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Abstract 
Within a given enterprise network, an array of data types needs to be communicated. 
These network transmissions consist of images, videos, text, and binaries that have 
unique requirements of bandwidth and computational overhead to transmit. With 
respect to medical informatics, these include a multitude of varying subjects, 
standards, and modalities which are communicated to and from imaging equipment, 
clinicians, and medical archives. To reduce the required bandwidth to transmit, or 
provide adequate storage capacity for archival purposes, the data may be compressed 
in such a way that reduces the size of the image when it is transferred or stored. The 
original data may be reconstructed either completely or to an acceptable degree of 
completeness using lossy or lossless compression strategies. The scope of this 
inquiry is to define ways in which convolutional compressive autoencoders may be 
used for lossy compression. Multiple approaches will be identified and introduced to 
define their respective optimal datasets, along with their tuned hyperparameters. 
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Introduction 
In medical informatics, archives are composed of various forms of imagery 
including MRI, X-Rays, Digital Pathology, and CT artifacts. These various forms of 
imagery must be maintained for between 5 to 10 years in the United States 
depending on the state of origin. In order to reduce the required storage of medical 
information, compression must be used. Forms of compression which can achieve 
greater than 3:1 are most often lossy algorithms which can have a significant impact 
on the ability of clinicians to perform an accurate diagnosis. 

 

As misdiagnosis can prevent patients from receiving timely treatment or cause 
significant detriment to their condition, it is critical that any lossy compression 
algorithms are used after a decision has already occurred and for archival purposes 
only. Ideally, the image be maintained in a form where it can be returned to its 
original state until the physician is confident that they have pursued the correct 
course of action for that patient. 

 

The problem aimed to be solved by this inquiry is to reduce the necessary bandwidth and 
storage required to transmit and retain medical imaging for archival purposes. 

 
In consideration of why this is important in the field of medical information, a quote from 
the Society of Imaging Informatics in Medicine: 

 
“Medical image archives can grow to contain enormous amounts of data. Radiology, 
Cardiology, or Pathology image sets can consume several gigabytes of storage. The sum 
total of image data associated with many patients and over many years can run into the 
petabyte (1015bytes) range. Obviously, a practical medical image archive must 
economize on the cost of raw storage.” [10] 

 
The solution to this problem needs to be compliant with current medical imaging 
standards of error, though such standards are most certainly internationally vague [3] and 
would depend greatly on the application. Any lossy compression algorithm should be 
evaluated on its effectiveness and its ability to not impact or interfere with clinical 
decision modeling algorithms in the instance where an archive must be restored to 
confirm a diagnosis. 
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Related Works 
To gain an understanding of how autoencoders may solve this problem, we should first 
define what an autoencoder is. An autoencoder is composed of an encoder, which is 
meant to reduce the dimensionality of the feature map, and a decoder, which is meant to 
reconstruct the feature map to the best of its abilities, and a layer known as “code” which 
is where they overlap. [13] 

 
 

Figure 1-1. Autoencoder Architecture 
[13] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Neural networks are used in the creation of autoencoders, due to their ability to identify 
relationships and reduce dimensionality with little modification. In the following 
experiments, CNN based autoencoders will be evaluated over a variety of imaging 
modalities used in the field of medicine. 

 
CNNs are similar to MLPs, but they are not fully connected, which allows for 
reduction of dimensionality. The convolutional layer from which their name is 
derived, breaks up an image into a feature map of smaller size by relying on the idea 
that the subject being communicated is determined by the presence of smaller 
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patterns within it. The size of those patterns is determinedby the convolutional 
kernel which is a square defined in each layer. With only convolutions, and 
assuming zero padding, one can slowly reduce the size of an image down to smaller 
components by trimming the edges. But this takes hundreds of layers, when 
evaluating a high-resolution subject, such as a medical MRI image. To avoid having 
as many parameters, stride can be configured to reduce the subject resolution at a 
much faster rate. Stride is especially useful in down sampling as it allows for more 
flexibility with the kernel, resulting in skipping over data that is directly neighboring 
the previous convolution. While an efficient method of down sampling, it does 
introduce the possibility for significant loss and should be used sparingly. 

 
The analysis done in “Deep Medical Image Reconstruction with Autoencoders 
using Deep Boltzmann Machine Training” [13], shows that there are promising 
studies beingdone in this area specific to medical informatics. 

 
Table 1.1. Relationship of modality and anatomy in relation to image size [4] 

 
 

 
‘The use of data compression in medical imaging is regulated by government 
organizations and there are guidelines provided by professional societies [94,95]. In the 
US, commercial distribution of medical devices is regulated by the Food and Drug 
Administration (FDA). The FDA regulates PACS with capabilities defined to include 
medical image transfer, display, processing, and storage. In 1993, the FDA issued a 
guidance statement for “suitability of lossy compression for different medical 
applications such as primary diagnosis, referral and archiving” [96]. In these guidelines, 
the FDA did not require the manufacturers to restrict indications for use of PACS devices 
which incorporate lossy compression but stated that the manufacturers may voluntarily 
restrict recommended use. These guidelines also stated that “video and hard copy images 
which have been subjected to lossy compression shall be provided with a printed message 
stating that lossy compression has been applied, and the approximate compression 
ratio”.’ [4] 
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Per the above quote, the use of lossy compression for medical informatics in the United 
States is regulated by the FDA, who advise that loss should be minimized as much as 
possible. Given these circumstances, any models that are generated for use in medical 
informatics will be required to state their loss, compression ratio, and name for any 
viewer. The FDA has also stated the following about lossy compression for use in 
mammography: 

 
“Currently the FDA does not permit images regenerated from lossy compressed data to 
be used in the same manner as the original mammogram. While not allowed for final 
interpretation, lossy compressed images of previously obtained mammograms may be 
transferred to the patient or another medical institution to be used for comparison 
purposes if the interpreting physician deems that acceptable.” [5] 

 
This is a fair point and one that should be considered when interpreting the results of this 
evaluation. Once a physician has made a clinical decision on the subject image, the 
compressed form should be accompanied by any notes made by the radiologist. The 
intention is to use these compression algorithms for archival purposes, but in the event 
that a decision is called into question, the ability to restore an image to an understandable 
form is crucial. As to what an ideal quality is, the FDA has not provided much guidance 
on an acceptable level of loss within a compression algorithm. It seems that any 
algorithm or process used to perform lossy compression needs to be certified and that a 
clinician should be able to reach the same decision based on the reconstructed image. 

 
For the purposes of this paper, the acceptable loss identified in “Lossy Compression 
Techniques for EEG Signals” [12] will be used. The acceptable loss in most medical 
applications is a loss of 10 percent according to the referenced study. 

 
Understanding the acceptable boundaries of our loss, a method of evaluating the loss for 
the autoencoders needed to be established. Finding optimal loss functions for CAEs is 
still an active area of research so it was necessary to include additional experimentation 
on what loss functions presented an ideal image. The final model designed was 
influenced by the findings present in "Deep Convolutional AutoEncoder-based Lossy 
Image Compression.” The authors identified that MS-SSIM and MSE along with findings 
in regard to using PReLU as an activation function [2]. 

 
The goal will be to achieve a similar PSNR to that of study [2] and a SSIM loss of less 
than 10% as suggested by study [12]. 
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Methodology 
This study investigates the use of autoencoding on medical images using CNN based 
compressive autoencoder. The results will include the steps taken and the tuned 
hyperparameters. The evaluation of the model’s effectiveness on medical images will be 
conducted on images of varying complexity. This complexity includes the number of 
features required for accurate clinical decision making, and differing size, and depth 
requirement based on the respective modality. 

 
The first stage of the experiment is defined as Data Collection, in which CT [6], MRI [7], 
and X-RAY [8] images of varying anatomy will be sourced. 

 
In the second stage, the data will be processed into grayscale NumPy arrays and split into 
test and training datasets. 

 
In the third stage, a series of CNN-based autoencoders will be trained and validated using 
shuffling/folding of the training data. 

 
During training phase, the models will be trained until convergence is reached or it is 
proven that another iteration performs better at that point. At least 25 epochs will be used 
to assess the models, and up to 100 epochs with early termination of a patience of 10 
epochs. 

 
In the fourth stage, test images will be encoded and decoded. During this process, the 
compression ratio will be assessed by looking at the model summary to see the 
dimensionality at its smallest point, and the degree of loss will be measured using a 
combination of MS-SSIM, SSIM, MSE, and BCE to compare the original image to the 
reconstructed one. 

 
The last step of the experiment will be to use the best model and test its impact on clinical 
decision making by using an established classification network and providing it with 
lossy reconstructed test data. 
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Model Selection 
Model 1 

Figure 2-1. Autoencoder Architecture. See 
Appendix 1 for more detailed code. 

Experiment 
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The experiment started by using the first CNN autoencoder with the MRI and CT 
Brain Scandataset [7]. To identify the base model, the depth of the model was 
varied from 1 up to 4 layers deep in the encoder and decoder. Modification of the 
Conv2D and Conv2D transpose stride, kernel, and filter size were made over 25 
epochs of testing each in an attempt to reduce binary cross-entropy loss. With the 
CT training dataset, a value of .1826 BCE loss was achieved with the structure 
shown in Figure 3-1, 
The activation function was also switched between ReLU and tanh, but without 
significant change being made. 

CT Brain Scans: 
● Input Dimension: 512x512x1 
● Minimum Dimension: 32x32x8 
● Compression Ratio: 32:1 
● Val Loss: BCE .1826 

 

Figure 3-1. CT Brain Scans [7] 
 

MRI Brain Scans: 
● Input Dimension: 256x256x1 
● Minimum Dimension: 16x16x8 
● Compression Ratio: 32:1 
● Val Loss: BCE .3587 

 
 

Figure 3-1. MRI Brain Scans [7] 
 

The loss is very apparent in the MRI images, and while the 32:1 compression ratio 
is very respectable, the loss seems to exceed the usefulness of that compression. The 
CT images remain visibly different, but the structures are at least recognizable, 
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further experimentation will be conducted later in the paper to see if enough 
information is being preserved. 
A medley of loss functions will need to be used keep the model from completely 
distorting the images, as BSE by itself was not a useful metric. The following loss 
function was implemented, 0.5 * BSE + 0.25 *MSE + 0.25 * (1-SSIM) based on a 
considerable amount of trial and error coupled with information from Nvidia’s study 
on SSIM [14], and the previously mentioned studies [13][2]. 
For the next model the compression was reduced to an 8:1 ratio and the kernel size 
increased to reduce the total number of features. 
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Model 2 
 
 

Figure 4-1. Autoencoder Architecture. 
See Appendix 2 for more detailed code. 
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The following are the results of the second architecture over 100 epochs. 

CT Brain Scans: 
● Input Dimension: 512x512x1 
● Minimum Dimension: 64x64x8 
● Compression Ratio: 8:1 
● Loss: 

o val_loss: 0.0916 
o val_binary_crossentropy: 0.183S 
o val_mse: 0.0016 
o val_ssim_loss: 0.0213 

 
 

 
Figure 5-1. CT Brain Scans [7] 

 
MRI Brain Scans: 

● Input Dimension: 256x256x1 
● Minimum Dimension: 32x32x8 
● Compression Ratio: 8:1 
● Loss: 

o val_loss: 0.1751 
o val_binary_crossentropy: 0.3502 
o val_mse: 0.0029 
o val_ssim_loss: 0.1021 

 

 
Figure 6-1. MRI Brain Scans [7] 
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The results of Model 2 are improvements over the Model 1, but at the cost of a 
reduced compression ratio. In modifying the weights of the new loss function, it was 
found that adding SSIM increased the prominence of defining borders to patterns 
within the subject. The contrast was not being preserved with SSIM alone, which is 
why it was still necessary to create a more complex loss function medley that utilized 
MSE. 
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Model 3 
Model 3 incorporates the 
dimensionality reduction of 
Model 1, the complex loss 
function of Model 2, and 
uniquely increases the filter size 
as more layers are introduced to 
try and reduce any unintentional 
bottlenecks. 

 
 

Figure 7-1. Model 3 Autoencoder Architecture. 
See Appendix 3 for more detailed code. 
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The following are the results after 100 epochs: 
 

CT Brain Scans: 
● Input Dimension: 512x512x1 
● Minimum Dimension: 32x32x8 
● Compression Ratio: 32:1 
● Training Time: 16ms/step 
● Loss: 

o val_loss: 0.090 
o val_binary_crossentropy: 0.1802 
o val_mse: 0.0029 
o val_ssim_loss: 0.0365 
o val_psnr: 20.9955 dB 

 

 

Figure 8-1. CT Brain Scans [7] 
 

MRI Brain Scans: 
● Input Dimension: 256x256x1 
● Minimum Dimension: 16x16x8 
● Compression Ratio 32:1 
● Training Time: 7ms/step 
● Loss: 

o val_loss: 0.1787 
o val_binary_crossentropy: 0.3574 
o val_mse: 0.0063 
o val_ssim_loss: 0.1674 
o val_psnr: 21.6933 dB 
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Yet again, the MRI results were underwhelming, but the CT scans provided favorable 

Figure 9-1. MRI Brain Scans [7] 

results. 
Some additional datasets were used to evaluate the effectiveness of the model. 

 

COVIDx Chest CT 
● Input Dimension: 512x512x1 
● Minimum Dimension: 32x32x8 
● Compression Ratio: 32:1 
● Training Time: 15ms/step 
● Loss: 

o val_loss: 0.2468 
o val_binary_crossentropy: 0.4936 
o val_mse: 0.0054 
o val_ssim_loss: 0.2369 
o val_psnr: 23.0740 dB 

 

Figure 10-1. COVIDx Chest CT [6] 
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Chest X-Ray Pneumonia 
● Input Dimension: 512x512x1 
● Minimum Dimension: 32x32x8 
● Compression Ratio: 32:1 
● Training Time: 53ms/step 
● Loss: 

o val_loss: 0.2769 
o val_binary_crossentropy: 0.5538 
o val_mse: 0.0019 
o val_ssim_loss: 0.0987 
o val_psnr: 26.0472 dB 

 

 
 

Figure 11-1. Chest X-Ray Pneumonia [8] 
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Model 4 
Model 4 is structurally identical to Model 3, with only changes in its activation function 
in going from tanh to PReLU and the introduction of MS-SSIM based with MSE in a loss 
function represented as: 0.5 MS-SSIM * 0.5 MSE. PSNR will be available in addition to 
MSE and MS-SSIM Loss in order to more accurately assess the model’s effectiveness 
with the removal of BCE. 

 
This model was heavily inspired by the findings in CAE resource [2]. 
The following are the results after 100 epochs: 
CT Brain Scans: 

● Input Dimension: 512x512x1 
● Minimum Dimension: 32x32x8 
● Compression Ratio: 32:1 
● Training Time: 22ms/step 
● Loss: 

o val_loss: 0.0016 
o val_psnr: 22.5306 
o val_mse: 0.0066 

 

 
Figure 12-1. CT Brain Scans [7] 

 
 

MRI Brain Scans: 
● Input Dimension: 256x256x1 
● Minimum Dimension: 16x16x8 
● Compression Ratio 32:1 
● Training Time: 15ms/step 
● Loss: 

o val_loss: 0.0037 
o val_psnr: 18.9907 
o val_mse: 0.0149 
o val_ms-ssim_loss: 0.2285 
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Figure 13-1. MRI Brain Scans [7] 
 

COVIDx Chest CT Scans: 
● Input Dimension: 512x512x1 
● Minimum Dimension: 32x32x8 
● Compression Ratio: 32:1 
● Training Time: 31ms/step 
● Loss: 

o val_loss: 0.0021 
o val_psnr: 20.9230 
o val_mse: 0.0082 
o val_ssim_loss: 0.1308 

 

 

Figure 14-1. COVIDx Chest CT [6] 
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Chest X-Ray Pneumonia: 
● Input Dimension: 512x512x1 
● Minimum Dimension: 32x32x8 
● Compression Ratio: 32:1 
● Training Time: 31ms/step 
● Loss: 

o val_loss: 8.0521e-04 
o val_psnr: 25.2433 
o val_mse: 0.0032 
o val_ms-ssim_loss: 0.0897 

 

 
Figure 15-1. Chest X-Ray Pneumonia [8] 
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Choosing a model: 
The expectation was that Model 4 would improve over Model 3, but it became apparent 
during testing that images were losing their definition significantly. Firstly, by comparing 
the PSNR across the different datasets: 

 
Table 2.1 Model PSNR comparison 

 
Dataset Model 1 Model 2 Model 3 Model 4 
Brain CT 22.8508 26.6261 20.9955 22.5306 
Brain MRI 19.2978 22.3544 21.6933 18.9907 
COVID CT N/A N/A 23.0740 20.9230 
Chest X-Ray N/A N/A 26.0472 25.2433 

 

Noting in this figure that PSNR does not tell the whole story and varies significantly in 
validation runs throughout the experiment. However, using PSNR in conjunction with 
visual analysis can provide additional information, but is not an indicator of structural 
information, rather it is an absolute error metric. 

 
A simple visual inspection shows that Model 3 was distorting the images much less than 
Model 4. 

 
Based on these observations, Model 3 was chosen as the candidate moving forward. 

 
 
 

Figure 16-1. Original Figure from the 
Hemorrhage Dataset [9] 
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Figure 17-1. Model 3 Trained on 
Hemorrhage Dataset [9] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18-1. Model 4 Trained on 
Hemorrhage Dataset [9] 
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Selected Model Validation 
Using Model 3 with an open-source notebook [8] intended for the use of classifying 
pneumonia from chest X-Rays, the following analysis was performed. The notebook 
was run with the original data first and then with the Model 3 reconstructed test 
data. 

 

Chest X-Ray Pneumonia 
● Input Dimension: 512x512x1 
● Minimum Dimension: 32x32x8 
● Compression Ratio: 32:1 
● Training Time: 16ms/step 
● Loss: 

o val_loss: 0.2764 
o val_binary_crossentropy: 0.5527 
o val_mse: 0.0014 
o val_ssim_loss: 0.0536 

 
 

Figure 19-1. Chest X-Ray Pneumonia [8] 
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Pneumonia Prediction Model Results 
 
 

Original Pneumonia Data 
 

Reconstructed Pneumonia Data 
 

 
 
 

Figure 20-1. Reconstructed Pneumonia Chest X-Ray Model Results 
 

An interpretation of the above graphs shows the training data, which has not been 
reconstructed, achieve between 75 percent to 90 percent accuracy. The variation between 
runs is likely due to convergence not occurring until a higher epoch, a change that could 
be made to the original author’s notebook. The important takeaway is the validation 
accuracy of the second figure which shows no correlation to the training data. This means 
that reconstructed images do not accurately represent the testing data, which is why these 
graphs seem to indicate what would be classified as overfitting. 

 
Upon reconstruction, the model is unable to properly discriminate between negative and 
positive samples. Hoping that this was just a limitation with the dataset, another notebook 
was used for identifying brain hemorrhages.[9] 
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Brain CT Hemorrhage 
● Input Dimension: 512x512x1 
● Minimum Dimension: 32x32x8 
● Compression Ratio: 32:1 
● Training Time: 16ms/step 
● Loss 

o val_loss: 0.2216 
o val_binary_crossentropy: 0.4432 
o val_mse: 0.0055 
o val_ssim_loss: 0.2067 

 

 
 

Figure 21-1. Brain CT Hemorrhage [9] 
 

Outcome of Brain Hemorrhage Clinical Decision Model 
 

 

While the results were not optimal, the fact that there was still a positive 
correlation in predicting hemorrhages in the reconstructed data insinuates 
that information required for correct medical diagnosis was maintained to 
some degree during reconstruction. 
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Results 
An ideal model was identified which could reach a compression ratio of 32:1, 
up to 96 percent SSIM, and an MSE of less than 0.003. The SSIM of Model 3 
is below the 10% loss threshold mentioned in source [12], but the PSNR was 
significantly lower than that of the models in source [2]. Though most of the 
datasets upon reconstruction were left with many indiscernible features, 
through further refinement of the datasets used and the generation of subject, 
modality, and viewing angle specific models, the loss could be further 
reduced. The datasets that had more image size variation and were not in a 
square slide form seemed to struggle more. It would seem that perspective, 
resolution, and subject should be defining characteristics of each model. 
The code and data used to generate these results can be found at the following 
GitHub link: https://github.com/ciwarren/CCAE-MI 

 
 

https://github.com/ciwarren/CCAE-MI
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Conclusion 
The ability to minimize loss while still providing a compression ratio greater than 16:1 
would significantly reduce the burden of cost that is currently assumed for medical 
archiving purposes. Within the United States, there is regulation by each state requiring 
various lengths of data retention. In Michigan, the archives must be maintained for at 
least seven years [15] and as stated by the Society for Imaging Informatics in Medicine 
these archives can reach petabytes in size when considering how many patients and how 
often an institution performs imagery procedures. The size of the primary copy of these 
archives being reduced could lead to greater ability to provide additional redundancy if 
the cost of storage were to be reduced by a factor of between 16 to 32, increasing the 
overall availability and security of these archives. 

 
If autoencoders can become a mainstream source of lossy compression, the impacts in 
medicine could extend further than just for archival purposes. The use of distributing 
pretrained models as portable encoders and decoders could allow for advancements in 
areas, such as the Internet of Medical Things (IoMTs). As stated by the authors of the 
study of lossy compression on EEGs [11], the impact of compression ratios on body area 
networks can result in significant power savings. To elaborate further, with a reduction of 
overhead in data transmissions, low power devices may be able to support encryption, 
where previously unable, due to the significant decrease in payload size. 

 
Another observation made during this analysis, was that the autoencoders also became 
their own source of anomaly detection. If an autoencoder was trained on a specific set of 
images, then during reconstruction, a very large loss was present. This is an indication 
that the training data is not a good indicator of the test data. This could be a crude method 
of detecting mutations to data while in archive format or the use of the improper model 
during reconstruction. 

 
With each of the above conclusions, it is important to be mindful that the utility in 
medicine of lossy compression is only defined by how well images are able to be 
assessed after being reconstructed. 
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Future Works 
Much more could be done to expand on this experiment, such as using larger training 
dataset lengths, modifying filter output sizes, breaking up datasets into specific subject 
views rather than just generic subjects. The downside is a significant increase in 
computation required to train the model when more trainable parameters are added, and 
the increase in more models that are needed datasets are broken up. 

 
Additionally, clinicians should be surveyed and presented with varying degrees of loss to 
an image and their responses should be collected to generalize a threshold to what point a 
condition, such as a disease, is unrecognizable within the image. This survey would prove 
very useful in removing some of the ambiguities that exist around lossy compression in 
medical informatics and may provide the FDA with an ability to provide more achievable 
benchmarks for new compression alternatives. 
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Appendix 
1 - Model 1 

2 - Model 2 
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3 - Model 3 
 

 
4 - Model 4 
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