugs proved
to be a source of stress and strife where the long-running bugs were concerned.

4.4.6.7 Multi-sprint stories

As we see in figure 4.8 on page 99, Natalie worked on a couple of stories in the first sprint.
The dist story took up most of the sprint, and in the wind down phase of the dist story,
work on the dialog story started. Karoline and Natalie worked on the dialog story where
Alex consulted. The story was almost completed by the end of the sprint. It was developed
according to the requirements and scenarios the customer proxy laid out, and demonstrated
to the customer proxy where the customer gave his approval. However, the customer demo
was not done before the sprint demo, so the story was considered incomplete and carried
over to the next sprint.

In the second sprint, for the dialog story, the customer proxy changed as the original cus-
tomer proxy was on leave. Karoline was also on leave, so Natalie was assigned the story
along with Calvin, who was new to the story. When Natalie repeated the demo for the story
to the new customer proxy, he pointed out additional scenarios that should be included for
the story to be complete. These are scenarios that the first customer proxy had not identi-
fied. This caused an initially small story, which was considered complete to be carried over
and then expanded in scope. As Calvin was new to the story, he had to be brought up to
speed on the requirements, design and development done on the story. This led a seemingly
simple story to span across different sprints and almost mutate to a more complex story,
enduring scope and personnel change.

This split of the story affected the overall shape of the work in both the sprints, both for
Natalie and for the team at large.

96



4.4.6.8 Changes in participation over time

As we see in Figure 4.12 on 103, our participant observer Natalie, was working on the
maintenance team and this phase also included her onboarding time. Initially, Natalie and
Nathan worked with Davin, and through the rest of time on the maintenance team, she
primarily worked with Nathan, the other newcomer. Natalie would occasionally consult
with other pioneers or early onboarders on different bugs, but the bulk of their programming
was done either alone or in paired programming sessions together. Natalie would also
be reporting to Philip during the daily stand up meetings. The work on each bug would
last anywhere between one to three days. As the maintenance team was also responsible
for ensuring the daily builds do not have problems, Natalie would often work with Moss,
the infrastructure personnel to remedy any software build related issues. As the figure
suggests, Natalie’s interaction was primarily with Nathan and Philip with several consults
with pioneers like Alex or early onboarders like Davin or Ivan.

After a long stint on the maintenance team, Natalie and Nathan moved to the Pre-release
team, where they were joined by pioneers like Alex and Quinn and early onboarders like
Karoline, Ivan and Calvin and the third newcomer, Casey. As we see in Figure 4.13 on
page 104, Natalie worked primarily with Alex and Karoline on different long running bugs
together and on some short running bugs by herself. As we see in the time line for the
first three weeks of the pre-release work in Figure 4.9 on page 100, Natalie worked on
some bugs that ran as long as medium sized user stories did. During the pre-release work,
the team met daily with Steve, who was the Scrum Master and with Douglas who was the
Product Owner and the customer proxy on many stories. As many of the bugs that Natalie
worked on had to do with infrastructure changes, she also extensively consulted with Moss
on infrastructure matters.

When the product major version release finally took place, the teams were reconfigured
again to form scrum teams. We observe who Natalie interacted with during the first sprint
in Figure 4.14 on page 105. All her programming interaction was with Alex and Karoline,
and during the sprint, Alex, Karoline and Natalie worked on two long running stories.
There was daily interaction with Steve, Douglas and the rest of team during the stand up
meeting and the demo prep before the end of the sprint. The second story, which was
developed by Natalie and Karoline was almost complete and even given approval by the
customer after demo, but was rolled over into the second sprint was the final code commit.
This affected how the second sprint was shaped.

We see in Figure 4.15 on page 106 which describes who Natalie communicated with during
sprint two, that her interaction was heavily with Calvin. Karoline and the customer proxy
for the rolled over story were on leave for the beginning of the second sprint, so Calvin took

97



Karoline’s place on the story and a new customer proxy was appointed. During the demo,
the new customer described additional scenarios for the functionality to work, that the first
customer had not mentioned. This expanded the scope of the story. So Natalie spent some
time with Calvin, bringing him up to speed on the story. As the base functionality was now
working, extensive testing could be performed. Natalie then worked with Jenna, who was a
new tester working with the team. As Jenna was also relatively new to the system, Natalie
spent some time helping Jenna get accustomed to the new functionality and helped with
setting up tests for it. Then Karoline, Leon and Natalie worked on a long story, where as
the pioneer and expert in the functionality being changed in the story, Leon led the design
effort on the story. Karoline and Natalie worked on different parts of the story individually,
as dictated by Leon. This changed feature also required extensive testing, leading Natalie
to work with Jenna some more. As with the first sprint, the development team met with
Steve and Douglas daily for stand up meetings and towards the end of the sprint for demo
planning and preparation.

Figure 4.16 on 107 depicts Natalie’s communication and interaction during sprint three.
We observe that Natalie’s interaction during this sprint was a lot less intense than prior
sprints. As the stories during this sprint were related to stories already completed in prior
sprints, the work in this sprint was largely performed in solo programming sessions with
brief communication bursts to reconfirm and tweak design decisions that were established
before. At this point, all the developers on the stories knew what they had to do, and the
development effort was smooth, requiring limited interaction. Natalie pair programmed
with Casey for a short time.

98



Fi
gu

re
4.

8:
Sp

ri
nt

1
Ti

m
el

in
e.

99



Fi
gu

re
4.

9:
Pr

e-
re

le
as

e
W

ee
ks

1-
3

Ti
m

el
in

e.

100



Fi
gu

re
4.

10
:

Fr
uc

ht
er

m
an

-R
ei

ng
ol

d
w

ith
gr

ou
pi

ng
s

fo
r

al
l

in
te

ra
ct

io
n

at
TA

I.

101



Fi
gu

re
4.

11
:

Fr
uc

ht
er

m
an

-R
ei

ng
ol

d
w

ith
gr

ou
pi

ng
s

fo
r

al
l

in
te

ra
ct

io
n

at
TA

I.

102



Fi
gu

re
4.

12
:F

ru
ch

te
rm

an
-R

ei
ng

ol
d

w
ith

gr
ou

pi
ng

sf
or

al
lt

he
M

ai
nt

en
an

ce
te

am
.

103



Fi
gu

re
4.

13
:

Fr
uc

ht
er

m
an

-R
ei

ng
ol

d
w

ith
gr

ou
pi

ng
s

fo
r

al
lt

he
Pr

e-
re

le
as

e
te

am
.

104



Fi
gu

re
4.

14
:

Fr
uc

ht
er

m
an

-R
ei

ng
ol

d
w

ith
gr

ou
pi

ng
s

fo
r

al
l

th
e

fir
st

sp
ri

nt
cy

cl
e.

105



Fi
gu

re
4.

15
:F

ru
ch

te
rm

an
-R

ei
ng

ol
d

w
ith

gr
ou

pi
ng

sf
or

al
lt

he
se

co
nd

sp
ri

nt
cy

cl
e.

106



Fi
gu

re
4.

16
:

Fr
uc

ht
er

m
an

-R
ei

ng
ol

d
w

ith
gr

ou
pi

ng
s

fo
r

al
lt

he
th

ir
d

sp
ri

nt
cy

cl
e.

107



Fi
gu

re
4.

17
:

Pe
r

bu
g

pr
oc

es
s

fil
te

re
d

to
a

50
%

ac
tiv

iti
es

an
d

50
%

of
pa

th
s

fo
rM

ai
nt

en
an

ce
Te

am
w

or
k,

ou
tp

ut
fr

om
pr

oc
es

s
m

in
in

g
to

ol
D

is
co

108



Fi
gu

re
4.

18
:

Pe
r

bu
g

pr
oc

es
s

fil
te

re
d

to
a

50
%

ac
tiv

iti
es

an
d

50
%

of
pa

th
s

fo
rP

re
re

le
as

e
Te

am
w

or
k,

ou
tp

ut
fr

om
pr

oc
es

s
m

in
in

g
to

ol
D

is
co

109



Fi
gu

re
4.

19
:

Pe
r

bu
g

pr
oc

es
s

fil
te

re
d

to
a

50
%

ac
tiv

iti
es

an
d

0%
of

pa
th

s
fo

rM
ai

nt
en

an
ce

w
or

k,
ou

tp
ut

fr
om

pr
oc

es
s

m
in

in
g

to
ol

D
is

co

110



Fi
gu

re
4.

20
:

Pe
r

da
y

pr
oc

es
s

fil
te

re
d

to
a

80
%

ac
tiv

iti
es

an
d

50
%

of
pa

th
s

fo
rP

re
re

le
as

e
w

or
k,

ou
tp

ut
fr

om
pr

oc
es

s
m

in
in

g
to

ol
D

is
co

111



Chapter 5

TAI - Results

From our study of TAI, we used qualitative data from the developers interviews and the
observations and reflections of the participant observer to form more in depth observations
and uncover the story, patterns and the social, historical and cultural context. We then used
the quantitative data to validate and ratify some of our observations.

The greater purpose of our study was to capture patterns of communication related to men-
toring and knowledge and process management that allow software development commu-
nities of practice to evolve their practices, sustaining themselves through change. In a
true grounded theory sense, part of the job was to ask the question: ‘what are the ques-
tions?’ The search for patterns is in fact also the search for the questions. Our study of
the software development community of practice has a broad focus and research questions.
Broader studies help capture different aspects of the subjects, while allowing researchers to
see many facets at play together to assess what the important and unique aspects of the sub-
jects and their relationships are. A purpose of our study was to identify potential questions
for future research.

In this chapter, we discuss some of our findings based on our mix of quantitative and
qualitative analysis and present the results of our findings in the form of patterns.

5.1 Discussion

In this section, we discuss some of our observations from the mix of quantitative and qual-
itative data, but with more context than observations in the previous chapter. Some of these

112



discussions will allow us to identify and frame our findings as patterns in later sections.

5.1.1 Types of community participants

Based on the categorization of communities of practice participants by Wenger et. al in the
their book Cultivating Communities of Practice [68], we observe that the core group of the
community of practice consists of Philip, the software engineering department head and
most enthusiastic process supporter, and Alex, who is one of the pioneer developers who
is still actively involved in the primary development effort, working with other pioneers,
early onboarders and newcomers combined, Quinn, who is not an original pioneer but
with over a decade of experience on the same code base, is effectively a pioneer as far as
knowledge and influence is concerned. The core group explicitly plans and encourages
knowledge management within and outside the community. Philip is the coordinator of the
community of practice and actively builds strategies for knowledge sharing, development
and management, imposes practices, decides to adopt systems, and experiments with new
formats of communication.

Some early onboarders and most newcomers form the active group, which engages in the
community of practice most often and perhaps benefit most from the community as well.
Some examples of such regularly engaged early onboarders are Karoline, Ivan and Moss.
Under Philip’s directive, Ivan and Moss also help organize explicit knowledge sharing ses-
sions called Tech Talks within the community to share and discuss a variety of topics related
to software development and what it means to them.

There are other developers, who adopt peripheral participation where they are part of the
community of practice and attend and learn from it, but may not regularly contribute to
it. Some developers who work on niche development topics or projects that do not have a
lot of overlap with the work other developers are doing and benefit only from occasional
participation.

There are some outsiders to the community, like the mechanical engineers and system
modelers who rarely participate within the community of developers, however, there is
knowledge that flows bidirectionally between the two groups. However, their interaction is
rare. As the coordinator, Philip has been trying to convince the modelers team to interact
more often with the developers, and learn more about the new features of the product, so
that they may use them and give early feedback, and also be able to advise clients.

113



5.1.2 Community of practice evolution over time

We observe that the community of software development practice at TAI evolved over time
and changed in format and recognition as a community by the organization. We assess
the community over time based on the classification by Wenger et. al in their book on
Cultivating Communities of Practice [68].

The software development community of practice at TAI went through many transitions
over time. Initially, when there were very few developers, and they all worked separately on
massive projects, they consulted with one another and reviewed each others’ code during
commit time. They were a very small community of developers then and many of them
did not consider themselves programmers as the background for many of them was in
mechanical engineering. However, as a small community, they enabled their collective
knowledge growth and created the combination of physics and mechanical engineering
background with programming skills, giving this small community a unique flavor, forming
the core of the business at TAI. At this point the community was largely ‘unrecognized,’ as
even the members barely recognized themselves as a community and their identities were
still mixed, as many considered themselves mechanical engineers who are programming.
Other than code review, there was no other formal practice.

Over the next few years, the focus of the company slowly shifted to a mix of small
projects for different customers and a primary code base from which some similar products
emerged. This required a combination of knowledge of the code base, the primary product
line, the physics behind the different small projects and a means to integrate both worlds.
This requirement of a new knowledge profile caused the programmers, mechanical engi-
neers and physicists to work more closely than before and share knowledge of different
types. This was the mode of operation for many years at TAI and this knowledge sharing
based community of developers expanded. This community was recognized by the organi-
zation and some means of software process started to be adopted. The development effort
was starting to be larger than could be managed in the typical one developer to one large
project ratio. Developers needed to work together and incorporate concepts from physics
and mathematics into features of the code base. The addition of practices and conscious
decision making about software process, even though the process would change over time,
meant that the organization acknowledged that this group of developers had a need to work
together regularly and share knowledge to accomplish their work and grow in capability.
The community was now ‘supported.’

There was a change in the structure of the software development, when Philip became the
team leader for the software development effort. Philip notes that the software development
at TAI felt like using a mechanical engineering process and trying to apply that to software,

114



and it just did not fit. The community of developers could use practices that suited their na-
ture of work better. Philip worked with Alex to learn about practices and processes that the
software industry employs. They worked together to identify a particular set of software
practices and decided to adopt Agile methodologies, in particular Scrum for their growing
development team needs. The practices of the process dictate when and how often to com-
municate and what to communicate. They also adopted some aspects of pair programming.
They continued with their earlier well proven practices of code review. At this point, the
community of software developers was ‘officially recognized’ as an entity with needs of
knowledge and expertise management different from the rest of the organization. It was
also recognized that the community can manage itself and decide for itself the practices
and tools it adopts to get the immediate work done, but also to sustain itself over time as
developers change roles and projects and as new members join and come up to speed. In
some ways, the community was also starting to appear ‘institutionalized’.

After operating in this organized mode for a few more years, the software development
effort saw a lot of growth in the number of developers employed, and in the varied types of
work being done by the developers. The main product line also became a prominent source
of income for the company, in addition to its government and industry funded research and
services projects. As the department grew, the code base also grew manifold. The variety
of product and code features and their applicability to different types of clients and end
users grew as well. It was starting to become untenable to operate efficiently with the exist-
ing structure. Again, Philip, with input from Alex and many other sources like successful
examples of industry practices in software development and some input from Steve, deter-
mined the knowledge hierarchy followed by the company Spotify would be a good model
to adopt. So we see another big change in the organization of the software development
department to facilitate knowledge growth and sharing. This model describes a changed
reporting hierarchy, to allow developers to work on their projects but also grow and hone
their skills in their chosen areas of expertise. This new setup allows for more deliberate
skills and expertise management, built right into the institutional reporting structure. At
this stage, this community of practice is fully ‘institutionalized.’

5.1.3 Different onboarding strategies

We observed different deliberate onboarding strategies at TAI. When the current early on-
boarders first joined the development team, they typically started with low impact work
like working on bugs in the Maintenance team using Kanban, but paired extensively with
knowledgeable pioneers to gain a lot of knowledge fast.

115



For the current newcomers, two onboarding trajectories have been attempted that are strate-
gically different to explore onboarding methods. The most effective strategy used most
commonly in the last few years is the Newcomers with early onboarders strategy where
newcomers initially start with low impact work in resolving bugs in the maintenance team
following kanban, then move to high impact work in sprints following scrum, working
with a mix of early onboarders and pioneers. The second is the Newcomers with pioneers
strategy where newcomers start right away with high impact sprint scrum work, working
closely with a pioneer, getting one on one time and eventually moving on to work with early
onboarders on lower impact work. The latter strategy is similar to what early onboarders
experienced when they first joined but has not remained the predominant strategy. It was
tried with Casey after a long time.

5.1.4 Different formats of communication

As a community of practice, the most important currency combination is knowledge and
communication. There are different types of knowledge - explicit and implicit and public
and private. Then the means of communication used to share knowledge can be formal or
informal, structured or unstructured and planned or unplanned.

We see several forms of knowledge sharing communication means employed in this soft-
ware development community of practice. The formal and relatively public channel of
communication was the wiki. The knowledge wiki ranged from specific information about
decisions made for past and current stories, to what was delivered in each release, to the
details of the information discovery process for most user stories and bugs. The wiki also
included pages on generic topics like instructions for setting up new machines, or instruc-
tions for accessing and using some specific sort of software, etc. Some developers main-
tained pages of assorted bits of information that they had collected and shared with the
other developers. The wiki was this dynamic, public, formal means of information sharing.

Another formal means of sharing information with peers was a series of presentations called
Tech Talks. These were directed presentations that some developers organized to share
knowledge on different topics, related to software development and software process. De-
velopers also shared knowledge outside the developer community, with clients and product
owners, engineers and other stakeholders in the form of regular product demos. Demos
were typically held at the end of every sprint, or every week or so for maintenance work.
Developers also received feedback on their work during these open sessions. There pre-
sentations are directed, formal and structured and based around sharing product specific
knowledge.

116



Within the developer team, the daily stand up meeting was a ritual used to share status
updates on their work. These meetings are also formal and structured, but are meant to be
quick opportunities to touch base with the team. These meetings are about sharing updates
and planning information.

Developers work together on the same workstation, programming as a team. A lot of
information is shared during the process. This is also a means for knowledge creation. The
most amount of knowledge exchange happens when developers work together.

Many other formats are employed ad hoc. The open conference model was occasionally
employed and experimented with for brainstorming on major code decisions.

5.1.5 Knowledge silo management

One of the challenges that the development effort at TAI faces is sharing and spreading
knowledge from the ‘pioneers’ to the early onboarders and the newcomers to the software
development community of practice. All the early onboarders and newcomers were capable
programmers and designers, but what made them different from the pioneers was that they
did not have the full historical context for design choices and rationale across the entire,
relatively large and long running code base. Conscious and concerted efforts were being
made by the company to disseminate the information with other developers, allowing the
pioneers to move on to work more appropriate for their skill set, removing dependency
solely on them and to empower the next generation with the knowledge to keep it from
being lost. There is documenting of design choices and questions that the client answered
specific to design choices, but it is difficult to document the reason why every other possible
design choice was not taken, even though this information may be useful at some possible
future juncture. It is often this knowledge that is most valuable because newcomers cannot
possess it and are largely dependent on the pioneers time in substantial quantities to learn
it. The more knowledge a pioneer has, the more expensive and over extended their time
and availability can tend to be, making this knowledge transfer that much more difficult.
Capturing and preserving this implicit historical knowledge proves to be a challenge that
a lot of software development communities face in sustaining themselves, especially in a
culture of high attrition that plagues the industry. If we were to study the same workplace
or other workplaces again, we would want to focus on and collect more details on how this
knowledge sharing affects trajectory, participation and identity.

117



5.1.6 Learn communication style over time

The two main things a developer attempting to incorporate into a software development
community of practice needs to learn are the communication norms of the team and the
knowledge of the code base and understanding code style norms and programming prac-
tices, along with the historical context of design rationale for the interrelations between
different parts of code. Most developers are capable of over time, discovering the rela-
tionships between different parts of code on their own and learn the code style and pro-
gramming practice with exposure to the code. They are often dependent on documentation
and mentors and colleagues to learn about the design history and rationale. And they learn
the communication practices and conventions through exposure and instruction. Recur-
ring, scheduled communication practices are learned relatively easily, however more subtle
nuances in communication are more difficult to pick up. These can be learned over ex-
tended time or from the colleagues. At TAI, we observed an explicit acknowledgement
from the pioneers and the managers of the development department of the importance of
the communication practices. That culture seeps through and other developers also follow
and appreciate the importance of communication to the software process. This helps when
newcomers are learning the ropes as other developers demonstrate and teach them about
different communication practice.

5.2 Previously Discovered Patterns at TAI

From the existing library of Scrum Patterns [20] and Organizational patterns [22], which
together forms intersecting pattern languages, we observe the occurrence of many patterns
in the operation at TAI.

5.2.1 Previously discovered mentoring patterns

The Domain Expertise in Roles pattern [22] talks about hiring experts to form a team, as
this approach makes the most effective teams. One risk of this pattern is that the roles can
get too narrow and cause the organization to be dependent on a few individuals. In the
first decade or so of its existence, this was the state of the organization and role breakdown
at TAI. All developers were experts in their area, but this also made the organization ex-
tremely dependent on them and have their ability to function impeded by an absence or
any attrition. One approach to implement this pattern is by training newcomers really fast

118



and well to operate at expert level more quickly. This allows for expertise to be shared and
allows the roles to remain important but not irreplaceable. This is in line with the Moderate
Truck Number [22] pattern which talks about avoiding a situation where just a few people
have everything dependent on them. This patterns talks about encouraging a culture of
knowledge sharing to spread responsibility across many different people rather than having
a few people do everything.

We observe that for knowledge management and mentoring, the software development
community of practice at TAI adopts the Apprenticeship pattern [22] which uses appren-
ticeship to convert newbies to experts fast. We observe that no matter which form of on-
boarding and mentoring they adopt- onboarding by pioneers or by early onboarders, the
format followed is apprenticeship.

When the early onboarders first joined, almost all the experts would spend time with them,
teaching them different aspects of the development effort that they wuld require. A problem
with this approach is that the more newcomers join, more of the experts get tied up catering
to the onboarding and mentoring effort, the scenario described in the Day Care pattern,
where experts spend a lot of time babysitting the newcomers, and the pace of the overall
development effort is hampered. The solution in the Day Care pattern advises assigning
one expert to take care of the newcomers so the other experts can continue working without
being distracted by the newcomers.

Both the Apprenticeship and Day Care patterns are governed by the Old People Everywhere
pattern [3], pg 215 which emphasizes a need for the young or less experienced developers
to interact with the older or more experienced developers, which is better for the novices,
the experienced builders and the community as a whole.

5.2.2 Previously discovered roles

We observe some role patterns at TAI. Alex is the pioneer who is most actively involved
in the main software development work. He leads the design and estimation work in most
cases and is almost always involved when anything significant about the core functionality
is changing. He advises the product owners and team managers on team organization and
product management. Alex’s position and influence in the team makes him indispensable.
However, it also makes him a bottleneck to progress as he is a required resource or con-
sultant to everything. This was manageable when the work in the company was limited, in
the early days. However, now with all the different products and projects across different
teams, Alex was spread too thin. He fits the Legend Role pattern [22] where one person
becomes indispensable. The pattern talks about naming the role after that person, so that

119



others who have to take on the legend’s responsibilities are aware of the composite nature
of the work, and do not assume limited scope from a narrow or ambiguous title. The pattern
talks about how it is necessary to provide training to those taking on the role and responsi-
bilities after the legend, and it should be the legend who provides that training. The pattern
also says that the legend’s role fades over time as others take on subsets of the legend’s
responsibilities.

We see that Philip fits into the Patron Role pattern [22], pg. 133, who allows for continuity
of the project by serving as a champion for the project as a visible but accessible manager,
while allowing for the development team to manage itself to some granularity.

As we notice in the story where Karoline was part of a team where some younger developer
would find it difficult to work together on a team as the younger developer’s tone would
sometimes be unintentionally harsh or arrogant. This was making all the developers on the
team uncomfortable. Philip reshuffled the teams and brought in Gerome, who fit the pattern
of the Peacemaker Role and helped keep the temperament of the team calm and collected
and returned interactions to smooth running.

As the organizational patterns dictate, it helps to hire a specific person for the pattern of
Mercenary Analyst, to handle all the technical documentation and user guide, and ensure
they are kept up to date with code base changes. TAI employs a dedicated technical writer
who works closely with the development teams and is a permanent member of the Scrum
teams to keep on top of documentation changes.

The development team at TAI also employs the Surrogate Customer pattern where they
use internal resources to serve as customer proxies and represent the customer’s interests.
There is a customer or a customer proxy assigned to every story.

5.2.3 Previously discovered modes of operation

The Diverse Groups pattern talks about how groups with diversity in temperament and abil-
ity are more effective, however patterns like Self Selecting within teams tends to encourage
a more homogeneous team to be formed. At TAI, initially the number of developers was
small, and they all were men who came from a mechanical engineering background who
were now programming. All these developers were roughly the same age, and had roughly
the same level of experience as most of them started working at TAI after their undergrad-
uate and graduate studies. Over time, as developers of different levels of experience and
different backgrounds and temperaments are hired, the total number of developers increases
and the potential for diversity among them as well. The management at TAI intentionally

120



shuffles its developers among the three to four different development teams to counteract
the tendency towards homogeneity. The Scrum teams that Natalie worked on typically had
one or two pioneers, two to three early onboarders and three to four newcomers. There was
also greater gender and age diversity in the team.

We observe that in the Scrum team where Karoline and Ivan worked together, there was
occasionally an issue with Ivan taking on multiple tasks, potentially causing himself to
become a bottleneck to progress, something Karoline disagreed with in practice. However,
when Alex and Calvin are on the Scrum team with Ivan and Karoline, they ensure that they
figure out which tasks to team up on and prioritize so that the entire team collectively is
able to function. If someone is likely to not finish a task soon or is taking on a task that
others depend on, some members of the team lead the discussion to decide how to manage
task allocation to allow the flow of work to continue. This is in line with the Someone
Always Makes Progress pattern, which talks about ensuring that the team keeps moving
forward and making progress on the primary task.

The standard mode of programming at TAI used to be working by oneself on a big project.
Over time that practice changed to become the Develop In Pairs pattern of programming.
Within the Scrum format, the team self selects to assign different user stories, which often
describe features, to themselves. So the developers working on the same user stories, form
a temporary sub-team. This is in line with the Feature Assignment pattern. There are times
that during the feature development or user story work, other distracting tasks come up, like
investigating the cause of test failures on their feature development branch or the primary
product development branch of the code base. This can potentially derail the primary
development effort. The development teams at TAI sometimes adopt the Sacrifice One
Person pattern, where one person takes on the distraction task and the remainder of the
team continues uninterrupted on their development work.

The daily task allocation and work management is usually done by the team, where the
discussion for this type of allocation is led by the Scrum Master. This allows the team to
follow the Informal Labor Plan pattern where the developers devise their own short term
plan. Using the Sprint Planning pattern, the team participates in deciding relatively more
long term operations. As the team self selects and takes turns doing so, they are able to
follow the Distribute Work Evenly pattern.

Occasionally, the development department manager will pull all the experts together to
brainstorm for a solution to some specific issue or new endeavor. He will allocate a sig-
nificant chunk of time, like a few continuous hours for the team to work on the issue and
come up with different strategies from their discussion, thereby employing the Lock Em Up
Together pattern.

121



Recently, TAI has put in motion a plan to reorganize the software development department
where there is explicit grouping of developers based on their existing and intended skill and
knowledge growth, employing the Subsystem By Skill pattern.

5.3 Novel Pattern results

Our objective is to build on the existing body of pattern knowledge in Scrum patterns
and Organizational patterns, as our studied scenarios fall under either category or at their
intersection.

To present our results, we adopt an amalgam of the common template used by Scrum and
Organizational patterns. The two communities already have a common template to allow
interplay between the two sets.

The template, represented below, covers a pattern name, a description of the problem and
the solution, along with a rationale and resulting context section that describes the result
and risks of using that pattern.

PatternName

Problem Statement

Therefore: Gist of the solution

Resulting context and Rationale

5.3.1 Pattern: Pioneer Identity

Pioneer identity: Greater centrality to CoP and ownership of the code base, design and
product. Possibly ownership due to actually creating it.

The Problem: How does a software development team harness knowledge and experience
to its advantage.

Therefore: A team of developers works better when it is able to appropriately harness the

122



knowledge and guidance of its most experienced and most dynamic developers.

Resulting context and Rationale: Similar to the advantage of having a Legend Role pattern
[22], having pioneer developers, who have extensive experience and knowledge of the code
base, product features and historical design decisions.

5.3.2 Pattern: Early onboarder identity

Early onboarder identity Early onboarders feel like their identity has less centrality to CoP
and ownership of the code base, design and product than pioneers. They feel ownership of
certain components of the code base and product features that they personally created. They
have participated in the design decision making process enough to have strong preferences,
which may conflict with the preferences of pioneers.

The Problem: In a sustainable community of practice, it is not possible to have all expe-
rienced experts or Pioneer Identity developers. The community needs to have a means to
sustain knowledge and growth.

Therefore: It helps to have an organized and concerted effort to include new developers
into the community, who are trained and learning directly from the expensive pioneer de-
velopers.

Resulting context and Rationale: The early onboarders join the development team when
it has primarily pioneer developers, but the team recognizes the need to grow and share
knowledge to allow the community to sustain and evolve and also allowing the pioneers to
move on to other roles.

5.3.3 Pattern: Newcomer Identity

Newcomer identity:

Least amount of ownership and centrality to CoP. May feel some familiarity with the code
base over time, but not with the product, as they may not be users of the product and may
not have enough exposure to users and customers yet to understand the rationalization of
priorities of product features and use.

123



The Problem: In a productive, sustainable and steadily growing software development
community of practice, how is growth maintained.

Therefore: It helps to have an influx of newcomers into a growing software development
community of practice, where the newcomers are onboarded over time to become fully
productive.

Resulting context and Rationale: The newcomers who are onboarded and trained by a mix
of the early onboarders and pioneers help expand the abilities of the community of practice,
allowing it to evolve. Their addition also helps increase the centrality that early onboarder
identity developers might feel, as they switch from the junior mentees to a mentor role,
increasing their centrality of identity.

5.3.4 Pattern: Pioneer Onboarding

Pioneer Onboarding: A new developer who has limited experience with Scrum and no
experience with the product, enters a team of pioneer developers.

The Problem: In a team of pioneer developers (the developers who have the most extensive
amount of experience with the code base), how do we bring on board a new developer, with
no Scrum and product experience?

The pioneer developer’s time is precious, and needs to be utilized efficiently to onboard the
new developer.

The new developer needs one on one time with the pioneer developers, but also needs time
alone to go through the code base and understand it. Finding a good combination of things
developers can do on their own and with the pioneer developers is in the best interest of the
team.

Therefore: Pioneer developers spend one on one time with new developer and explain the
historical context of the design decisions on the code base.

New developers can go through product tutorials to understand how to use the product.
And they read and edit the code alone, to understand how the different areas of the code
are connected to each other. They also learn code style norms this way. New developers
can go through system architecture descriptions and sequence diagrams to understand the
connections and workflows.

124



Pioneer developers can pair program with new developers on tasks. Taking these pairing
sessions as opportunities for interaction, pioneers can share the historical rationale behind
major design choices.

Resulting context and Rationale: As a result of this mixed form of onboarding and men-
toring, we use pioneer developers’ time effectively and help new developers get up to speed
on their roles. This initial investment by pioneer developers helps new developers become
able to contribute towards the development effort sooner and more effectively. This al-
lows pioneer developers to be aided by new developers, instead of just spending extended
periods of time onboarding them.

5.3.5 Pattern: Generational Onboarding

Generational Onboarding : A new developer who has limited experience with Scrum and
no experience with the product enters a team of developers with a mixed experience levels.

The Problem: In a team with a mix of pioneer developers (the developers who have the
most extensive amount of experience with the code base) and medium level experience
developers (early onboarders), how do we bring on board a new developer with no product
experience by effectively using everyone’s time?

The pioneer developers time is precious, and needs to be utilized efficiently. The pioneers
have already spent time onboarding the early onboarders.

Therefore: Early onboarder developers spend one on one time with new developers for
most of the time. The new developers occasionally consult with the pioneer developers to
understand the historical context of the design decisions on the code base, on a case by case
basis, as the new developers work on different tasks.

New developers can go through product tutorials to understand how to use the product.
And they read and edit the code alone, to understand how the different areas of the code
are connected to each other. They also learn code style norms this way. New developers
can go through system architecture descriptions and sequence diagrams to understand the
connections and workflows.

Early onboarder developers can pair program with new developers on tasks and work to-
gether for most of the onboarding. When the need arises, and when the pair encounters

125



a topic for which the early onboarders do not know the entire context, the new develop-
ers consult with the pioneers, to learn about the historical rationale behind major design
choices, and accordingly make future design decisions.

Eventually, you work in a team that has highly experienced pioneer developers and other
relatively less experienced developers.

Resulting context and Rationale: This mixed form of onboarding, mentoring and con-
sulting uses the range of experience among the developers effectively to help bring new
developers on board. We use pioneer developers’ time only when their special expertise
is needed and we get returns on the time invested by pioneers to onboard the once new
and now medium experience level developer, when we use the medium level developers
to onboard the newcomers. The medium level developers use their time to regularly pair
with new developers, and share their knowledge of the topics they are most familiar with
at that point. When their experience is found to be lacking in a particular subject, a pioneer
is consulted. This also helps identify areas where the early onboarder developers still need
to plug their gaps in knowledge, and allows the newcomers to build their initial knowledge
base from multiple sources.

This format of onboarding may take slightly longer than the pioneer onboarding for new
developers to be contributing at full capacity, but we accomplish a reasonably good on-
boarding without complete dependence on expensive resources like the pioneers.

5.3.6 Pattern: Process Tug of war

Process Tug of war: Within the same team, some developers are a stickler for process in
preventing a bottleneck in development workflow and other developers may have a more
flexible attitude towards task management.

The Problem: When there are differences of fidelity to strict adherence to process, how do
you determine when to adhere to process and when to relax criterion.

Therefore: It helps to have the whole team weigh in on the decision to either enforce
process or allow an exception and re-prioritize work accordingly.

Resulting context and Rationale: A risk of relaxing criteria often when encountering a
disagreement about adherence is that participants may veer too far away from the core of
the process to reap all intended benefits for it, and other participants may also encourage the

126



sentiment that rigor in software process is not important. If that matches the community’s
approach to software process, then it helps. However, if the community wants to encourage
rigor, then continual disregard of process can be counterproductive.

Conversely, if rigor over relaxing criteria is always selected, it can cause community par-
ticipants unsatisfied with the decision to think of software process as a hindrance to their
style of work and can discourage them to take advantage of it.

5.3.7 Pattern: Pioneers don’t know what all they know

Pioneers don’t know what all they know

The Problem: In a team of primarily pioneers, the team members have so much shared
implicit knowledge that it can be difficult to decide what needs documentation.

Therefore: It is recommended to write documentation keeping non developers or new-
comer developers in mind as the consumer of that information. It may also help to go back
an update old documentation, when it was found that aspects of it needed elaboration.

Resulting context and Rationale: Pioneers are often the developers drafting the initial
design, requirements and rationale documentation, and a lot of subsequent documentation
that build upon them. When all the concurrent consumers of the documentation are experts,
a lot of common implicit knowledge can get missed. However, that knowledge may not be
common or accessible to the newcomers into the community of practice.

As this kind of knowledge disparity increases, the important of pioneers to the development
process in educating the less experienced developers also increases, thereby increasing the
dependence of less experienced developers on the pioneers.

5.3.8 Pattern: Patron as Process Champion

Patron as Process Champion

The Problem: In a software development community, software process adoption and active
practice can initially be slow and perfunctory.

127



Therefore: Having the Patron Role as a champion for software process helps permeate the
spirit of software process adherence into the software development community.

Resulting context and Rationale: We find that if there is a software process champion,
especially in an influential position like the Patron Role, it helps encourage the adoption of
software process and fosters a culture of process improvement that eventually can lead to
greater adoption by making software process practice the norm.

5.3.9 Pattern: Mentor as Oracle

Knowledge transfer method - Mentor as Oracle

A pattern of knowledge sharing and mentoring through employing a ‘questions first ap-
proach’ where the mentees lead by asking questions.

The Problem: When the mentor and mentees work together, how do the less experienced
mentees arrive at the knowledge level of the mentor?

Therefore: One approach to resolve the knowledge disparity is where the mentor expects
and encourages the mentees to interrupt with questions, allowing the mentor to elaborate
where needed.

Resulting context and Rationale: The advantage of such an approach is that the mentor
allows the questions from mentees to lead what the mentor should be explaining. The
mentor does not waste time explaining things that the mentees already understand.

A risk with this approach is that many less experienced developers may not ask questions
as often as they have them, they may feel embarrassed to ask questions or may feel like
asking too many questions may retard the pace of work.

5.3.10 Pattern: Mentor as interrogator

Knowledge transfer method - Mentor as interrogator: A pattern of knowledge sharing and
mentoring through critique using ‘what if’ scenarios posed by the oracle.

128



The Problem: When the oracle, who knows the mentees well, is reviewing and critiquing
the work of experiential juniors, critique from someone so knowledgeable can appear too
harsh.

Therefore: While critiquing, the oracle intentionally adopts a strategy of asking ‘what if’
scenario questions to allow the less experienced developers to justify their choices and
consider the scenario, without feeling accused.

Resulting context and Rationale: Karoline, Casey and Natalie experienced that when work-
ing with Alex, their occasional mentor and by far, the most experienced and knowledgeable
developer on the team, especially during a code review or walkthrough, Alex would pose
different scenarios and questions for them and wait for them to answer to lead them to ex-
amine scenarios where the code or functionality may fail or be incomplete. This is a very
effective method of ensuring that developers ask all possible questions to examine their
code. The less experienced developers appreciate this, as Alex helps make their code better
and more robust. However, the less experienced developers also feel put on the spot when
Alex poses the different questions to them. Often, while posing the questions, Alex knows
that the scenario he is asking about may not be something the less experienced developers
are aware of, as it may be dependent on the kind of historical knowledge that is not writ-
ten down or is not easily discoverable. Alex has mentioned that he intentionally poses the
scenarios as questions instead of bluntly and directly stating that something is wrong or
missing, to apply a more gentle approach than an accusatory one.

This type of strategy is best adopted when the oracle knows the mentees well and knows
what to expect from their interaction together about their receptiveness to this form of
disguised critique.

5.3.11 Pattern: Mentor as interlocutor

Knowledge transfer method - Mentor as interlocutor

The Problem: When a mentor or oracle, who does not know the mentees well, is reviewing
and critiquing the work of experiential juniors, critique from the knowledgeable mentor
can appear too harsh to the mentees.

Therefore: While critiquing, the oracle intentionally adopts a conversational tone of first
agreement then offering suggestions, instead of simply pointing out mistakes or missed
optimization or style coherence.

129



Resulting context and Rationale: Karoline and Natalie experienced in working with Leon,
who is the expert on the subject matter of their work together and the most experienced
developer, perhaps in the company, that when Leon has to offer critique of their code or
ask them to make changes, he brings it up in a conversational tone, after some appreciation.
And then, still just as part of the conversation, he casually offers a suggestion for change
in the code, without using any language like mistake or wrong. As a result, the less experi-
enced developers do not feel offended or accused. They just take his suggestion as a simple
task, and not a failing on their part.

This strategy perhaps serves Leon well, as he rarely works with the other developers n
person. His interaction with other developers is typically over the phone and for brief
periods of time on small stories or tasks. Leon does not already have a close relationship
with other less experienced developers, to employ a more aggressive approach.

5.3.12 Pattern: Encourage pair programming by just doing it

Encourage pair programming by just doing it

The Problem: Even if pair programming is the official practice, for many developers who
haven’t been regularly practicing true pair programming before, pairing ends up being a lot
of discussing together and programming alone. How do you get a community of developers
to adopt real paired programming?

Therefore: To get the team to regularly and reliably practice pair programming, if you start
with a few people, especially the newcomers to start practicing paired programming, it can
quickly permeate through the team and start becoming common practice.

Resulting context and Rationale: At TAI, we learned from the pioneers and early onboard-
ers that before the newcomers Nathan, Natalie and Casey joined the software development
department, what most developers called paired programming was usually discussing de-
sign or tasks together and then going away to code separately and regroup perhaps at review
or integration time. This was the way the developers would pair for several years.

When Natalie and Nathan started with their onboarding conducted by Davin, as part of the
onboarding, Natalie and Nathan pair programmed with Davin after a day or so of watching
over his shoulder. Pair programming became the standard daily practice for Natalie, Nathan
and Davin. When Natalie and Nathan joined other teams, they carried this practice with
them and slowly, other more experienced developers grew accustomed to this relatively

130



more authentic and perhaps more effective form of pair programming.

One disadvantage of this approach is that some developers may not get an opportunity to
pair with someone who now regularly pair programs due to team or product division lines.
It can require conscious seeding.

5.3.13 Pattern: Communicate design rationale

Communicate design rationale Pioneers share their historical knowledge of design rationale
and context for design decisions with less experienced developers.

The Problem: The real wealth of knowledge and significant advantage that pioneer de-
velopers have over other less experienced developers is the knowledge of historical design
rationale and other factors that contributed to design decisions historically, or the memory
of which strategies worked for the development effort. How or through what processes is
this knowledge shared with less experienced developers? Some design rationale may be
captured through story descriptions or through formal design rationale tracking tools, but a
lot more context is remembered by pioneers than is captured.

Therefore: It is important for pioneer developers to work together with less experienced
developers. A paired programming style collaboration between pioneer developers and
less experienced developers from time to time would help trigger conversations where the
design is questioned and the pioneer developer shares their memory of the historical context
and design rationale for that particular design instance.

Resulting context and Rationale: It can be difficult to remember to capture the entire de-
sign rationale or complete context of options considered before the design choice is made.
Developers remember more than they may formally record. The problem of not knowing
what they know. However, when communicating with other developers, it may be easier
to recall and share the design context. This is, in large part the knowledge that separates
the pioneer developers from the less experienced developers. Sharing this leads to a team
where all the developers have a good understanding of the design rationale over time.

5.3.14 Pattern: Initial Turbulence Sprint

Initial Turbulence Sprint

131



The Problem: When a development team with varying amounts of experience is practicing
Scrum development together as a team for the first time and the team is also starting some
long running feature sets, it can be too many new things with a team that does not know
how to work together yet.

Therefore: Allow the team a sprint to figure out how to work together, and simultaneously
conduct thorough requirements analysis and sound design.

Resulting context and Rationale: It can take a few sprints for the team to fine tune their
process and norms for working together. Allowing for an initially busy and possibly turbu-
lent sprint where the team learns how they work best together, at the cost of the completion
of some of their targets for the sprint.

5.3.15 Pattern: Path to normalcy Sprint

Path to normalcy Sprint

The Problem: After a rocky sprint where a lot less gets done than planned, the current sprint
has a lot of pending work rolled over from the last sprint, and the team has low morale.

Therefore: Allow the team to complete the remainder of stories from the previous sprint
to feel a sense of accomplishment. Encourage the team to work together by utilizing the
lessons they learned from the previous sprint. Let the team find its path to normal behavior.

Resulting context and Rationale: This pattern lets the team create its own rhythm of work
and set of practices and pairings that work for it. This sprint allows the team to make up
for the low throughput of a previous Initial turbulence sprint. There is still design and
requirements refining for long running stories that happen in this sprint, but most activities
contribute to moving towards a sustainable, normal practice.

5.3.16 Pattern: BAU Sprint

Business As Usual Sprint

132



The Problem: After a few sprints, when some long running feature sets are reaching com-
pletion, the work in the team seems to slow down, possibly lowering enthusiasm for work.

Therefore: Allow the team to function in the slow, sleepy mode, as long as the work is
getting done. A team not interacting very much may just be choosing to interact less for a
smaller need to do so.

Resulting context and Rationale: As the team reaps the benefits of planning and knowledge
gathering in previous sprints, it also has less reason to actively collaborate to come to a
common understanding. The pace of development may be sleepy as rounding up interesting
stories with some last housekeeping type work which may not be as exciting as more busy
sprints, but it helps the team practice its ability to be flexible in process, based on the need.

5.4 Pattern language

We describe here how the patterns relate to each other, forming a pattern language, where
patterns precede and succeed other patterns.

5.4.1 Mentoring pattern relation

When a newcomer joins, one can either use Pioneer Onboarding, if the team mainly con-
sists of pioneers. Over time, the team has a mix developers with Pioneer Identity and
Early Onboarder Identity. At this stage when a developer with newcomer identity joins
the team, the Generational Onboarding pattern can be used to sustain the community most
effectively.

In terms of Buell’s mentoring models, we observe that all developers at TAI, given the
opportunity to mentor, choose the “Nurturing Model” [13] where they create an environ-
ment conducive to asking questions and learning through encouragement, as opposed to
the “Cloning Model” of mentoring where mentors typically expect their mentees to learn
by replicating what the mentors are doing.

We also observe that the same mentor may use different mentoring patterns in different
scenarios. Alex employs the Mentor as Interrogator pattern when reviewing or critiquing
code, where he asks questions to drive the mentees to examine their work more carefully
or consider all scenarios, and he employs the Mentor as Oracle pattern when working

133



Figure 5.1: Mentoring pattern relation

alongside less experienced developers, where they ask Alex different questions and he uses
their questions as a guide for what to explain and elaborate on.

In our limited experience with Leon, we found that in critique and review, he employed the
Mentor as Interlocutor pattern. Figure 5.1 on page 134 depicts this pattern relationship.

5.4.2 Knowledge sharing pattern relation

It benefits the larger community when the development team work together to becoming a
community of experts. However, it isn’t always possible to only have experts, especially for
growing teams. Even expert programmers may have lots to learn about the specific product
or design they work on. In such a community, it becomes necessary to have mechanisms in
place to share knowledge, to accommodate everyone’s journey towards becoming an expert.
Organizational patterns suggest an Apprenticeship pattern approach to move away from
the Old People Everywhere pattern and encourage more communication and knowledge
sharing between more experienced developers and less experienced developers to help less
experienced developers gain the knowledge that they lack. This can eventually support a
Domain Expertise in Roles model where the community makes or hires domain experts
and then structures then structures teams around them to implement a Subsystem by Skill
pattern approach.

134



We find that as Pioneers don’t know what all they know, a good approach towards knowl-
edge sharing is in utilizing the Apprenticeship pattern approach, which facilitates experts
or Pioneer Identity developers to communicate documented and undocumented knowledge
in conversation and Communicate design rationale with the less experienced generation
of developers, through Generational Onboarding to prevent the Old People Everywhere
pattern environment.

5.4.3 Process evolution pattern relation

When we see instances of process or means of working together and communicating chang-
ing at the software development community of practice at TAI, we observe the relationship
of the new process related patterns we found at TAI and the existing organizational patterns
that were practiced there.

To encourage pair programming in the development team, a means to allow the organic
adoption of the process is described in the Encourage pair programming by doing it pattern
where once a few developers start to adopt pair programming, subsequently who they work
with are also likely to adopt the process. We witness that the existing pattern of Self-
Selecting Team [22] facilitates the existing Develop in Pairs pattern allowing developers
who want to work together to do so and not forcing incompatible pairings. Greater adoption
of pairing also helps ensure the Someone always makes progress pattern, where successful
pairings are more efficient and likely to make progress than individual work.

A process is more likely to be practiced and benefit the community when the developers
who practice it, internalize the behavior and see immediate benefit in doing so. Creating a
community where the Developer Controls Process pattern is effective, with support from
the Patron Role, helps foster an environment where developers choose and adopt practices
that they assess as working for them after they have tried it. We witness such a community
in TAI, where the Patron Role supports and encourages the developers to decide and use
the practices that work for them, by encouraging them to try new things, but not enforcing
behavior.

Even when we see a Process Tug of war pattern, where the developers have a difference
of opinion on adherence to prescribed process, the Patron Role encourages the team to
determine what would work for them through dialogue and discourse.

135



Figure 5.2: Shape of Sprints pattern relation

5.4.4 Shape of sprints pattern relation

It can take a few sprints for a mix of diverse developers to find their work rhythm and
determine what practices work best for them. This distinction in needs and expectations
from a sprint can influence the ‘shape’ of the communication in the sprint. As depicted in
figure 5.2 on page 136, the team can start with an Initial Turbulence Sprint pattern, char-
acterized by bursts of energy and intense communication, where the nature of the work
and communication is discussed, experimented with, sometimes at the expense of the ex-
pected progress, following the patterns of Developer controls process and Self-Selecting
Team. Taking advantage of a first sprint where the team decides how it works best can be
followed by a Path to normalcy pattern where the team finishes up rolled over work and
continues practicing good practices of collaboration. This can be followed by a BAU sprint
pattern where the pace of work drops off as a lot of decision making and communication
fine tuning occurred in prior sprints.

The Yesterday’s Weather pattern [20] discusses how the velocity of one sprint can affect the
velocity of the next sprint, although it is also a good predictor of the next sprint’s velocity.

5.5 Relationship with research goals

After observing different types of events and patterns and trajectories over a nine month
period of time, we determine how our observations serve our initial research goals.

136



5.5.1 Negotiation of meaning and communication

Our first research goal talks about studying the relationship between communication strat-
egy and negotiation of meaning in the community of practice. Meaning within a community
of practice can be represented by many different types of things like process, work prod-
ucts, artifacts, communication norms and style, forms of participation in the community of
practice. Negotiation of meaning talks about the practices and processes that occur within
a community, that by occurring, define what it means to be part of that community of prac-
tice. By means of participation in the community, the members define and redefine what
the community does and is.

5.5.1.1 Code Review

By means of participating in a code review, developers define and practice the code style
and standard for the community. The developers also define the norms of ownership and
collaboration of the common code base. The developer who writes the code is not necessar-
ily the sole owner of the code. The developer who reviews the code also has responsibility
and ownership. As there are at often two levels of review that code undergoes and mul-
tiple levels of review that product functionality undergoes, all participants involved have
the right and responsibility to ensure code and product quality. They all have the ability
to question decisions or suggest improvements at any stage. Even independently writing
code is not completely independent. Developers write new code for the common code base
following the norms of code style and prior design decisions. So by creating new code, or
modifying existing code, a developer participates in what it means to be part of community
and contributes to it, adding to this existing mixed body of meaning, simultaneously ac-
cepting and redefining the ‘what’ and ‘how’ of participation and meaning - the negotiation.

When exploring and investigating any piece of legacy code, it is common practice to trace
which developer wrote a suspect or ambiguous line of code and perhaps discuss with them
if they remember the rationale behind them. In this way, often the person who finally com-
mitted the code to the common code base ends up leaving a trace of their partial ownership
of the code, even if they were not the developer who originally wrote the code. In some
way, leaving that developer’s name as responsible for that line in the code log, encourages
participation to further their collective understanding of the code - meaning.

The way that the code review is conducted can also vary. Code reviews for small changes
while working on a sprint story is typically conducted by another developer from within
the sub-team who may be familiar with the story, design and the task. When the same

137



code is being reviewed for a bigger code merge with another code branch, then a developer
from the team or a pioneer level developer or a mix of developers of varying levels of
experiences may scrutinize and review the code. As part of bug squashing, Kanban style
work, it is encouraged to solicit a code review from a developer who is unfamiliar with the
bug and the code, as they may be able to lend a fresh perspective on both the code and the
design. Over time, it is intended by some developers to encourage the sprint developers to
also seek developers unfamiliar with the code to review it. We observe that a standard and
simple practice like the code review can be used to collaborate, communicate, participate
and evolve membership of the community of practice, by negotiating meaning.

5.5.1.2 Mentoring

One of the most direct and deliberate means of including someone into the community of
practice and through the process, describing what it means to be part of the community
of practice, is mentoring. Mentoring starts from the day a developer joins and continues
through their entire journey in different capacities. A developer may have multiple mentors
who spend varying amounts of time with them and expose them to different aspects of
participation in the community.

Some negotiation of meaning happens implicitly and indirectly, where the developers se-
lectively absorb some knowledge and norms of practice and ignore others. They establish
their own sense of what practices serve them best and what practices they choose to ig-
nore. Over time, they introduce their own practices into the community and change the
participation of other developers in the process.

Developers directly learn what is officially important to the software development commu-
nity of practice and they also learn what is actually practiced. New developers are exposed
to pioneers and early onboarders as mentors and learn different aspects of participation in
the community which carry different levels of weight. Knowledge and customs imparted
by pioneers may be more difficult to disregard, than those imparted by the less experi-
enced early onboarders. Over time, developers get to question the value of existing prac-
tices through informal conversation and formal sprint or kanban cycle reviews and suggest
changes to style or practices. Eventually, the new developers get to share their knowledge
and experience with other newcomers into the software development community of prac-
tice, thereby negotiating meaning throughout their journey and trajectory in the community
in different ways.

138



5.5.1.3 Process tug of war

Process tug of war discussed in pattern 5.3.6 and section 4.3.3.1 is an example where,
while operating within a well defined process, the participants of the software development
community can have disagreements on the details of process implementation or the degree
of strict adherence o process suggestions. By choosing details of the process to adopt or
modifying process suggestions to suit their needs, the participants define their own meaning
- process.

5.5.1.4 Paired programming

As we have discussed in our pattern on the changes in the nature of paired programming
over time 5.3.12 on page 130 where the process of participation is negotiated, as new-
comers follow new process that permeates through to the team culture and practice. By
practicing more paired programming, and encouraging others to practice it more as well,
the newcomer participants in the community of practice redefine standard paired program-
ming, as it was followed by the teams before, thereby redefining what it means to ‘work
together.’

5.5.1.5 Trajectory

We observe that trajectory can be influenced by communication events and choices, where
a leader community member asking or encouraging another community member to par-
ticipate in an event or activity or to consider a role or position, causing that member to
change the path that they traverse through the community. Conversely, a community mem-
ber’s trajectory affects their identity, their participation and their communication acts and
choices.

5.5.1.6 Open conference

We observe that by adopting a new meeting format like the open conference format for
brainstorming together, breaking away into smaller teams and come together to find a nu-
anced resolution to a complex problem, the developers followed their leadership to expand
their own practices. A thriving community of practice keeps practices evolving to suit its

139



needs. We find that by redefining this form of participation, the community collectively
negotiates meaning.

5.5.1.7 Team deciding

As we describe in the section on team deciding work for itself 4.3.3.2, the team follows the
standard definition of a self-managing team and overrides the advice of the scrum master
and software department head to set its own rules for managing work. The team thereby
invokes the formal definition of a self managing team and defies the common practice of
taking the lead from the leaders. The team negotiates their practice and the adopted mode
of team authority, in the process, negotiating what it means to participate in the team.

5.5.1.8 Minutiae disconnect

As described in section 4.3.3.5 on minutiae disconnect where more experienced developers
may disagree with less experienced developers on small details of code and code style
practices, depicting meaning in the form of code and style being negotiated, an example
of negotiation at a small granularity. Often more experienced developers enforce their
code and design preferences on the work of less experienced developers. In many of these
cases, the disagreement would be in semantically equivalent details, too small to drastically
change the nature of the solution.

5.5.1.9 Knowledge transfer

Through knowledge sharing practices and discussion, participants of the community of
practice add to their existing body of knowledge by sharing and improving on it. This
knowledge sharing can be done through different forms - formal directed knowledge shar-
ing like presentations on new topics or sharing knowledge during formal design or process
discussions or during informal conversations that are part of pairing.

140



5.5.2 Identity and communication

In the second research goal, we explore the relationship of communication strategy and
identity.

5.5.2.1 Pattern roles

We see in the discussion of the emergent pattern roles of Pioneer Identity, Early Onboarder
Identity and the Newcomer Identity, that a developer’s identity heavily influences their
choice of communication. The roles represent the identities of the participants and demon-
strate how properties of the roles influence some communication choices, demonstrating a
relationship between identity and communication.

5.5.2.2 Onboarding styles

Even within the same pioneer identity, different participants can make different choices
of communication strategy, thereby defining for themselves what their role’s relationship
with communication choice is. We observed that pioneers often adopted a more formal,
directed knowledge sharing style, whereas, early onboarders adopt a more informal and
collaborative and explorative knowledge sharing style.

5.5.2.3 Code review and Minutiae disconnect

We observe that different types of onboarding styles can be related to nuances in identity
and participation. We observe that two different developers with Pioneer Identity also adopt
different communication strategies, as their identities have slight differences. Leon is the
original pioneer who had moved away from the core product development work and was
physically separated from the rest of the team and had limited experience working with this
mix of early onboarders and newcomers. In light of his most recent change in identity, as an
expert outsider to the main development team, and returning to regular development briefly
after a few years working independently on research, Leon adopts a more conservative
and conversational approach in critique. Compared to Alex, who was a pioneer who first
started working under Leon and has since established himself as the foremost expert on

141



the primary code base and had been continuously involved with the development teams,
feels like his identity is completely central to the community of practice. Therefore, he
can afford to adopt a slightly harsher but more interrogatory approach when critiquing and
reviewing code. Alex also feels high ownership of the code and weighs in heavily on code
style decisions and design decisions, where other developers who feel less central to the
community and less ownership of the code are more flexible on minor differences in style
and design decisions as long as overall functionality is addressed.

5.6 Conclusion

We have fully integrated into the software development community of practice at TAI over
a period of over seven months, worked in different teams using different software processes
and with developers with different levels of experience. We have used interviews with dif-
ferent developers and other participants in the community, our participant observer’s expe-
rience and an account of all communication activities that our participant observer engaged
in throughout their experience, to learn how this community formed, evolved and sustained
itself through change, grew in size and scope, actively and unintentionally designed its
formal processes and informal practices to support a growing company.We discussed our
experience and challenges in conducting this research.

We identified established Scrum and Organizational patterns that are practiced in the com-
munity and presented novel patterns that we discovered in practice at TAI. We also shared
how these patterns - both previously discovered and novel, interplay and depend on each
other, forming relationships and connections, consistent with a pattern language. Using
the pattern format of results allows them to be easily added to the large and growing body
of knowledge of the combined Organizational and Scrum patterns, and also makes them
accessible to the software development community at large.

In some ways, TAI could be considered a remarkable software development community
of practice. It has successfully navigated the typically treacherous waters of its inception
as a start-up with different mechanical engineers producing a niche software product and
its related services. TAI transformed over time by constantly improving its software de-
velopment abilities as the primary product and services model of the company underwent
changes. Some key aspects of TAI’s success can be attributed to placing the right people in
the right roles.

In spite of the presence of more experienced developers, Philip’s visionary capabilities were
recognized and leveraged to transform the software development effort. Philip mentions
that the old, limited-communication, inadvertent waterfall way of software development

142



felt like a mechanical engineering approach to software development that did not fit. He
worked with other experienced developers to determine what form of software development
process they should adopt and after reviewing different models, choosing Agile software
development with a Scrum model. Over time, the flexible, highly communicative structure
of Agile, as well as market forces, allowed the software development community at TAI to
grow. This growth also brought with it new and interesting challenges such as knowledge
sharing, mentoring and skill management.

Possibly due to their enthusiasm for software process, the development at TAI has a variety
of software process models and practices like Scrum and Kanban, even within a limited
number of development teams. Using software process and in turn, thinking actively about
improving development and communication practices are heavily encouraged and a culture
of deliberate consideration to process is fostered.

Perhaps as a result of such a culture, the success and ongoing growth of the software de-
velopment community at TAI can be attributed to strategic evolution of communication
strategy in response to changing conditions and needs. There is earnest and regular dis-
cussion and evaluation of communication strategies and practices, and new and ground
breaking communication practices are frequently experimented with and assessed for use.
This culture also encourages the experts or pioneers to consciously practice their chosen
knowledge sharing strategy, especially when mentoring less experienced developers.

We find different instances of patterns and events where we are able to perceive the relation-
ship between negotiation of meaning, communication choice and identity. In our work with
student software development, open source software development and colocated rigorous
agile software development communities of practice, we find different identities of soft-
ware developers based on their sense of ownership and centrality to the community. These
identities are not permanent and evolve over time, forming different trajectories through
and within the community of practice. A combination of identity, participation and inter-
action with other participants in the community of practice affects the communication and
mentoring strategy.

We found that communities adopted a mix of two broad approaches in mentoring and in-
corporating newcomers into their community of practice. Either they share documented
knowledge directly with newcomers, or they encourage newcomers to spend a lot of time
with the experts and learn through interaction. We found that at TAI, they adopted the
approach of encouraging learning through interaction. The amount of architecture and
rationale documentation at TAI is limited and the requirements and acceptance tests are
captured per story and can be difficult to understand without having a deeper knowledge of
how the product works and how the architecture of the system is organized.

143



The primary difference between pioneers with their vast wealth of knowledge and expe-
rience and less experienced developers within the software development community of
practice is that the pioneers have all that implicit knowledge of decisions past. They know
the reasons why certain architectural components were connected a particular way, or why
violating usability principles was necessary to satisfy domain specific customer needs or
how newer libraries may offer efficient ways to design the same systems, but the software
debt incurred in that effort may make it an undesirable solution.

As the software development community of practice constituted primarily of pioneers till
a few years ago, a lot of the requirements and rationale has been captured by the pioneers
and in some ways, for the pioneers. For pioneers, with their immense wealth of knowledge,
when recording their findings and design intent, it can be difficult to know what is not
obvious about the design, as it is implicit knowledge that most pioneers might share. Often
it is only recorded what was finally done, and not what all was considered and discarded as
it would be unsuitable for the system.

Developers less experienced than the pioneer developers have the ability to read the code,
interpret to the extent of their knowledge previously recorded documentation and perhaps
fully understand any new functionality that they built or helped develop. However, that
valuable implicit historical context knowledge that pioneer developers have is something
that less experienced developers only learn piecemeal over time through interaction with
the pioneers.

We observe that pioneer developers, perhaps conscious of this knowledge difference may
choose communication strategies that allow them to share their knowledge based on what
the less experienced developers do not know, but need to. Allowing the less experienced
developers to lead the knowledge sharing through their questions, which spur the pioneers
to share answers focused on one thing at a time.

There are risks associated with this strategy as well. Some less experienced developers
may feel like they should not be asking too many questions or may feel embarrassed to.
Some developers may feel that they slow work down with their incessant question asking,
especially if other developers do not ask as many questions. So in a ‘questions first’ ap-
proach to knowledge sharing, the more vocal developers benefit, and a culture of asking
many questions helps encourage that.

Finding ways to intentionally encourage the sharing and dissemination of the historical,
design rationale and context, and creating a culture where this form of knowledge sharing
and mentoring is commonplace, may be the key to accelerating the trajectory of newcomers
to pioneers, to achieve more effective communities of practice. This is a benefit of a larger
culture of paying attention to and actively valuing process, which is fostered by following

144



the lead of an encouraging ‘Patron Role’ leader.

145





Chapter 6

Instruction for Software Engineering
Students

In this chapter, we share our efforts and experience of integrating communication based
material into the computer science and software engineering education curriculum.

6.1 Agile Communicators: Cognitive Apprenticeship to
Prepare Students for Communication-Intensive Soft-
ware Development 1

We report on our efforts to enhance our undergraduate computer science and software en-
gineering curriculum, promoting what we term agile communication through practice in
inquiry, critique and reflection. We are targeting early courses in our curriculum, so that
students internalize agile practices as part of their personal software development process.
Our approach constitutes a cognitive apprenticeship that engages students in authentic soft-
ware settings and articulates processes that are traditionally left implicit.

1The material contained in this chapter is a combination of material from different locations - Section 1 is a
modified version of a part of the material published in the proceedings of the Agile 2015 conference under
the title Agile Communicators: Cognitive Apprenticeship to Prepare Students for Communication Intensive
Software Development and Section 2 is a modified version of material accepted for publication in the pro-
ceedings of the 38th International Conference on Software Engineering, 2016 under the title Instruction in
Software Project Communication through Guided Inquiry

147



Communication-intensive activities are woven through this curriculum in a variety of ways.
The POGIL framework provides a structured approach to inquiry. A program of guided
inquiry through real case studies of software communication prepares students for their
team software activities, and a series of reflective exercises leads them to focus on their
own team communication practices.

6.1.1 Introduction: Communication in workplace and classroom

Communication — between humans — has always been a important but underappreciated
aspect of software development. Although many professional software engineers are effec-
tive communicators, they typically do not have practice in articulating what it is that makes
communication effective (or ineffective). That is, their knowledge remains at a tacit level,
from which it is difficult to impart to students.

The situation is improving. Advocates of agile development methods in particular have
always stressed the importance of flexible communication practices, deployed dynamically
and strategically to maximize value. Cunningham’s WikiWikiWeb, the “original wiki”,
contains a wealth of named patterns for agile practices, many of which fall into the do-
main of communication [23]. The Scrum framework is notable in this respect for the
way in which it names — and therefore honors — particular communication practices that
would otherwise remain tacit and invisible to students [64]. Through efforts by Sutherland,
Coplein and others, Scrum rituals and principles are being captured as a pattern language
of organizational techniques [22] [20].

Preparing students for the flexible, highly communicative environment of agile develop-
ment is a crucial responsibility for computer science and software engineering programs
in higher education. Instruction by experts in writing and communication has an essential
place in the education of future software developers, but it must be matched with simi-
lar instruction within “disciplinary” courses. Computer science and software engineering
instructors are in a unique position to ground the material in authentic practices, and by
attending to communication in the classroom they validate it and heighten its importance
in the eyes of the students.

The importance of communication in the software process is beginning to be acknowledged
in the software engineering education community. The most recent version of the Software
Engineering Body of Knowledge (SWEBOK) [9] has an expanded treatment of commu-
nication, with breakout sections on “reading, understanding and summarizing”, “writing”,
“team and group communication”, and “presentation skills”. Recently there have been ef-
forts to bring the expertise of writing instructors into the computer science and software

148



engineering curricula, engage students in authentic communication activities, and catego-
rize the genres of communication that arise in software development setting [17].

SWEBOK now includes language that indicates that software professionals must be aware
of contextual factors in their design of communication. A software developer — or a stu-
dent engaged in a class software project — must think both strategically and tactically
about the current problem at hand and the form of communication that will solve it most
effectively. Having provided students the tools of their trade, in the form of authentic com-
munication genres, instructors must give them guidelines for their wise use, based on the
other individuals involved in the communication, the timing and location of the communi-
cation, and the form and style — in classical rhetorical terms, audience, kairos and decorum
[36]). Students in computing disciplines enjoy problem solving and are well versed in prin-
cipled approaches to solving technical problems. We want to give them similar tools for
problem solving in the communication arena.

6.1.2 Goal: Agile communicators in software development

The principles of agile development, articulated memorably in the Agile Manifesto [27] as
“individuals and interactions over processes and tools”, “working software over compre-
hensive documentation”, “customer collaboration over contract negotiation” and “respond-
ing to change over following a plan”, have resonance throughout the software industry.
With this shift comes a change in how we approach communication. Agile developers are
also agile communicators, with the following strengths:

Proactivity: At the heart of the agile approach is a recognition that requirements, priorities
and obstacles in software projects are in constant flux. Consequently, agile methods en-
courage patterns of constant questioning, informing and debating. Agile developers must
be unafraid to inquire about requirements, to critique design choices, and to provide reflec-
tive comments on the team’s process.

Flexibility: While agile frameworks such as Scrum and Kanban establish rituals and ar-
tifacts rooted in communication, these do not constitute a comprehensive, programmatic
standard. Agile developers must be able to handle multimodal discourse (including written,
oral and graphical communication through various media) and adapt to new communica-
tion situations, instead of relying on formal scripts and templates.

Creativity: In agile development, participants tailor the communication channels and gen-
res they use dynamically to maximimize value, rather than cleave to a predefined plan.

149



Agile developers must be skilled rhetoricians, with a deep understanding of their commu-
nication options, and an ability to choose genre and style to suit the audience and purpose.

Our goal is to build these agile communication strengths in our students, through expo-
sure to and practice in authentic software communication settings. We wish to build this
exposure and practice directly into our disciplinary courses, and early in the curriculum,
so that agile communication becomes a natural part of their internalized software process.
Also, by recognizing the importance of communication and engaging in it at early stages,
we expect to attract and retain students who are motivated by working in teams. These
students are the ideal software developers of the future, since the reality is that software
development is highly social and communicative.

6.1.3 A Cognitive Apprenticeship Approach: Inquiry, Critique and
Reflection

The Cognitive Apprenticeship model [19] is a constructivist approach to learning that fo-
cuses on teaching concepts and practices utilized by experts to solve problems in realistic
environments. It has special relevance in the context of software development, particularly
in the communicative skills that we are interested in, because it emphasizes making im-
plicit processes explicit to the learner. In typical computer science or software engineering
educational settings, topics like team communication are often deemphasized in favor of
more technical topics; in the workplace, the communication-related knowledge that expe-
rienced developers possess is internalized, complicating their ability to pass it along to new
employees.

We have identified three fundamental agile activities that are mediated through communi-
cation: inquiry (strategies for resolving unknowns, coming to a shared vision, solving prob-
lems); critique (systematic analysis and evaluation); reflection (identifying and describing
one’s own implicit or explicit work process). Here we explain how these three components
constitute a program of cognitive apprenticeship, and how we engage our students in these
activities.

6.1.3.1 Inquiry

Agile development demands a spirit of constant inquiry. The famous Extreme Program-
ming admonition to “embrace change” [5] implies continuous interaction with stakeholders

150



to understand ever-changing requirements, priorities and obstacles. The spirit of inquiry
extends to intra-team communication; in a process of continual self-optimization, teams
self-organize and solve problems together.

The basis for our inquiry based curriculum is the POGIL (Process Oriented Guided Inquiry
Learning) approach, which originated in undergraduate chemistry education [24] and has
been introduced to computing disciplines through the CS-POGIL initiative [41, 34]. At the
heart of POGIL is a guided inquiry learning cycle of exploration, concept invention and
application. Students work in small groups with well-defined roles — similarly to teams in
agile software development — to encourage accountability and engagement. Each POGIL
assignment has a common structure: supply students with initial data, guide them through
leading questions that allow them to construct a unifying concept explaining the data, then
provide means for them to apply and validate their newly constructed concept. It is in
essence an application of the scientific method in a carefully crafted classroom setting. In
addition to learning the core concepts at the heart of the assignment, students get practice
in team problem solving and communication.

We have employed POGIL successfully in the third-year Team Software Project course, to
introduce the concept of strategic communication in a software development setting [40].
This approach fits the topic well: the search for meaning within a given communication
setting is complex, and different observers may see different patterns of communication in
play. Guided inquiry allows students to take ownership of their interpretations; at the same
time, we consciously steer students away from rote, simplistic answers that ignore the
complexity of communication. In POGIL, students work in small groups with individual
roles — a process framework similar to that of Scrum. The problem solving conversations
within the groups give students further practice in team communication. Using a simple
rubric based on standard rhetorical principles of audience, purpose and style, along with
structural factors such as location and timing (Fig. 6.1 on page 1522), students characterize
various communication practices, then assess those characteristics with regard to particular
software project settings.

As an illustration of the exploration-invention-application cycle in practice, we give an
early exercise from our Team Software Project material:

Exploration. We ask students to analyze standard Scrum communication practices (e.g.,
daily standup) that they have been exposed to earlier, and to use our rubric as a guide to
identify critical features of the communication strategies used.

Invention. From these findings, students name patterns of communication and identify
contextual characteristics that make the pattern suitable for application.

2This figure is from the paper on Instruction by Kumar and Wallace[40]

151



Figure 6.1: Sample communication pattern inquiry worksheet.

Application. Next, students are asked to conjecture how the nature of a communication
pattern would be affected if, one by one, different attributes of the communication act were
changed: e.g. changing the duration of the daily standup meeting to one hour, changing
its frequency to monthly, or changing it to an asychronous activity with team members
“checking in” remotely. Students were asked to analyze how such changes would affect
other identified attributes of the communication act such as content, perceived value, and
scope.

152



6.1.3.2 Critique

Agile development demands continuous attention to good design, including refactoring
when changing user needs and design demands dicate. Likewise, team organization and
practices are also under constant review. This requires developers to be willing and able to
reassess current design and practices and to articulate areas of improvement.

Traditional methods for teaching computer science — lecturing on abstract concepts, as-
signing a programming project related to the lectures, then grading the students’ submitted
finished products — resemble the outdated waterfall model of software development in
many ways. An instructor writes a specification and hands it off to students as an assign-
ment. Students toil in isolation, without the benefit of instructor feedback or team com-
munication. When they run out of time, students submit the assignment and hope for the
best – not entirely sure that they interpreted the assignment in the same way as the instruc-
tor. Lastly, the instructor applies secret tests to the student work and assigns a grade, then
moves on to the next topic, regardless of whether students have successfully constructed
mental models to understand the current topic.

In our Team Software Project course, students learn to critique their own work, the work of
their peers, the communication excerpts from real software projects and the work products
from their own software development in a way that allows them to describe the merits of
different aspects identified through the critique, in relation to its use.

6.1.3.3 Reflection

A key component of agile development is continual process improvement, facilitated by pe-
riodic reflective activities. The sprint retrospective in the Scrum framework, for instance, is
a ritual that encourages critique and creative problem solving. The concept of professional
reflection has long been touted as a valuable means of metacognitive regulation [54], and
there is evidence that it builds strong teams and projects and encourages learning [42] [59].

Once our Team Software Project students have been immersed in the Scrum cycle, iterating
through multiple sprints, we ask them to reflect on their own process from a communication
perspective. In the “How We Scrum” activity, they identify commonly recurring commu-
nicative acts as patterns and assess their effectiveness. Through this activity, they come to
acknowledge that they have created a communication infrastructure of their own design.
They then critique this design and propose improvements.

153



Figure 6.2: Sample student reflections: “How They Scrum” [40].

Later, in the “How They Scrum” activity, student team members interview members of
other project teams about their communication practices. This contrasting perspective em-
phasizes the fact that they, and the other teams, have made choices that affect project per-
formance. Sample reflective comments like those shown in Fig. 6.2 on page 154 show the
influence of earlier POGIL investigations of communication strategies; in their reflections,
students use the pattern approach to discuss their own communication design choices [40].

6.1.3.4 Cognitive apprenticeship

Collins [19] outlines the elements of a general framework for cognitive apprenticeship
environments:

Content: Two types of content need to be taught to students: Domain Knowledge and
Strategic Knowledge. Domain knowledge consists of the technical topics normally taught
in computer science classrooms: e.g., programming languages, data structures, algorithms.
Strategic Knowledge is what experts use to make use of these classroom skills to solve
real-world problems. Strategic knowledge is often difficult to express in the classroom
because it is founded in experience gained from doing computer science. Here we outline
the synergistic relations between Collins’s areas of strategic knowledge and our approach.

Heuristic Strategies: We support student learning through the use of patterns in commu-
nication and learning [40, 15]. Software professionals routinely use sophisticated problem

154



solving and design skills in their communication with one another and other stakeholders
in the software process. We wish to impress upon the students the importance of commu-
nication in software development, and to encourage strategic and tactical thinking about
communication.

Control (Metacognitive) Strategies: Through reflection stimulated by POGIL exercises,
we encourage students to learn from choices they, their teammates, and other teams make
during the development process.

Learning Strategies: In our classrooms, we engage in role-modeling, role-play, and POGIL
activities to help students learn how to learn. The cycle of doing, critiquing, reflecting, and
redoing helps students develop their own learning strategies and apply them to problem
solving.

Method: Our POGIL approach, with its emphasis on communication falls squarely within
Cognitive Apprenticeship methods. We invite students to be articulate communicators, to
reflect on their communication choices, and to explore new ways of approaching problems
in a team setting.

Sequencing: Increasing complexity refers to the presentation of topics and the learning of
skills in a way that builds increasingly towards expert performance. Increasing diversity is
the sequencing of learning tasks such that a wider range of skills are increasingly required
to solve problems. Global before local involves introducing students to high level concepts
and working towards detailed implementations.

We introduce POGIL strategies in our initial computer science courses. We then introduce
students to user stories and the notion that communication is a critical component of soft-
ware development. When students reach the Team Software Project course in their third
year, they are ready to learn POGIL strategies for communication and problem solving.

Sociology. Traditional teaching methods in computer science produce graduates with class-
room skills and knowledge but no context or experience for applying those skills; sadly, in
many cases real learning only starts when students leave academia and are faced with real-
world problems. It is critical that cognitive apprentices be involved in solving real-world
problems using real-world techniques as soon as possible. The Team Software Project
course provides situated learning by having students work on authentic problems and com-
municate with stakeholders in the same way they will on the job. Here they engage in a
Community of Practice [67] where they actively communicate and use the skills introduced
in earlier courses. The POGIL methodology exploits cooperation extending learning and
providing intrinsic motivation.

155



6.2 Instruction in Software Project Communication
through Guided Inquiry and Reflection

In this section, we describe in detail our guided inquiry approach to addressing communi-
cation in a team software project course. This course constitutes a crucial juncture in the
academic journey of our students, where they learn and practice the full responsibilities of
a software engineer, including “soft skills” like communication. Early in the course, we
expose the students to real communication challenges that others have faced. Later, during
their project development, we ask them to reflect on the communication challenges they are
facing. We describe the guided inquiry techniques that scaffold the students’ understanding
of communication issues, and we outline our pattern approach to communication design.
We provide some initial results from the classroom, following teams as they explore the
communication practices of others and reflect on their own.

6.2.1 Motivation

The inherent mutability and intangibility of software, coupled with the intense rate of
change in the software development workplace, demand attentiveness and precision in oral
and written communication. Students in computing-related academic programs need train-
ing from communication specialists and practice in the particular genres common to their
future profession [17].

Earlier, however, we have argued that proficiency in software-related genres is not enough
[38]. In most real software settings, there is no comprehensive, rote communication work-
flow to follow. Developers must be able to think strategically and tactically about their
communication – selecting the appropriate material, location, timing and manner to suit
the context. This involves analysis of the context and of candidate solutions, along with a
synthesis of communication elements.

A common place for students to practice this analysis and synthesis is in a capstone project
course, where they must work as a team and interact with clients. In an earlier paper [38],
we compared the communication strategies employed by two different capstone teams as
they engaged with their clients, their instructor, and one another. While one team forged a
productive relationship with their client through effective communication, the other team
failed to make progress due in large part to an ineffective listening strategy with the client.
The variation in these results suggest that preparation in strategic and tactical commu-
nication, within a software development context, could help to prepare students for the

156



challenges inherent in project courses and in their future software careers.

In our earlier work we discussed our attempts at placing communication related material in
our computer science and software engineering curricula, through weeklong trials in dif-
ferent junior and senior level courses. We found that students with some form of industry
exposure like internships and co-ops identified and engaged with the communication pat-
terns material, but that students without such experience need more guidance in thinking
analytically about communication in the context of a software project.

The third-year Team Software Project course, a requirement for the computer science and
software engineering degree programs at our institution, is an ideal venue for this kind
of instruction. Building on two years of experience with programming, software design
and computer systems, students take on a semester-long project, with the instructor acting
as client. The technical toolset developed in introductory courses is brought to bear on
a real software problem. Here is where the notion of software process – the practice of
creating software products in a replicable, reliable way – can be addressed and put into
action. Techniques for effective communication are obviously an important component of
this agenda.

In this section, we describe the communication-focused curriculum that we have developed
for the team software course. We highlight the three primary tools – guided inquiry, pat-
terns, and reflection – that we rely on in this curriculum. We provide some preliminary data
from our first course offering, in the form of survey results and excerpts from student work.

6.2.2 Background

Our Team Software Project course includes an introduction to the concept of software pro-
cess, focusing on the Scrum framework [56]. One advantage of placing our instruction
in this context is that Scrum explicitly acknowledges the importance of repeated, well-
constructed communication [64]. Many of the iconic practices of Scrum – stand-up meet-
ings, sprint retrospectives, planning poker – are designed to increase discussion, reflection
and debate, all of which help to strengthen the software process. The message that we wish
to add is that Scrum, or any other process framework, can provide only broad guidelines for
communication, not narrow, comprehensive rules. For instance, team members may follow
the practice of daily stand-up meetings, but it remains to their creative powers to determine
what activities follow from the information shared at the standup.

We use a process of guided inquiry [12], where students construct their own interpretations
of the subject matter through critical thinking and problem solving. This approach fits the

157



topic well: the search for meaning within a given communication setting is complex, and
different observers may see different patterns of communication in play. Guided inquiry
allows students to take ownership of their interpretations; at the same time, we consciously
steer students away from rote, simplistic answers that ignore the complexity of commu-
nication. In the Process Oriented Guided Inquiry Learning (POGIL) [34] model that we
adopt, students work in small groups with individual roles: a process framework similar to
that of Scrum. The problem solving conversations within the groups give students further
practice in team communication.

Another important component of our approach is the use of the pattern language concept
[28] [22] for analysis and design of communication. Each communication pattern describes
a set of properties associated with a communicative act. As explained in our earlier work,
patterns may define particular communication genres but may also describe certain cross-
cutting properties that apply to multiple genres [38]. Each communication act can be seen
as an overlay of multiple pattern instances. The challenge for the students in our curricu-
lum is to identify instances of communication patterns, assess their fit with regard to the
communication context, and to consider other communication options with a better fit.

In the fall of 2013, we gave two week long iterations of our communication material in
different sections of the team software project course. From this experience, we found that
one week intervals, though productive, did not leave us enough time to do anything more
than merely introduce the concept to students, and it did not allow students to reflect on
their practices. In the spring of 2014 we introduced a course plan with communication
instruction woven into the fabric of the entire term. Upon its success, we employed the
same approach for a semester long course in the fall of 2014. The material described in the
following section describes the instructional activities we devised.

6.2.3 Course Communication Activities

In the Team Software Project course, students complete two software projects in a semester.
The first is a two-week introductory project in which students work in pairs on a common
project across all pairs. The primary goal of this assignment is to give students the prepa-
ration they need for the second project: practice with the development tools they will be
using, and instruction in the fundamentals of Scrum. The second project is typically per-
formed in teams of four or five students, and students select their target application after
negotiation with the instructor on feasibility and scope. Students follow three sprints, each
three weeks in length. Within this course structure, we integrate several communication
activities at different points in the term. We begin by guiding students through analysis
of authentic software communication practices using our pattern approach. Later, when

158



teams have built up experience in their second project, we ask them to characterize their
own communication practices, as well as those of other teams, in terms of patterns and
reflect on their effectiveness.

Our primary objectives in designing these activities are to have students critique their own
communication practices and the practices of others, and to use patterns of communica-
tion to identify key attributes of communication to aid their analysis. Here, we group our
communication-based activities into activities analyzing project-external communication
practices and activities reflecting on internal communication practices.

6.2.3.1 Analysis of project-external communication

Analyzing basic Scrum practices. At the beginning of the second project, we introduce
communication analysis through a series of short guided inquiry activities. In the first
session we ask students to analyze standard Scrum communication practices (daily standup,
burndown chart) that they have been exposed to earlier. Students are given a short reading
about these Scrum practices as homework, and in class they work together in groups to
answer questions about different aspects of the communication practice they have been
assigned. The initial questions ask students to characterize the communication according
to the traditional “Kipling questions” of Who, What, Where, When, How and Why.

Next, students are asked to conjecture how the communication act would be affected if one
by one, different attributes of the communication act were changed. For instance, changing
the duration of the daily standup meeting to half a day or changing its frequency to twice in
a project as opposed to being held daily. Students were asked to analyze how such changes
would affect other identified attributes of the communication act such as content, perceived
value, and scope. An example question from this activity is “Now imagine a scenario where
the WHEN properties of a burndown chart were changed and it was updated twice in the
project life cycle. How does that affect its use and relevance?”

This activity is designed to encourage students to identify different attributes of communi-
cation acts and determine how well they match the project context. We feel it is important
to demonstrate that not all communication choices are equally valid; some patterns are sim-
ply ill suited for a given context. The student groups then share their answers with the rest
of the class and discuss how they arrived at the answers. Analyzing student team communi-
cation. In the second guided inquiry activity, students are given excerpts from real student
software project case studies and asked to identify and analyze communication acts. Our
case studies come from ethnographic studies of senior capstone projects at our institution,
performed as part of an earlier project [10].

159



In one scenario, a student brings a rough hand-drawn control flow sketch to a meeting with
the client, then uses the sketch as a means for coming to understanding about the details of
some legacy code. In another, a team leader sends an email message that reports results of
a client meeting, includes sample code and delegates tasks to teammates. Both scenarios,
presented in their authentic imperfection, invite complex critique. For instance, the hand
drawn chart can be seen as an “unprofessionally” informal artifact to present to the client,
but it can also be seen as an important catalyst for provoking detailed conversation between
student and client. Similarly, the email message can be seen as effective in accomplishing
a broad range of tasks, but packing so much disparate information into a single message
can also be seen as unfocused and difficult for readers to parse. The email message used in
this assignment is shown in 6.1 on page 161.

Students are first asked to identify typical concerns in the given scenarios that occur often
in software projects. Students then identify attributes associated with Who, What, Where,
When, How and Why, analyze them for their merits and discuss other strategies that they
would have chosen. An example of the questions is “Compare the characteristics of the
communication act you have identified to the typical concerns of the communication sce-
nario that you have identified. How well does the To-Do List help address the concerns?
Would you change anything? ”

This activity moves the class conversation from idealized, generic descriptions of project
communication to “messy” but more realistic artifacts, like the ones they will encounter and
produce in their own projects. From prior experience, we know that students are primed
to dismiss the work of fellow students without serious analysis. To mitigate the risk of
shallow, unmeasured criticism, we include written and oral cues to guide student inquiry
in a more open-minded direction. For instance, in the case of the hand-drawn control
flow chart, we frame the activity within a context where the student needs to demonstrate
progress after some initial delay, check with the client expert, and quickly correct errors in
her understanding as they arise in discussion. These cues shift student inquiry away from an
assumption that only a flawless, “gold plated” diagram is acceptable in this circumstance.
Explicitly acknowledging that informal, on-the-fly material is acceptable, particularly in
situations of flux in requirements and assumptions, is critical at this moment.

Analyzing distributed collaborative project communication. In the third POGIL based ses-
sion, students examine email excerpts from another real case study: here, a geographically
distributed open source data visualization project where all communication happens over
email. Students are asked to analyze an email exchange between the host of the group list
and a programmer new to the group.

Students are asked to identify (in general terms, but grounded in the given email material)
the points of common understanding between the mentor and protégé and the points they

160



Table 6.1
Email from student project case study

The email was sent out immediately after a meeting with the client where they
demonstrated their current progress and got recommendations from Hank for the
next steps:

Subject: New Control code

From: denise@mtu.edu To: crane-cs-l@mtu.edu

Howdy,

attached is the revised code for the control function as per our discussion with Hank
today. There are comment blocks at the begining/end of each s-function chunk, ex-
cept that part that initializes the variables for the 3 computational sections, because
that still has to be divided into which S-functions need what.

To do this week

Bob: weekly presentation; become MatLab expert

Denise: move the defines to a .h file, work out some VeryLargeVector (VLV) ideas
for passing around global modifiable variables in MatLab

Justin: work on splitting up the un-assigned portion of the control function into the
3 calculating s-functions.

Meeting

12 Thursday - control s-function decomposition code review

161



are trying to resolve. Then the presence of an asymmetrical, mentor-protégé relationship
is acknowledged, and students are then asked to identify features of the conversation that
mitigate the risk of intimidation.

This activity exposes students to a truly authentic workplace scenario. The participants
in this communication include world experts in data visualization. This underscores the
message that communication choices must be made even by seasoned professionals. This
case study also introduces an interesting contextual constraint: relying solely on the asyn-
chronous, textual medium of email. Students identified different communication patterns
from the excerpts and were guided to identify underlying themes like implicit mentoring
between participants.

User Interviews. In the middle of the first sprint in the longer project, project teams are
required to interview users, to inform the activity design [49] of their applications. For the
sake of availability, students from other teams are asked to act as the users for other groups,
based on characteristics of the users and the proposed applications - knowledge of music,
interest in video editing, home security, cooking, etc. Each team interviews at least two
mock users and then identify and analyze the user’s current practices and expectations to
design their application accordingly.

Students are first asked to prepare a strategy for requirement elicitation and then conduct
their user interviews, without leading the users on too much to answer according to what
the team wanted to hear. To guide students in their preparation, the instructor discusses
the distinction between unstructured, semi-structured and structured interviews [26] [66],
along with the relative advantages of each approach. The teams share the results of their
interviews and give an oral report to the class on the merits of their chosen strategy and
how they could improve their initial strategy.

6.2.3.2 Activities reflecting on internal communication

Once the long-term projects are underway, we ask students to reflect on their own prac-
tices at several points in their project cycle. These reflections are either done individually
or as a group. In all the internal reflection activities, students are asked to also identify
improvements in their communication strategy based on their reflections.

Sprint reflection. At the end of each sprint, students are asked to identify three commu-
nication patterns from the previous sprint: patterns that they found either effective or in-
effective. For this activity, students are to identify and comment on specific instances of
communication in their projects; for instance, a particular work-jam meeting during the

162



past sprint, rather than a generic commentary on work-jam activities. This allows students
to identify the attributes of the communication act based on an actual event, not just on
their assumptions about how it would happen.

Each team then selects three communication patterns from the collection of those submitted
by individual team members. They then analyze the selected patterns for their merits and
identify what worked and what did not in the use of that particular pattern. Based on these
reflections, the students identify improvements and form their communication strategy and
plan for the next sprint.

Individual peer evaluation. Another individual activity is the peer evaluation, where the
students rate themselves and their teammates based on the previous sprint and then would
reflect on what they learned about communication and teamwork based on that sprint.

How we Scrum – How they Scrum. After the projects are underway, it is useful for each
team to reflect on how they have implemented Scrum, and to see how others have imple-
mented it. This reinforces the idea that the software process and communication choices
that a team makes are inevitably specific to that team, even within the confines of a partic-
ular process methodology.

In the “How we Scrum” activity, team members are asked individually to describe what
their primary communication practices are and how or why they work for the team. Then
team members work together to agree upon what communication practices they think de-
fine them. Special attention is given to those related to division of work, communicating
progress, conveying issues and soliciting help.

In the “How they Scrum” activity, conducted towards the end of the second sprint, teams
interview members of other project teams to determine what communication practices the
other teams engage in and how or why that works for them. Each team interview members
from at least two other teams. The team members being interviewed use their answers from
the How we Scrum activity.

Standup Assessment. While the format of the daily standup meeting [56] is rather strictly
choreographed, with each team member answering the “Questions Three”, there is room for
a great deal of variation in the amount of detail that each member provides, and the value of
the information to other team members. Towards the end of the third sprint, students assess
their daily standup meetings individually using a “detail vs. value” graph. Each student
rates every member of the team (including him/herself) on a graph with a five point rating
of “detail” on the y-axis to “value” on the x-axis. Students rate the level of detail and the
perceived value of the information offered by each team member in his/her update. The
individual graphs are merged to form a new graph where the placement of each member is

163



the average of the rating across all the individual graphs. Teams are then asked to reflect
on why their average graph appears the way it does.

6.2.4 Results

While the goals of the instructional material are clear – to impress the importance of com-
munication in software development, and to encourage strategic and tactical thinking about
communication among our students – the ways in which these desired effects manifest
themselves in student work is not immediately obvious. We therefore use a grounded
theory approach to identify emergent themes in students’ written responses [31]. In this
section, we share some excerpts from student submissions that we have used to develop
our coding scheme for the grounded theory analysis.

Rote responses. In the following excerpt from one of the initial activities, analyzing student
project case studies, we see that the answer works within the Kipling question structure,
but that it is thin in content and does not explore attributes of the activity in depth: “Who
- Team and client What - Update on progress Where - Client’s office When - Week 6 of
development How - Not as formal/professional as it should have been.”

This type of response is in keeping with our earlier weeklong interventions, where we found
that students would participate actively and deeply in the class discussion, but that the
answers they turned in would lack the same depth. These rote responses tend to appear in
the early phases of instruction, when students are still perhaps unconvinced of the emphasis
on communication, and when they do not yet have personal team experience to draw from.

In Table 6.2 on page 165, we share an excerpt of a communication pattern exercise using
a template that the students were given (indicated by the first three columns – Category,
Attribute, Possible Values/Questions) and the student team answers in the last column. The
template, with its leading questions, does appear to provoke a broader exploration of the
communication attributes:

Acknowledging importance of communication. In the first project’s peer evaluation, where
students individually answered what they learned about communication and teamwork
from the initial two-person team project, many students reported on how they realized
communication is important as the comment below illustrates: “I learned how effective
communication can be in turning ideas into code. Lack of communication can be detri-
mental because lots of work could be re-done or removed if communication is not up to
par.”

164



Table 6.2
Sample communication pattern

Category Attribute Possible Values/ Questions Student Team Answers

What

Established
Scope
(Input)

What is the decided purpose
and scope of this type of com-
munication act

To work on the devel-
opment of the applica-
tion in a group setting

Expected
Result
(Output)

What is the expected outcome
of this type of communication
act

Implement some subset
of our desired function-
ality

How

Style Formal or Informal Informal

Structured or Unstructured

Artifact
type

Is there an artifact involved?

What type of artifact is it? Code

Who has access to the arti-
fact?

Who owns it? Referenced by all

When

Duration
Is there a fixed or typical du-
ration for the communication
act?

2 hours, not fixed
length, actual meeting
time

Synchrony

Is the communication mode
synchronous (like a face
to face meeting) or asyn-
chronous (like email)?

Synchronous

Frequency

Is there an expected fre-
quency for this communica-
tion act – once a project life-
time, daily?

Continually occurring
meetings of varied
length every meeting

165



Critique and redesign. After the user interview activity, some teams reported that they
should have spent more time working out their strategy and that the interview would have
been more productive with a strategy involving more visual cues for the subjects. They
shared that for the usability testing at the end of each sprint, they would use their lessons
from the user interview and have a more carefully constructed strategy.

In the following excerpt from the sprint 2 plan assignment at the beginning of the second
sprint, which was one of the first reflection activities as a team, we notice that the reflection
statement, while lacking in detail, does provide a springboard for analyzing previous and
current practices and making a plan based on what the team learned:

“During our meetings, we had a tendency to get off track, or spend too much time trying
to answer questions. To make these meetings more efficient, we will be creating a task
document on Google Docs to help everyone better prepare for the meeting. This document
will include any issues that anyone wants to bring up at the meeting, from questions to
issues and reminders. As tasks are addressed during the meeting, we will be converting the
task list into a version of meeting minutes. This can then be used as a reference for people
who don’t remember the results of our discussions.”

On the other hand, some team responses show an ability to identify and critique a com-
munication pattern, but not necessarily willingness or ability to change it to better suit the
context: “Emails – What we do: Emails about project deadlines and meeting times are
common. We don’t always respond often enough, or confusion is caused by late responses.
What we plan to fix: Emails will be responded to within 24 hours.”

In one team’s standup assessment, all team members were placed at the same value of high
detail and high value. The team reflected that it was probably because they took their daily
standup meeting very seriously and made sure they got a lot out of it. In one team all four
members were rated low on detail, and two members were rated closely as low-value while
the other two were rated closely as high-value. When asked to reflect on their graph, the
team shared that the two groupings were because they had divided their team into two sets,
one dealing entirely with the front end and another dealing entirely with the back end. As
a result, not a lot of detail was shared in the daily standup meeting, as the two subgroups
would meet frequently and did not have much to share until the end of the project.

Deeper analysis. In later communication-focused activity, we see that the nature of the
teams’ reflections has deepened to examine specific aspects of their communication prac-
tices. Here, we share some excerpts from the How we Scrum/How they Scrum assign-
ment. Student groups reflected on their communication practices and the practices of other
groups. This activity was conducted in the middle of the third sprint when students had
participated in reflection activities of other types and had used communication patterns on

166



multiple occasions. We notice that the students reflect in the language of the communica-
tion pattern attributes, commenting on “style”, “synchrony” and “format”.

“Our communication style and format is largely based on face to face meetings several
times a week whereas the other team depends much more on google docs to keep each
other up to date. This face to face format keeps the frequency of our communications to a
set number and time/place whereas the other team is in asynchronous communication con-
stantly. For example, we find it beneficial to meet and discuss how to approach a problem,
divide up the work, and then part ways to work on it separately, coming together again for
our next meeting to discuss our progress. We find this helps keep each other accountable
for the work that needs to be done. In contrast the other team does this much less, but
updates google docs much more frequently. This allows them to spend whatever time they
have available on a given task and work more independently.”

Another team reflects on the same activity: “There are several major differences between
our communication styles and the other two teams we talked to. For example, Team 2
relies very heavily on email, whereas we haven’t sent an email related to the project since
the very first week. We also differ in how we divide work. Team 2 divided the different
portions of their project arbitrary and just ran with it, but we divided ours by experience
level, which luckily also corresponds with the platforms we use on a daily basis.” Here,
we see an excerpt from the standup meeting analysis activity, where student teams reflect
on their average “detail vs. value” graph and offer an explanation for the graph based on
their team structure and communication practices: “This is likely due to the fact that only
one or two of us tend to be working on major items at a time, which means that at any
given meeting, they will be the only ones with anything really interesting to share. This
is a remnant of the initial structure of the team, where we were each working on our own
app. Now that we are all doing the same thing, we have found it hard to work concurrently,
because we haven’t had much time to set up the required collaboration structure. At this
point, it’s just easiest to continue working on the parts of the app we each know best, and
hand it off when we get to the next milestone. A lot of changes tend to span multiple pieces,
which just makes it even more difficult to merge changes.”

Another team reflects on how their rigorous adherence to Scrum practices and strict polic-
ing by the Scrum Master led to the entire team landing on the high detail and high value
end of the graph:

“Most of our team was centered around (4,4), which means that we all had a decent amount
of detail and value during our stand-up meetings. We think that it came out like this because
we always take our stand-up meetings very seriously. If someone is ever giving too much
information, or not enough, we always make sure to notify them. We have greatly improved
the quality and value of our stand-up meetings since the beginning. If we had a chart like

167



this at the beginning of the semester, most of our value would be very near 0. We improved
a lot!”

The following are excerpts from different teams sharing their critique of their own commu-
nication practices. We note the focused nature of these critiques, referring specifically to
attributes of communication patterns:

“For the Q and A sessions, the positive attribute is the synchrony of the session. The
downside is the focus of the activity – as it can be lost easily. We can fix this issue by
encouraging individuals to tell the team when they are sidetracked. For the Google Docs
spreadsheet, the positive attribute is shared knowledge – every team member has access
to the sheet, and can see tasks. The negative is the frequency – updates only really occur
once per sprint, and sometimes once a week. To address this, we now plan on checking the
spreadsheet daily.”

“Diagrams: Positive attribute - How (artifacts): Can be referenced at any point in the future
to make sure that everything is proceeding as intended. Negative attribute - Why (risk):
They aren’t always easily understood, except by the person creating them, and therefore
must be extremely specific, which can make them messy.” “Stand-up meetings: Positive
attribute - What (expected result): They help to make longÂň term decisions that are dif-
ficult to make over more asynchronous mediums like IM. Negative attribute - How (style):
It’s difficult to enforce a formal structure in person, we easily get off-topic and it leads to a
lot of time wasted that could otherwise be spent working on the project.”

6.2.5 Evaluation

We wish to determine the degree to which our instruction enhances students’ strategic/tac-
tical thinking about communication, and to what extent students find this communication-
focused course content authentic and useful. To assess student perceptions and feelings, we
conducted an open in-class discussion and a written survey. To assess the growth in think-
ing about communication, we employed the grounded theory technique of emergent theme
identification. While these initial evaluative efforts indicate promise in our approach, our
sample size is small, and more work is needed to evaluate its effectiveness thoroughly.

168



6.2.5.1 Class Discussion

Towards the end of the final sprint, the students were asked about what they had learned
about communication and teamwork from their previous courses and then they were asked
to share some positive and negative aspects of the communication activities.

There was only one communication based freshman course that all the students in the class
had taken prior to the Team Software Project course. Some of what they remembered from
the course was risk management and rhetoric. A few other students had taken some other
courses where they had worked in teams through some part of it. Some students shared that
they had learned some things about writing documentation as part of some other courses.

When it came to sharing what worked for them about the communication activities in class,
most students said it helped them be “more aware” of their practices and made them “focus
on what was working” thereby leading to improvements. Many students said that they liked
that the communication activities seemed to have an “industry focus” where they learned
about communication in their discipline. When asked about what they would have liked to
see changed about the course, some students said that they would have liked to see “more
complex forms of communication”, especially ones they did not have any experience with
like attending a conference call and would have liked to do some role playing where they
are “put on the spot” like they might be in industry and they could “practice spontaneously
giving presentations more”.

6.2.5.2 Survey

A survey was administered in the last week of the final sprint and consisted of 10 questions.
Students were asked on a 7 point, Likert like scale whether they agree or disagree with the
statement in that question. On the 7-point scale, 1 stood for Strongly Disagree and 7 stood
for Strongly Agree, with 4 standing as Neutral. Out of the 30 students enrolled in class, 29
took the survey. Table 6.3 on page 170 describes the questions asked, the median, mode,
standard deviation and variance and Margin of error with a confidence interval of 95

There were three main motivations behind the questions: asking about the students’ un-
derstanding and ability to understand and perform the communication based activities;
assessing the degree to which students considered good communication important to the
software process; and assessing the degree to which the communication based activities
helped the team improve their process. The responses indicate that our instructional mate-
rial is effective at building awareness of the importance of communication in real software

169



Table 6.3
Survey questions and analysis, with margin of error for a 95% Confidence

Interval

Survey Questions Mode Median
Margin
of Er-
ror

"I understood how to perform the communica-
tion based activities"

6 5.71 0.38

"I was able to understand the rationale behind
the communication based activities"

4 4.79 0.54

"I was able to use the communication patterns
template easily"

6 4.79 0.59

"The communication based activities made my
team more aware of our communication prac-
tices"

5 4.86 0.45

"The communication based activities helped my
team improve our communication practices"

5 4.57 0.56

"What I learned about communication in this
course was more relevant to my field than other
courses about communication"

7 5.43 0.56

"This course has made me realize the impor-
tance of communication in the software indus-
try"

7 5.5 0.54

"Improved communication leads to a better
software making process"

7 6.32 0.30

"Improved communication leads to a better
software product"

7 6.39 0.30

170



development (median of 7=Strongly Agree). There is also indication of some success in
conveying the pattern approach as a natural way for analyzing communication – though we
must take care to assess whether the perceived ease of using patterns is associated with the
rote responses we encountered in some of the submitted material. The survey does indicate
a need for more support in building rationale for the communication activities (median of
4=Neutral); we must take greater care to explain why we are engaging in them. Finally, the
survey responses indicate a moderate level of agreement (median of 5=Somewhat Agree)
that the activities helped to improve teams’ communication process.

6.2.5.3 Written Assignments

In this paper we are restricting our grounded analysis to the assignments that were submit-
ted collectively by each group. The assignments were coded for emergent themes associ-
ated with communication reflection and design. Themes that emerged include: identifying
flaws in their communication strategy; identifying improvements they can make to their
communication choices; critiquing communication choices of others; discussing the im-
pact of communication on their project; and identifying the audience or style of their com-
munication choices. Table 6.4 on page 172 lists some frequently observed codes, arranged
roughly by level of sophistication.

We made multiple passes through the submitted group assignments to code them and con-
sidered each group’s journey. We noticed that even though all the teams were given the
same instructions and adhered to the same project timelines, their project practices differed
and their reflections differed a lot. However, we did notice that the depth of reflection in-
creased over the semester as the teams had more practice reflecting, as indicated by a greater
number of coded reflections in the final project story assignment compared to Sprint plans
earlier in the semester and in the quality of their written assignments.

We are particularly interested in the evolution of each team’s attitudes and abilities regard-
ing communication. At this early stage, we concentrate on individual scenarios: positive
scenarios as confirmation that our approach can work, and less successful scenarios as an
indication of how to improve it. As a “best case” scenario, we share the story of one team
that truly seemed to embrace the spirit of reflection on communication. This team fol-
lowed the structure of the Daily Stand-up meeting very faithfully and enforced the roles
and responsibilities of the team members. Early in Sprint 2, the team noted that their meet-
ings were working out quite well for them but “there’s always room for improvement” and
that they needed to “keep on track” better and not “spend too much time trying to answer
questions” [CRITIQUE].

171



Table 6.4
Sample of codes used in group assignments

Code Description

IMPACT
Students explicitly discuss the impact or impor-
tance of communication in their project

PRIOR
Students relate their current communication ex-
periences to their prior ones

EXPLAIN
Students explain or defend their communication
choices

CRITIQUE
Students offer critiques of their communication
choices

ALTERNATIVES
Students identify improvements or choose alter-
natives to the communication practices

AUDIENCE
Students discuss the audience of the communi-
cation act

STYLE
Students discuss the style of their communica-
tion act

As a solution, the team decided to keep a shared task document to allow team members to
better prepare themselves for meetings and to eventually convert the task document into a
task list (instances of considering [ALTERNATIVES]). The team also reported time wasted
and confusion with scheduling and reminding members of meeting times. In addition, to
reliably inform members of updates to documentation and project code, the team made a
policy of sending out an email when any member makes changes that might impact code
that another member is working on (instances where they mention how they had to change
their communication practice, carefully considering [AUDIENCE]). The team noted that
even in the second sprint, “many good instances of documentation ... were overlooked
... and only seen when they were mentioned”. In Sprint 2 and 3, the team reported that
their user testing experience helped them learn a lot about their user’s needs (instances of
considering the [USER]) and make changes to their software accordingly.

172



The team attributed its success to its strict adherence to Scrum practices in a formal, struc-
tured manner (identifying that the [STYLE] of communication was important). In fact, in
terms of complexity of delivered product, scope of project and completion of original goals,
this student team would be considered the most successful. They also submitted the most
reflection rich assignments (in terms of instances of reflections coded in their assignments).
In their final reflection, as the Project Story assignment, they describe their earlier practices
and their shortcomings, followed by the alternatives they adopted and how they panned
out. On coding their group story, we found several occurrences of identifying room for
improvement in their current communication strategy, and some occurrences of attention
to audience and style of their communication and product.

6.2.6 Discussion and Conclusion

We found that our communication-focused curriculum produced far better results than our
earlier, briefer interventions. In using this new curriculum, we also had the “home field
advantage”, as the instructor of the course was the person conducting the communication
based activities and the activities themselves had a significant effect on the students’ final
grades. We believe that the deeper treatment of communication encouraged the students to
consider it as something inherent and important to software engineering.

In our prior experiences, restricted to week long interventions, the students had participated
enthusiastically in the in-class activities, but post-class response rates tended to be low. The
students’ grades were not affected by their participation in the communication based activ-
ities, which may affect how seriously students would take follow up activities and whether
they would spontaneously use what they learned beyond our class time. We also found that
the answers they would turn in would be very brief compared to what they would share
verbally with the class. This is a trend we observed for some teams in the initial activities
of the semester long intervention as well. However, towards the middle of the semester,
after more experience with the communication based activities and perhaps realizing that
analyzing communication is something they are expected to do all through the semester,
we saw a marked difference in the quality and depth of analysis we received. By the last
month of the semester, the students were comfortably analyzing communication using the
attributes of the communication pattern, evaluating its merits and proposing improvements
where they found the need. Even their loosely structured answers would start by describing
their earlier practices, the need for improvement and their subsequent changes. We found
the ability to track the student submissions through the semester allowed us to observe the
change in their analytical techniques.

As instructors, we found that incorporating the communication-focused activities was easy

173



within the existing structure of Scrum. The sprint retrospective and planning meetings
seamlessly accommodated our communication review and planning activities. We also
found that incorporating several points of reflection during the project meant that students
were continuously evaluating scope and feasibility of their projects alongside the communi-
cation and allowed for all projects to be managed effectively. We have shared our activities
in such detail to encourage instructors to incorporate similar activities in their capstone
project or other team-intensive courses. In our semester long intervention, we were able to
allow the students to reflect on their own practices in many different ways. This allowed
students to realize that they can reflect on their practices at different granularities – rang-
ing from evaluating how every team member communicates during the standup meeting to
assessing overall communication plans for a sprint at a glance.

We appreciate the student comments that they need more exposure to certain genres of
communication that they do not encounter in other courses. We plan to explore ways to
practice non-written forms of communication like conference calls. It will likely enhance
students’ enthusiasm for our approach if we can provide experience in authentic communi-
cation activities that are not available elsewhere.

6.3 Relationship with goals

In line with our pedagogical research goal, our work with the Team Software Project course
and our continuing work in incorporating different parts of the computing curriculum with
domain specific communication components are described here.

6.3.1 Build awareness

We use scaffolding and guided inquiry techniques to encourage computing students to in-
spect and analyze different forms and instances of real world communication that takes
places in the software development industry and education. We guide students to learn
inquiry and leverage that to learn critique of domain specific computing communication.

174



6.3.2 Incorporate skills

Building on the inquiry and critique based knowledge and skills, we train students to apply
those techniques to inspect, reflect on and continuously improve their own communica-
tion practices, by examining and choosing among different communication choices. Stu-
dents learn to practice and improve upon their communication strategy building techniques
through periodic evaluation of their practices. Students evaluate and reflect on their team-
ing abilities through sprint reflection and sprint planning, they evaluate themselves and
each other within the team through peer and self evaluations considering different aspects
like contribution to code, ability to communicate, participation, etc. Students also learn
to examine and critique other teams, by studying their practices and making comparisons
with their own practices. Students also compare and evaluate different users by conducting
interviews and by playing proxy users to other student teams.

Overall, students develop skills to evaluate their choices to make an educated decision, and
to evaluate the consequences of their decisions to continuously improve their own practices.

175





Chapter 7

Summary and Future Work

7.1 Our research

Building on consensus in the software industry that communication is important to the soft-
ware development process and can often determine its outcome, we established the need
for understanding communication specific to software development and education. Our
initial goal was to study communication practices in software development communities to
learn how software development communities sustain themselves in spite of the chaos of
changing personnel, requirements, roles and priorities. Our plan to accomplish the goals
was to study different types of software development communities, using the framework
of Wenger’s Communities of Practice, focusing on the relationships between concepts like
negotiation of meaning, identity, trajectory and communication strategies and practice. No-
tions like negotiation of meaning, identity, trajectory and reification do not exist in isolation
and often manifest themselves in conjunction with each other. Our goal was also to take
what we learn from software development communities and integrate it with the computing
curriculum to sensitize students to their communication choices and complex communica-
tion based future roles in industry.

As we started examining different forms of software development, we noticed the recurrent
theme of mentoring. Across all our different data sources, mentoring emerged as a predom-
inant theme. We started with thick ethnographic accounts of student software development
projects where mentoring from unexpected sources like clients and experts appeared to
influence the success of student teams. As we examined online open source software de-
velopment communities, informal mentoring played a role in the participants’ decision to
enter into and persist within a community. In our immersive participant observation of

177



a co-located Agile software development community, we experienced mentoring through
onboarding and continually witnessed it in action between different types of developers. In
the computer science classroom, especially in student project courses, we were the mentors
that guided students to discover and internalize their complex future roles in the industry.

Much like the Agile development practices we were studying, our research employed a
deliberately iterative approach where we adapted our strategy for different data sources.
Our adaptable research strategy suited our grounded theory approach, allowing us to evolve
our research focus based on emergent trends in our data and observations.

In practice, we focused on ways that software development communities welcome and
integrate newcomers to help them develop their identities in software development and
facilitate the trajectory of existing experienced development professionals to allow them
to serve the community of practice through means commensurate with their value in the
community and ways that keep them motivated by developing and evolving their identities
over time. Participants with different identities reinforce and redefine what it means to be
part of the community through participation.

Initial work: We started our studies of software development with student software de-
velopment projects and used them as instructional material in the classroom to invoke an
analytical approach to software development communication as problem solving, as student
project studies would be relatable to software development students. We realized that even
though we had thorough ethnographic accounts of their software development experience,
the types of interactions and range of communication within student software development
projects were limited and did not serve as an adequate substitute for studying the complex-
ities of communication within and practices to sustain a software development community
of practice.

Open source software development communities of practice: We chose a couple of long
running online open source software development project communities, which made very
different types of products. One community made software aimed at being used by devel-
opers to analyze properties of code bases. This community was geographically disparate
and small, but rarely faced any serious contention. Their product serves a niche user base,
where they design for other users very similar to them.

The second open source software development community makes popular software for au-
dio editing, catering to a broader user base. Their customer base is more active, varied and
substantial. The community of developers is also comparatively larger. However, we notice
that in both communities, there are some core developer members and some regular devel-
opers who do not participate in much decision making and feel limited ownership in the
community, and many newcomer developers whose participation is limited and sometimes

178



sporadic.

We observed some rich conversations in the open source software development commu-
nities of practice, as we had access to all their public forum email communication data,
which allowed us to hone in on certain time periods and follow the progression of different
types of conversations. However, we experienced issues establishing committed gatekeeper
allies into the community, who would give us better access within the community, beyond
the detailed email and code records.

After some investigation and analysis of the open source communication data, even though
our communication data was rich, we realized we were missing the larger context and sub-
text of the community of practice. We only had an inferred knowledge of the structure
and other interaction of the community. This limited our ability to analyze the community
without making assumptions. We still consider the open source software development com-
munities to have great potential for discourse analysis and a deeper investigation, provided
established gatekeepers. However, for our investigative focus on mentoring, we pursued
an alternative data source where we could learn about the context of the communication as
well.

Co-located formal software development community of practice: We then arranged to
study a small, co-located, software development community of practice, where we would
be able to communicate with the participants to study the context. Our initial plan was
to routinely interview selected developers from the software development community of
practice. Then we got an opportunity to study the software development community as a
participant observer. In this fully immersed role within the community, we were exposed
to the inner dynamics and all the different forms of communication that take place. We
were, however, not allowed to use any of the source code or product information or formal
emails in our study, even though as a developer we had access to them. This limited our
study in some capacity, but we were able to interview other developers and track our daily
communication related activities and use our observations in different teams and different
phases and types of software development processes.

Over almost eight months, we observed the software development community of practice
and investigated their mentoring and onboarding processes, along with using interviews
for tracking the trajectory of different developers and their identity and what affected it
over time through different forms of reification and participation. We studied the jour-
ney of the community of practice as a whole, where it transformed over many years from
a minuscule, disparate community of developers with limited interaction to a dynamic,
growing, cohesive and efficient software development community that is faithful to rigor-
ous software process and creative in evolving their practices to suit their shifting needs.
We learned about the individual journeys of the participants of the community of practice.

179



We studied the daily communication practices of a typical newcomer developer, working
our way through different teams and different types of development work. We experienced
onboarding first hand and participated in different styles of software process.

We performed quantitative and qualitative analysis of the different forms of data we cap-
tured. Building on the work of the Scrum PLOP community [20] and the Organizational
patterns [22] work to study patterns in scrum software development and software organi-
zation management, we chose to present our results from the software development com-
munity of practice in the form of patterns and pattern languages. This deliberate choice
of pattern format of results helps make them available to members of the community of
industry software developers and practitioners at large. We share our experience of con-
ducting an ethnographic study of a software development community of practice as partic-
ipant observers by publishing for the academic community of software development and
engineering researchers to serve as a model of study.

Instruction in computing education: In our experience with modifying instruction in soft-
ware engineering to sensitize students to their communication choices in software devel-
opment and the relevance of communication in the development process, we tried several
iterations of week long interventions injected into different levels of classes in computing
education, till we found our ‘sweet spot’ for this modified curriculum.

We used a scaffolding of POGIL based activities where students are guided with inquiry,
learn critique, apply their lessons in practice, and continuously improve through reflection.
We initially exposed to students to standard scrum practices and guided the students to ex-
amine them using a pattern rubric. Students then examined instances of student software
project communication, and investigated the nuances of it. They were then exposed to in-
stances of software development industry communication, focusing on moments of implicit
mentoring. The students practice the same form of analysis of communication to reflect on
their own communication choices and strategy, as they reflect on their own agile software
development sprints. They also critique the communication practices of their peers and
learn how different means of communication can be used even within limited contexts.

To make this work available to the larger community of computer science and software
engineering educators, we share it with the POGIL community, openly accessible to all.
We are also working on actively expanding this work through our two year IUSE grant on
‘Agile communicators.’

180



7.2 Main takeaways

A key factor in the success of the software development community at TAI is the presence
of a Patron role champion for deliberate and active attention to communication and soft-
ware process. The patron’s enthusiasm for software process permeates the culture in the
community and leads to a constant evaluation and improvement of communication prac-
tices to become the norm. This shows us that even the most unlikely candidates, like TAI
which was once a small product startup with only mechanical engineers and physicists as
founders, can evolve to practice a mature, rigorous, reflective and evolving software pro-
cess, through conscious communication practices.

Our focus on mentoring led us to realize the importance of knowledge management, more
specifically design rationale sharing. We found that the main difference between new-
comers to a software development community and its resident knowledge experts - the
pioneers, does not necessarily lie in skill or even experience. The disparity in knowledge
is that the pioneers retain a lot of the implicit knowledge of design rationale and of rea-
sons why certain design choices were considered but abandoned. This type of knowledge
is not often well-documented and can only be transferred through conversations with the
pioneers themselves. As a software development community grows, access to the pioneers
becomes more expensive and also more crucial to a successful knowledge management
strategy enabling communities to grow tactically, strategically nd methodologically.

We made a conscious effort to present our results on communication patterns in an addition
to existing, established pattern bodies of knowledge. The libraries allow us to make our
patterns available to the larger industry. Much like the newcomers into software develop-
ment communities, our pattern results do not stand alone, they add to a growing body of
knowledge and find their place with respect to preexisting patterns in their relationship to
each other as a pattern language.

In our experience of creating and implementing disciplinary courses integrated with com-
munication intensive elements designed to sensitize computing students to their communi-
cation choices and prepare them for their complex future roles in industry, we found that
when such courses administer real world examples of communication and give students
practice in critiquing and reflecting on communication choices using simple rubrics, stu-
dents welcomed the material and made an appeal for more exposure to authentic instances
of real world communication.

181



7.3 Future work

In line with our grounded theory approach to this research, one of the purposes of conduct-
ing an immersive study with a broad focus was to identify key factors that affect software
development communities for further investigation. This knowledge helps us ask the ques-
tion: What are the questions? Generatively, a broad study allows us to determine other,
more narrowly focused studies to pursue.

We have identified some areas of further research to investigate. One of the main areas
of further research would be to study how design rationale is communicated or passed
between developer generations through the mentoring or other software process. Potts and
Bruns [51] describe a possible alternate model where the reason or rationale behind design
decisions are stored in a network as deliberation nodes, connected to the artifacts that elicit
the explanation. A focused study on the real world application of different methods of
design rationale sharing in different types of software communities would reveal and assess
different, deliberate strategies in knowledge sharing.

Through our patterns, we commented on the notion of shapes of a sprint and how differ-
ent sprints can affect each others communication shapes. It would be worth exploring if
shapes of sprint communication are consistent in vastly different software communities,
and determine whether our prescriptive sprint shape patterns apply to different settings.

We have studied mentoring in software development as an interactive but directed act,
where mentoring happens from the mentor towards the mentee. With the recent advances in
understanding of learning styles, the relationship between mentoring patterns and learning
styles could be explored.

One of the main but passive players in a software development community is code. For our
study at TAI, we were not allowed to use the source code, but for future research, it would
be interesting to study the relationship between the journeys of new developers and source
code metrics and style.

We studied a mature company which was almost two decades past its startup phase and
had the befit of experience. It would be interesting to study how software development
communities form and battle teething problems in young startups.

182



References

[1] Mentoring guide for small, medium, and large firms. National Society of Professional
Engineers, 2002.

[2] Steve Adolph, Wendy Hall, and Philippe Kruchten. Using grounded theory to study
the experience of software development. Empirical Software Engineering, 16(4):487–
513, 2011.

[3] Christopher Alexander. The timeless way of building. Oxford Univ. Press, New York
[u.a.], 1977.

[4] John Langshaw Austin. How to do things with words, volume 1955. Oxford university
press, 1975.

[5] Kent Beck. Extreme programming explained: embrace change. addison-wesley pro-
fessional, 2000.

[6] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, et al.
The agile manifesto, 2001.

[7] Andrew Begel. Help, i need somebody! Supporting the Social Side of Large Scale
Software Development, page 59, 2006.

[8] Andrew Begel and Beth Simon. Novice software developers, all over again. In Pro-
ceedings of the Fourth international Workshop on Computing Education Research,
pages 3–14. ACM, 2008.

[9] P. Bourque and R.E. Fairley. Swebok v3.0: Guide to the software engineering body
of knowledge, 2014.

[10] Ann Brady, Marika Seigel, T Vosecky, and C Wallace. Speaking of software: Case
studies in software communication. Software Engineering: Effective Teaching and
Learning Approaches and Practices, 2008.

183



[11] Ann Brady, Marika Seigel, Thomas Vosecky, and Charles Wallace. Addressing com-
munication issues in software development: A case study approach. In Software Engi-
neering Education & Training, 2007. CSEET’07. 20th Conference on, pages 301–308.
IEEE, 2007.

[12] J. S. Bruner. The act of discovery. Harvard Educational Review 31 (1), pages 21–32,
1961.

[13] Cindy Buell. Models of mentoring in communication. Communication Education,
53(1), 2004.

[14] Connie Bullis and Betsy Wackernagel Bach. Are mentor relationships helping orga-
nizations? an exploration of developing menteeâĂŘmentorâĂŘorganizational iden-
tifications using turning point analysis. Communication Quarterly, 37(3):199–213,
1989.

[15] John M Carroll and Umer Farooq. Patterns as a paradigm for theory in community-
based learning. International Journal of Computer-Supported Collaborative Learn-
ing, 2(1):41–59, 2007.

[16] John Millar Carroll. The Nurnberg funnel: designing minimalist instruction for prac-
tical computer skill. MIT press Cambridge, MA, 1990.

[17] Michael Carter, Mladen Vouk, Gerald C Gannod, Janet E Burge, Paul V Anderson,
and Mark E Hoffman. Communication genres: Integrating communication into the
software engineering curriculum. In Software Engineering Education and Training
(CSEET), 24th IEEE-CS Conference on, pages 21–30. IEEE, 2011.

[18] Gerry Coleman and Rory O’Connor. Using grounded theory to understand software
process improvement: A study of irish software product companies. Information and
Software Technology, 49(6):654–667, 2007.

[19] Allan Collins. Cognitive apprenticeship: The cambridge handbook of the learning
sciences, R. Keith Sawyer. Cambridge University Press, 2006.

[20] Scrum PLOP community. Scrum plop patterns, Accessed on December 1st, 2014.

[21] Curtis R Cook, Jean C Scholtz, and James C Spohrer. Empirical studies of program-
mers: Fifth workshop. Proceedings. Norwood (NJ): Ablex Publishing Corporation,
1993.

[22] James O Coplien and Neil B Harrison. Organizational patterns of agile software
development. Prentice-Hall, Inc., 2004.

[23] Cunningham and Cunningham Inc. Wikiwikiweb: People projects and patterns, Ac-
cessed on 7th April, 2013.

184



[24] Thomas Eberlein, Jack Kampmeier, Vicky Minderhout, Richard S Moog, Terry Platt,
Pratibha Varma-Nelson, and Harold B White. Pedagogies of engagement in science.
Biochemistry and molecular biology education, 36(4):262–273, 2008.

[25] National Society of Professional Engineers. Nspe’s mentoring guide for small,
medium, and large firms. 2002.

[26] A. Fontana and J. H. Frey. Interviewing: The art of science, pages 361–377. Sage
Publications, Thousand Oaks, CA, 1994.

[27] M. Fowler and J. Highsmith. The agile manifesto, 2001.

[28] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.

[29] Gerald C Gannod, Paul V Anderson, Janet E Burge, and Andrew Begel. Is integration
of communication and technical instruction across the se curriculum a viable strategy
for improving the real-world communication abilities of software engineering gradu-
ates? In Software Engineering Education and Training (CSEET), 2011 24th IEEE-CS
Conference on, pages 525–529. IEEE, 2011.

[30] James Paul Gee. An introduction to discourse analysis: Theory and method. Rout-
ledge, 2014.

[31] B. G. Glaser and A. L. Strauss. The Discovery of Grounded Theory: Strategies for
Qualitative Research. Aldine, Chicago, 1967.

[32] Tracy Hall, Sarah Beecham, June Verner, and David Wilson. The impact of staff
turnover on software projects: the importance of understanding what makes software
practitioners tick. In Proceedings of the 2008 ACM SIGMIS CPR conference on Com-
puter personnel doctoral consortium and research, pages 30–39. ACM, 2008.

[33] Siw Elisabeth Hove and Bente Anda. Experiences from conducting semi-structured
interviews in empirical software engineering research. In Software Metrics, 2005.
11th IEEE International Symposium, pages 10–pp. IEEE, 2005.

[34] Helen H Hu, Clifton Kussmaul, and Matthew Lang. Using pogil activities in computer
science classes. In Proceeding of the 44th ACM technical symposium on Computer
science education, pages 753–753. ACM, 2013.

[35] Pamela J Kalbfleisch. Communicating in mentoring relationships: A theory for en-
actment. Communication Theory, 12(1):63–69, 2002.

[36] G. A. Kennedy. Aristotle, on Rhetoric. A Theory of Civic Discourse. Oxford Univer-
sity Press, 1991.

185



[37] Henrik Kniberg and Anders Ivarsson. Scaling agile @ spotify with tribes, squads,
chapters & guilds. 2012.

[38] Shreya Kumar and Charles Wallace. A tale of two projects: A pattern based com-
parison of communication strategies in student software development. In Frontiers in
Education Conference, 2013 IEEE, pages 1844–1850. IEEE, 2013.

[39] Shreya Kumar and Charles Wallace. Communication strategies for mentoring in soft-
ware development projects. In Proceedings of the 7th International Workshop on
Cooperative and Human Aspects of Software Engineering, pages 111–114. ACM,
2014.

[40] Shreya Kumar and Charles Wallace. Instruction in software project communication
through guided inquiry and reflection. In Frontiers in Education Conference (FIE),
2014 IEEE, pages 1–9. IEEE, 2014.

[41] Clifton Kussmaul. Process oriented guided inquiry learning (pogil) for computer
science. In Proceedings of the 43rd ACM technical symposium on Computer Science
Education, pages 373–378. ACM, 2012.

[42] Marilyn Lamoreux. Improving agile team learning by improving team reflections
[agile software development]. In Agile Conference, 2005. Proceedings, pages 139–
144. IEEE, 2005.

[43] Jean Lave and Etienne Wenger. Situated learning: Legitimate peripheral participa-
tion. Cambridge university press, 1991.

[44] Jean Lave and Etienne Wenger. Legitimate peripheral participation in communities
of practice. Supporting lifelong learning, 1:111–126, 2002.

[45] Beth L Leech. Asking questions: techniques for semistructured interviews. Political
Science & Politics, 35(04):665–668, 2002.

[46] Nancy G Leveson and Clark S Turner. An investigation of the therac-25 accidents.
Computer, 26(7):18–41, 1993.

[47] Richard S Moog, Frank J Creegan, David M Hanson, James N Spencer, Andrei Strau-
manis, Diane M Bunce, and Troy Wolfskill. POGIL: Process oriented guided inquiry
learning, volume 2. Pearson Prentice Hall: Upper Saddle River, NJ, 2008.

[48] Peter Naur and Brian Randell. Software engineering: Report of a conference spon-
sored by the nato science committee, garmisch, germany, 7-11 oct. 1968, brussels,
scientific affairs division, nato. 1969.

[49] D. Norman. The Design of Everyday Things. Basic Books., New York, 1988.

186



[50] Maria Paasivaara and Casper Lassenius. Communities of practice in a large dis-
tributed agile software development organization–case ericsson. Information and
Software Technology, 56(12):1556–1577, 2014.

[51] Colin Potts and Glenn Bruns. Recording the reasons for design decisions. In Proceed-
ings of the 10th international conference on Software engineering, pages 418–427.
IEEE Computer Society Press, 1988.

[52] Winston W Royce. Managing the development of large software systems. In pro-
ceedings of IEEE WESCON, volume 26. Los Angeles, 1970.

[53] Herbert J Rubin and Irene S Rubin. Qualitative interviewing: The art of hearing data.
Sage, 2011.

[54] Donald A Schön. Educating the reflective practitioner: Toward a new design for
teaching and learning in the professions. San Francisco, 1987.

[55] Ken Schwaber and Mike Beedle. Agile software development with scrum. 2001.
Upper Saddle River, NJ, 2003.

[56] Ken Schwaber and Jeff Sutherland. The scrum guide. Scrum. org, October, 2011.

[57] Marcelo Serrano Zanetti. The co-evolution of socio-technical structures in sustain-
able software development: Lessons from the open source software communities. In
Proceedings of the 2012 International Conference on Software Engineering, pages
1587–1590. IEEE Press, 2012.

[58] Anselm Strauss and Juliet M Corbin. Basics of qualitative research: Grounded theory
procedures and techniques. Sage Publications, Inc, 1990.

[59] David Talby, Orit Hazzan, Yael Dubinsky, and Arie Keren. Reflections on reflection
in agile software development. In Agile Conference, 2006, pages 11–pp. IEEE, 2006.

[60] Sarah J Tracy. Qualitative research methods: Collecting evidence, crafting analysis,
communicating impact. John Wiley & Sons, 2012.

[61] Michael B Twidale. Over the shoulder learning: supporting brief informal learning.
Computer Supported Cooperative Work, 14(6):505–547, 2005.

[62] Lev S Vygotsky. Mind in society: The development of higher psychological processes.
Harvard university press, 1980.

[63] Charles Wallace and Shreya Kumar. Communication patterns: a tool for analyzing
communication in emerging computer science educational practices. In Proceeding of
the 44th ACM technical symposium on Computer science education, pages 729–729.
ACM, 2013.

187



[64] Charles Wallace, Sriram Mohan, Douglas Troy, and Mark E Hoffman. Scrum across
the cs/se curricula: a retrospective. In Proceedings of the 43rd ACM technical sym-
posium on Computer Science Education, pages 5–6. ACM, 2012.

[65] Charles Wallace, Tom Vosecky, Leroy Steinbacher, Anne Mareck, Robert R Johnson,
and Ann Brady. Student-based case studies in software communication. In Software
Engineering Education and Training Workshops, 2006. CSEETW’06. 19th Confer-
ence on, pages 7–7. IEEE, 2006.

[66] S. Weller. Structured interviewing and questionnaire construction, pages 365–409.
AltaMira Press, Walnut Creek, CA, 1998.

[67] Etienne Wenger. Communities of practice: Learning, meaning, and identity. Cam-
bridge university press, 1998.

[68] Etienne Wenger, Richard Arnold McDermott, and William Snyder. Cultivating com-
munities of practice: A guide to managing knowledge. Harvard Business Press, 2002.

[69] Yiqing Yu, Alexander Benlian, and Thomas Hess. An empirical study of volunteer
members’ perceived turnover in open source software projects. In System Science
(HICSS), 2012 45th Hawaii International Conference on, pages 3396–3405. IEEE,
2012.

[70] Franz Zieris and Lutz Prechelt. On knowledge transfer skill in pair programming. In
Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, page 11. ACM, 2014.

188


	Communication Patterns and Strategies in Software Development Communities of Practice
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	Abstract
	Introduction
	Communication in software development: Two vignettes
	Speech Act Theory: Speaking and Writing as Doing
	Communication in Software Development
	Communication and Software Process
	Communication in Software Engineering Education

	Communities of Practice
	Research Overview
	Research Questions
	Refined Questions

	Our approach
	Subjects of Study
	Open Source Development Community
	Industry Agile Team
	Software Engineering Student Community

	Data Sources

	Tools
	Cognitive Apprenticeship
	Discourse Analysis
	Grounded Theory
	Pattern Languages


	Initial studies
	Communication Strategies for Mentoring in Software Development Projects
	Introduction
	Student Mentoring
	Open source mentoring
	Discussion
	Conclusion

	TAI - Participant observation
	TAI: An evolving development practice
	Methodology
	Types of data collection
	Participant observer trajectory
	Selecting candidates
	Asking the question
	The first interview
	The Routine

	Challenges of the ethnographic process
	Dynamic teams
	Company culture
	Multiple identities


	TAI - Data and Discussion
	Evolving meaning, evolving identity
	Mentoring
	Qualitative Data Analysis
	Stories
	Alex
	Karoline
	Ivan
	Casey
	Philip

	Themes
	Participation and Negotiation of Meaning: Internship changes over time
	Trajectory: Pioneer's journey
	Early onboarders: Divergent trajectories
	Onboarding: The next generation

	Events
	Process tug of war
	Team deciding work for itself
	Learning to work with different mentoring styles
	Knowledge transfer
	Minutiae disconnect
	The burden of onboarding
	`Pair' programming over time
	Pace discrepancy


	Quantitative Data Analysis
	Collecting the data
	Description of the raw data
	Processing the data
	Processing the data by hand
	Processing the data with tools
	Observations from the data
	Story scope creep
	Re-estimating 
	Proportion of communication
	Perfunctory and evolutionary process
	Shapes of sprints
	Process in practice - Kanban vs. Scrum
	Multi-sprint stories
	Changes in participation over time



	TAI - Results
	Discussion
	Types of community participants
	Community of practice evolution over time
	Different onboarding strategies
	Different formats of communication
	Knowledge silo management
	Learn communication style over time

	Previously Discovered Patterns at TAI
	Previously discovered mentoring patterns
	Previously discovered roles
	Previously discovered modes of operation

	Novel Pattern results
	Pattern: Pioneer Identity
	Pattern: Early onboarder identity
	Pattern: Newcomer Identity
	Pattern: Pioneer Onboarding
	Pattern: Generational Onboarding
	Pattern: Process Tug of war
	Pattern: Pioneers don't know what all they know
	Pattern: Patron as Process Champion
	Pattern: Mentor as Oracle
	Pattern: Mentor as interrogator
	Pattern: Mentor as interlocutor
	Pattern: Encourage pair programming by just doing it
	Pattern: Communicate design rationale
	Pattern: Initial Turbulence Sprint
	Pattern: Path to normalcy Sprint
	Pattern: BAU Sprint

	Pattern language
	Mentoring pattern relation
	Knowledge sharing pattern relation
	Process evolution pattern relation
	Shape of sprints pattern relation

	Relationship with research goals
	Negotiation of meaning and communication
	Code Review
	Mentoring
	Process tug of war
	Paired programming
	Trajectory
	Open conference
	Team deciding
	Minutiae disconnect
	Knowledge transfer

	Identity and communication
	Pattern roles
	Onboarding styles
	Code review and Minutiae disconnect


	Conclusion

	Instruction for Software Engineering Students
	Agile Communicators: Cognitive Apprenticeship to Prepare Students for Communication-Intensive Software Development
	Introduction: Communication in workplace and classroom
	Goal: Agile communicators in software development
	A Cognitive Apprenticeship Approach: Inquiry, Critique and Reflection
	Inquiry
	Critique
	Reflection
	Cognitive apprenticeship


	Instruction in Software Project Communication through Guided Inquiry and Reflection
	Motivation
	Background
	Course Communication Activities
	Analysis of project-external communication
	Activities reflecting on internal communication

	Results
	Evaluation
	Class Discussion
	Survey
	Written Assignments

	Discussion and Conclusion

	Relationship with goals
	Build awareness
	Incorporate skills


	Summary and Future Work
	Our research
	Main takeaways
	Future work 

	References

