
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2019

ACCESSIBLE ACCESS CONTROL: A VISUALIZATION SYSTEM FOR ACCESSIBLE ACCESS CONTROL: A VISUALIZATION SYSTEM FOR

ACCESS CONTROL POLICY MANAGEMENT ACCESS CONTROL POLICY MANAGEMENT

Man Wang
Michigan Technological University, manw@mtu.edu

Copyright 2019 Man Wang

Recommended Citation Recommended Citation
Wang, Man, "ACCESSIBLE ACCESS CONTROL: A VISUALIZATION SYSTEM FOR ACCESS CONTROL
POLICY MANAGEMENT", Open Access Dissertation, Michigan Technological University, 2019.
https://doi.org/10.37099/mtu.dc.etdr/841

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Educational Technology Commons, Science and Mathematics Education Commons, and the
University Extension Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/841
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1415?utm_source=digitalcommons.mtu.edu%2Fetdr%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.mtu.edu%2Fetdr%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1361?utm_source=digitalcommons.mtu.edu%2Fetdr%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages

ACCESSIBLE ACCESS CONTROL:

A VISUALIZATION SYSTEM FOR ACCESS CONTROL POLICY

MANAGEMENT

By

Man Wang

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2019

© 2019 Man Wang

This dissertation has been approved in partial fulfillment of the requirements for the

Degree of DOCTOR OF PHILOSOPHY in Computer Science.

Department of Computer Science

Dissertation Co-advisor: Dr. Jean Mayo

Dissertation Co-advisor: Dr. Chaoli Wang

Committee Member: Dr. Ching-Kuang Shene

Committee Member: Dr. Steven Carr

Department Chair: Dr. Zhenlin Wang

Contents

List of Figures . xi

List of Tables . xvii

Acknowledgments . xix

Abstract . xxi

1 Introduction . 1

1.1 Background . 4

1.1.1 Access Control . 4

1.1.2 Domain Type Enforcement 6

1.1.3 Multilevel Security . 7

1.1.4 Role-based Access Control 8

1.1.4.1 Core RBAC . 9

1.1.4.2 Hierarchical RBAC 9

1.1.4.3 Statically Constrained RBAC 10

1.1.4.4 Dynamically Constrained RBAC 10

1.1.5 UNIX Permissions . 11

v

1.1.5.1 Letter and Octal Notations 12

1.1.5.2 Access to Objects 13

1.2 Challenges . 14

1.3 Methodology . 16

1.4 Organization . 19

2 Related Work . 21

2.1 Access Control Languages . 22

2.1.1 Our Approach . 23

2.2 Tools for Security Education Using Visualization 24

2.2.1 Our Approaches . 26

2.3 Tools for Security Policy Management 27

2.3.1 Our Approaches . 30

3 Model-Specific Pedagogical Systems 31

3.1 DTEvisual . 32

3.1.1 Language . 33

3.1.2 Visualization System . 36

3.2 MLSvisual . 39

3.2.1 Language . 40

3.2.2 Visualization System . 42

3.2.3 Evaluation . 47

3.2.3.1 General Discussion 50

vi

3.2.3.2 Statistical Analysis 53

3.2.3.3 Student Comments 54

3.3 RBACvisual . 56

3.3.1 Language . 57

3.3.2 Visualization System . 59

3.3.3 Evaluation . 65

3.3.3.1 General Discussion 65

3.3.3.2 Statistical Analysis 68

3.3.3.3 Student Comments 70

3.4 UNIXvisual . 72

3.4.1 Language . 72

3.4.2 Visualization System . 74

3.4.2.1 Decision Mode . 75

3.4.2.2 Object View . 76

3.4.2.3 User and Group View 77

3.4.2.4 Program Trace View 79

3.4.2.5 Permission Calculator 80

3.4.2.6 Query and Quiz . 81

3.4.3 Evaluation . 82

3.4.3.1 Test Problems . 83

3.4.3.2 Test Problems Analysis 85

vii

3.4.3.3 Evaluation Form 88

3.4.3.4 Evaluation Form – Student Comments 91

3.5 Design Framework of the Visualization Systems 92

3.5.1 Design Framework . 93

3.5.2 Implementation . 96

4 Access Control Policy Authoring and Analysis System 97

4.1 Overview . 97

4.2 Model Language . 102

4.3 Policy Authoring . 106

4.4 Policy Analysis . 108

4.4.1 Role View . 111

4.4.1.1 Cyclic Role Inheritance 117

4.4.1.2 Separation of Duties 118

4.4.2 User View . 120

4.4.2.1 Object Tree . 121

4.4.2.2 Role Hierarchy . 124

4.4.2.3 Access Query . 125

4.4.3 Object View . 128

4.5 Policy Ratification . 129

4.6 Evaluation . 133

4.6.1 Environment, Procedure and Goals 133

viii

4.6.2 Test Problems . 134

4.6.3 Evaluation Form . 138

4.6.3.1 General Discussion 140

4.6.3.2 Statistical Analysis 142

4.6.4 Evaluation Form - Student Comments 144

4.6.5 Conclusion . 145

5 Flow Visualization Systems . 147

5.1 Terms . 149

5.2 FlowVisual for 2D Flow Field . 152

5.2.1 Field-line Visualization and Comparison 153

5.2.2 Critical Points . 157

5.3 FlowVisual for 3D Flow Field . 161

5.3.1 Field-line Visualization and Comparison 163

5.3.2 Stream Surfaces . 166

5.3.3 Critical Points . 169

6 Results and Discussion . 175

6.1 Conclusion . 175

6.2 Future Work . 178

References . 181

A Example SMV File . 195

ix

B RBAC Technical Questions . 209

C Letters of Permission . 213

x

List of Figures

3.1 DTE policy in DTEL . 36

3.2 Visualization in DTEvisual . 37

3.3 Query Subsystem . 39

3.4 MLS policy . 41

3.5 Main Window (© 2014 ACM. Reprinted by permission.) 42

3.6 General Graph and Object Graph. (a) and (b) show two different Gen-

eral Graphs. (c) shows the Object Graph. (© 2014 ACM. Reprinted

by permission.) . 44

3.7 Whole Graph. (a) shows the graph without Grouping. (b) shows the

graph with Grouping. (© 2014 ACM. Reprinted by permission.) . . 45

3.8 Specification and Query. (a) shows the Specification Diagnosis Win-

dow. (b) shows the Query Window. (© 2014 ACM. Reprinted by

permission.) . 46

3.9 RBAC policy . 58

3.10 User Interface with Matrix View (© 2015 ACM. Reprinted by permis-

sion.) . 59

xi

3.11 Role Node Highlight without Inheritance (© 2015 ACM. Reprinted by

permission.) . 60

3.12 Role Node Highlight. (a) shows the highlight with Children. (b) shows

highlight with Parents. (© 2015 ACM. Reprinted by permission.) . 61

3.13 Edit mode. (a) shows the role hierarchy before an edit. (b) shows the

role hierarchy after the edit. (© 2015 ACM. Reprinted by permis-

sion.) . 62

3.14 Specification and Exercise Modules. (a) shows the Specification Di-

agnosis Window. (b) shows the Query Window. (© 2015 ACM.

Reprinted by permission.) . 63

3.15 Quiz Mode. (a) shows Multiple Trial Quiz Mode with Wrong Answer.

(b) shows Self-test Quiz Mode with Wrong Answer. (© 2015 ACM.

Reprinted by permission.) . 64

3.16 Graph of Significant Spearnman Correlation Pairs (© 2015 ACM.

Reprinted by permission.) . 69

3.17 UNIX policy (© 2017 ACM. Reprinted by permission.) 73

3.18 Decision Mode (© 2017 ACM. Reprinted by permission.) 75

3.19 Object View (© 2017 ACM. Reprinted by permission.) 77

3.20 User and Group View and Program Trace View. (a) shows User

and Group View. (b) shows Program Trace View. (© 2017 ACM.

Reprinted by permission.) . 78

xii

3.21 Permission Calculator (© 2017 ACM. Reprinted by permission.) . . 80

3.22 The Means with Confidence Intervals of G1, G2 and G3 in the Pre-test,

Post-test and Final Exam (© 2017 ACM. Reprinted by permission.) 84

3.23 The Means with Confidence Intervals of UNIXvisual Rating and Usage

Questions (© 2017 ACM. Reprinted by permission.) 90

4.1 System Structure . 100

4.2 Policy in UOA Model Language . 105

4.3 Policy Composer in ACvisual . 107

4.4 Policy Analyzer in ACvisual . 110

4.5 Role View. (a) shows role inheritance hierarchy. (b) shows cyclic role

inheritance. 117

4.6 Role Inheritance Graph in Role View 119

4.7 User View . 121

4.8 Accessibility of User tina . 124

4.9 Direct Accessibility of User tina . 126

4.10 Inherited Accessibility of User tina 126

4.11 Directly Assigned Roles of User tina 127

4.12 Permissions from Directly Assigned Role 127

4.13 Inherited Roles of User tina . 128

4.14 Effective Permission of User tina . 128

4.15 Policy Ratifier . 130

xiii

4.16 NuSMV Result . 130

4.17 The Means with Confidence Intervals of ACvisual Rating and Usage

Questions . 141

4.18 Correlation Heatmap of Rating Questions 143

5.1 The User Interface of FlowVisual Desktop. (© 2013 American Society

for Engineering Education. Reprinted by permission.) 153

5.2 Visual Forms of Field-line Representation. (a) line. (b) tube. (c) an-

imated arrow. (© 2013 American Society for Engineering Education.

Reprinted by permission.) . 154

5.3 LIC Texture Showing Underlying Flow Data. (a) original LIC. (b) LIC

after histogram equalization. (© 2013 American Society for Engineer-

ing Education. Reprinted by permission.) 155

5.4 Single Field-lines. (a) streamlines. (b) pathlines. (c) streakline.

(d) timeline. (© 2013 American Society for Engineering Education.

Reprinted by permission.) . 156

5.5 Multiple Field-line comparison with LIC texture overlay. (a)-(c) path-

line and timeline. (d)-(f) pathline and streakline. (© 2013 American

Society for Engineering Education. Reprinted by permission.) . . . 157

5.6 Interpolating a critical point. (© 2013 American Society for Engineer-

ing Education. Reprinted by permission.) 158

xiv

5.7 Six Types of Critical Points and their Seeding Templates. (a) saddle.

(b) attracting node. (c) repelling node. (d) center. (e) attracting

focus. (f) repelling focus. (© 2013 American Society for Engineering

Education. Reprinted by permission.) 159

5.8 Visualization of Critical Points. (a) critical point highlighting. (b)

static streamlines around critical points via template-based seeding.

(c) dynamic streamlines with animated arrows. (© 2013 American

Society for Engineering Education. Reprinted by permission.) . . . 160

5.9 The user interface of the FlowVisual app. (© 2016 IS&T. Reprinted

by permission.) . 162

5.10 Field-lines. (a) streamlines. (b) pathlines. (c) pathline-streakline with

LIC. (d) pathline-timeline with LIC. (© 2016 IS&T. Reprinted by

permission.) . 165

5.11 Stream Surfaces. (a) multiple surface overview with unique color for

each surface. (b)-(c) multiple surface overview with coloring based on

the types of related critical points. (d) single surface with streamlines.

(e) single surface with streamline animation. (© 2016 IS&T. Reprinted

by permission.) . 168

5.12 Critical points and their seeding templates. (a) saddle. (b) sink. (c)

source. (d) spiral. and (e) spiral saddle. (© 2016 IS&T. Reprinted by

permission.) . 170

xv

5.13 Streamlines around critical points via template-based seeding. (a)

static streamlines. (b) dynamic streamlines with animated arrows.

(© 2016 IS&T. Reprinted by permission.) 174

xvi

List of Tables

3.1 Survey Questions (© 2014 ACM. Reprinted by permission.) 49

3.2 Mean (µ) and Standard Deviation (σ) (© 2014 ACM. Reprinted by

permission.) . 51

3.3 Usage Distribution (© 2014 ACM. Reprinted by permission.) . . . 51

3.4 Rating Questions . 66

3.5 Mean (µ), Standard Deviation (σ) and Confidence Interval (CI−,

CI+)(© 2015 ACM. Reprinted by permission.) 67

3.6 Usage Distribution (© 2015 ACM. Reprinted by permission.) . . . 67

3.7 The Means (µ) and Standard Deviations (σ) of the Pre-test, Post-test,

and Final Exam Questions (© 2017 ACM. Reprinted by permission.) 83

3.8 The Means (µ) and Standard Deviations (σ) of G1, G2 and G3 in

the Pre-test, Post-test and Final Exam (© 2017 ACM. Reprinted by

permission.) . 83

3.9 The Means (µ) and Standard Deviations (σ) of G1, G2, G3 and Total

Scores of Students Who Used and Did Not Use UNIXvisual (© 2017

ACM. Reprinted by permission.) . 85

xvii

3.10 UNIXvisual Rating and Usage Questions (© 2017 ACM. Reprinted by

permission.) . 89

3.11 The Means (µ), and Standard Deviations (σ) of UNIXvisual Evaluation

Questions (© 2017 ACM. Reprinted by permission.) 89

4.1 Role Configuration of A File System 111

4.2 Example Role Permissions . 116

4.3 The Means (µ), Standard Deviation (σ), and Confidence Intervals

(CI−, CI+) of Tool Question Groups 135

4.4 The Means (µ), Standard Deviation (σ), and Confidence Intervals

(CI−, CI+) of the Policy Analysis Tool Questions 135

4.5 The Means (µ), Standard Deviations (σ), and Confidence Intervals

(CI−, CI+) of RBAC Questions . 137

4.6 ACvisual Rating and Usage Questions 139

4.7 The Means (µ), Standard Deviations (σ), and Confidence Intervals

(CI−, CI+) of ACvisual Rating Questions and Question Groups . . 141

4.8 Usage Distribution . 142

xviii

Acknowledgments

I would like to express my gratitude to my advisors, committee members, coauthors,

and friends and family. Without their guidance and support, it would never be

possible for me to accomplish my research work throughout all these years.

I would like to thank my advisor Dr. Jean Mayo for her advise and encouragement.

She helped consolidate my background in Computer Security and also allowed great

freedom for my own exploration. She gave a lot of thoughts into what we could

bring to the research community, and what is the best for the students in teaching.

I appreciate every insightful discussion with her. Her work ethics and her wisdom in

life will always be influencing me.

I would also like to thank my co-advisor Dr. Chaoli Wang. He is the special person

who lead me into the Computer Graphics and Data Visualization research community.

He made me aware of what an excellent researcher is like, and how I should work

towards being one by myself. Working with him has granted me many opportunities

to collaborate with researchers in the field, and out-reaching activities to the general

public.

My appreciation also goes to Dr. Ching-Kuang Shene and Dr. Steven Carr. Dr.

Shene has always been resourceful and a great help not only in Computer Science

xix

subjects, but also in Mathematics and Data Analysis. His professional experience

and advice has shaped my research thinking in a profound way. Dr. Carr has been

an expert in field of Computer Security for many years. His work and the collaboration

he brought into our group had been a valuable experience. I appreciate every single

piece of advice he ever gave to me and our research group.

At last, I am so grateful that I have many good people as my friends, Mengchan Wang,

Alex Klinkhamer, Jun Ma and Jun Tao. They share my joys when I am happy, and

are always there for me when I need help. They made me who I am today. I also owe

my gratitude to my family. I am so lucky to have them in my life; they are the most

supportive parents and sister that I could ever wished for. Their encouragement and

unconditional love is what drives me forward every single day.

Last to the last, I would like to thank the winter in Houghton. It lets me know that

there is something being staying at home is much more fun than going out. It is

probably what shaped me into a competent researcher, and also the reason why the

local people are so kind and warm-hearted.

xx

Abstract

Attacks on computers today present in many different forms, causing malfunction of

operating systems, information leakage and loss of business and public trust. Access

control is a technique that stands as the last line of protection restricting the access

of users or processes to resources on computers. Throughout the years, many access

control models have been implemented to accommodate security requirements under

different circumstances. However, the learning of access control models and the man-

agement of access control policies are still challenging given its abstract nature, the

lack of an environment for practice, and the intricacy of fulfilling complex security

goals. These problems seriously reduce the usability of access control models.

In this dissertation, we present a set of pedagogical systems that facilitates the teach-

ing and studying of access control models, and a visualization system that aids the

authoring and analysis of access control policies. These systems are designed to tackle

the usability problems in two steps. First, the pedagogical systems were designed for

new learners to overcome the obstacles of learning access control and the lack of

practicing environment at the very beginning. Contrary to the traditional lecture

and in-paper homework method, the tool allows users to write/import a policy file,

follow the visual steps to understand the concepts and access mechanisms of a model,

xxi

and conduct self-evaluation through Quiz and Query modules. Each of the four sys-

tems is specifically designed for a model of the Domain Type Enforcement, Multi-level

Security, Role-based Access Control, or UNIX permissions. Through these systems,

users are able to take an active role in exploring the effect of a policy with a safe

and intact underlying operating systems. Second, writing and evaluating the effect

of a policy could also be challenging and tedious even for security professionals when

there are thousands of lines of rules. We believe that writing an access control policy

should not include the complexity of learning a new language, and managing the

policies should never be manual when automatic examination could take the place.

In the aspect of policy writing, the visualization system kept the least number of key

elements for specifying a rule: user, object, and action. They describe the active en-

tity who takes the action, the file or directory which the action is applied to, and the

type of accesses allowed, respectively. Because of its simple form without requiring

the learning of a programming-like language, we hope that specifying policies using

our language could be accomplished effortlessly not only by security professionals,

but also by anyone who is interested in access control. Moreover, policies can often

be left unexamined when deployed. This is similar to releasing program which was

untested, and could lead to dangerous results. Therefore, the visualization system

provides ways to explore and analyze access control policies to help confirm the effect

of the policies. Through interactive textual and graphical illustrations, users could

specify the accesses to check, and be notified when problems exist.

xxii

Chapter 1

Introduction

Computers nowadays are subject to attacks of various kinds, which have caused com-

promised system safety, failed computer operations, and jeopardized information,

property, and privacy. Access control is a technique that guards the integrity, confi-

dentiality, and availability of data present on computers by regulating the permissions

users have to resources. It runs a set of rules, which constitute an access control pol-

icy, to stop unauthorized users from accessing data resources, but at the same time,

makes sure that authorized users can obtain data with granted permissions. Many

access control models have been developed to control access to resources under differ-

ent scenarios. To make sure a policy fulfills certain security goals, one should choose

an appropriate model, write up a policy conforming to the model’s format, and make

1

sure the rules collectively achieve the set security goals. This process requires a de-

signer to have the knowledge of access control models, the language of each model,

and the individual and collective meanings of each line of rules.

Access control has been covered in some popular textbooks [14, 66] and taught in

computer security related courses in different institutes. Usually, it is taught in the

traditional whiteboard-and-slides classroom setting, where the instructors play an

active role in introducing the subject along with in-class practices and discussions.

Due to the limited class time, it is common that simple policies are used as examples

for introducing access control models. Explaining more complicated policies used

for real system administration is usually not feasible. Students also do not have the

opportunities to design policies in class. Thus, the simple policies tend to produce an

illusion that access control is easy to master and designing policies does not require

much effort. It is not until the homework or exam is returned that the students realize

that there is a misunderstanding of the access control models. It is also difficult for

instructors to revisit the topic and keep up with the course schedule at the time when

these problems are realized. Most commonly, security policymakers and implementers

do not have the luxury of taking security courses offered by institutions. Brief training

usually helps but still hardly suffices for the professionals to be proficient in the

properties of various access control models.

Besides learning access control, the use of access control can also be challenging.

2

A policy used in large organizations and companies can contain thousands of lines

of rules or even more, which makes policy creation and management challenging

tasks. Usually, system administrators resort to many tools for policy authoring and

analysis [8, 16]. But issues arise when the tools are employed. The output of a tool

may be hard to interpret from the input; the outputs from different tools may not be

compatible with each other [16]. Therefore, system administrators tend to write up

their own command-line scripts instead of using those tools [16]. As a result, the use

of access control models is significantly reduced.

To popularize the use of access control, we design a system with visualization and

a graphical interface that makes access control easy to learn and use by everyone,

in particular for individuals with no security or technical background. The system

incorporates two commonly used access control models and is comprised of three

major parts: 1) a package of visualization tools to help the learning of Domain Type

Enforcement [3], Bell-Lapadula model [9] of Multilevel Security, Role-based Access

Control [31], and UNIX permissions access control models; 2) a policy authoring

component where policies can be designed using the language of user-object-action

and graphical interfaces; 3) a policy analysis component where policies are presented

through visualization, and problematic rules can be detected and resolved.

3

1.1 Background

This section provides the basic background of access control involved in our work.

First, the key concepts and the types of access control are introduced. Then some

access control models, in particular, Domain Type Enforcement, Multi-level Security,

Role-based Access Control, and UNIX permissions, and their properties are discussed

in detail.

1.1.1 Access Control

Corporations, organizations, and data centers nowadays possess a wealth of intellec-

tual property that contains information of high-value and may attract attacks from

external parties. These attacks take the form of exploiting access to the information.

Access control is a technique to ensure that both internal and external users of an

organization have no more than the necessary access to resources to perform their

own tasks. It restricts a subject’s operation to objects using a set of rules. A subject

is an active entity that can either be a user or a user-invoked process. An object is

a passive entity such as a file, a directory, some memory segments or other computer

resources.

4

Based on how access control applies access constraints, the Trusted Computer Sys-

tem Evaluation Criteria of the Department of Defense categorized access control into

mandatory access control and discretionary access control. Mandatory access control

(MAC) sets up a central policy where rules that lead to allowing or disallowing opera-

tions of users to objects are defined. The policies are usually written and enforced by

the system administrators or security specialists, and the end users will not have the

authority to modify them. When an access attempt is made to an object, a reference

is made to the central policies for a decision. Discretionary access control (DAC),

on the other hand, allows an end user to set the permissions subjects may have to

the objects (s)he owns. It gives the object owners the flexibility and convenience to

set up permissions and has been widely implemented in most mainstream operating

systems. A common example is the UNIX permissions, where the determination of

access to objects is based on the object ownership of the subject and the group it

belongs to. Most commonly, MAC and DAC are used together in modern operating

systems. MAC regulates access to objects in a macro way, and DAC allows the object

owners the flexibility of sharing or passing to other users the permissions to their own

objects.

5

1.1.2 Domain Type Enforcement

Domain Type Enforcement (DTE) is a kernel-level access control model that is con-

figurable through a specification written in the Domain Type Enforcement Language

(DTEL). It separates resources on systems into active entities and passive entities.

Active entities, such as processes, are tagged into different domains; passive entities,

such as files, directories and memory segments, are grouped into different types. The

access of a user or a process a user is running to the objects is determined by the

permission the user’s domain has to the type of the object.

Operating systems allow one process to affect or generate another process: a process

can pass signals to another process to conduct some task; a process can also create

another process. The resulting processes in these two scenarios sometimes can be

in a different domain than the domain the initial process belongs to. To represent

these scenarios, DTE also allows transitions between domains through auto() and

exec(). The auto transition is a mandatory transition that will be conducted if an

entry point program into a domain to which the current domain has auto access is

executed through system call execve. The exec transition is a user-requested transition

on system call sys dte execve. This transition allows the process to stay in the same

domain or transition to a different domain upon request.

6

1.1.3 Multilevel Security

Multilevel Security (MLS) was initially developed for the need to regulate access of

users with different security clearances to information in security classifications. The

Bell-LaPadula (BLP) model [9], as an implementation of MLS, was developed to

meet the security requirements of the US military on their time-sharing mainframe

systems. In the BLP model, subjects and objects are labeled with security levels,

which consist of a clearance and a set of categories. The clearance indicates a subject’s

security clearance or an object’s level of secrecy (e.g., “Unclassified”, “Confidential”,

“Secret”, “Top Secret”) and has an inherently hierarchical relation (e.g., “Secret” has

a higher secrecy level than “Confidential”). The category shows the content to which

a subject has access or an object is related. Each subject or object is assigned to a

set of categories. For example, a subject can be part of the Technical group and is

also in the Management group. So the category set of the subject is (“Technical”,

“Management”). In the case of a technical report which belongs to the Technical

group, the category set of the report is (“Technical”). The access to objects then is

determined by a comparison between the security levels of a subject and an object.

We use (L,C) to represent security levels, where L is the clearance, and C is a subset

of a comprehensive set of categories in a system. (L,C)’s are compared using the

dominates relation ≥. (L1, C1) ≥ (L2, C2) if and only if L1 has a higher or same level

of secrecy than L2, and C2 is a subset of C1. The basic principles of BLP define that

7

an object is readable by subjects that dominate the object (no read up), and writable

by subjects it dominates (no write down). In this way, it is guaranteed that sensitive

information on a system can only be read by people with enough security level, while

people with lower security level can contribute new information to the objects with

equal or higher security levels.

1.1.4 Role-based Access Control

Role-based access control (RBAC) is an access control model that was developed to

associate accesses to resources based on a user’s role within an organization. The

first RBAC model was proposed by Ferraiolo and Kuhn [30], and an RBAC frame-

work [57] was later developed and accepted as a U.S. national standard [31]. The

RBAC model has been widely used for providing enterprise security and developing

identity management products. The NIST RBAC model has four levels: the Core

RBAC, the Hierarchical RBAC, the Statically Constrained RBAC, and the Dynam-

ically Constrained RBAC. As described in detail below, these models are arranged

in a sequence with increasing capabilities. That is, the model at each level has the

functionality from the prior level as well as the additional capabilities from their level.

8

1.1.4.1 Core RBAC

The Core RBAC defines the essential elements of RBAC. The basic concept of RBAC

is that roles are defined based on job positions within an organization, and users’

access to objects is operated through roles. That is, users’ membership to roles

defines their access to objects. The user-role assignment and role-object permission

assignment is many-to-many, which allows great flexibility and granularity of user to

role and permission to role assignment. During a session, a user can activate a subset

of assigned roles; a user can also switch activated roles among sessions.

1.1.4.2 Hierarchical RBAC

On top of the Core RBAC, the Hierarchical RBAC is constructed with additional

hierarchical relations among roles, which represents job function structures within or-

ganizations. The hierarchy shows the seniority among roles mathematically through

a partial order where senior roles inherit junior roles. Within this relation, “senior

roles acquire the permissions of their juniors, and junior roles acquire the user mem-

bership of their seniors” [31]. General role hierarchy allows an arbitrary partial order

for the representation of role hierarchy (multiple inheritances), while a restricted role

hierarchy only allows a tree structure (single immediate descendant).

9

1.1.4.3 Statically Constrained RBAC

To this point, roles within an RBAC framework can form hierarchical relations, and

users can be assigned to roles freely. In practice, roles, which can supervise one

another or play important parts in a common task, are related in a more complex

manner. In the case of distributing medicine to a patient, a prescription is needed

from a doctor and taken to a pharmacist. Here, a doctor can provide a prescription,

but does not have the right to dispense the medication to the patient by laws and

regulations. Therefore, one is only allowed to either be the doctor or the pharmacist.

Otherwise, it is possible to let the patient unknowingly abuse drugs. Scenarios like

this introduce the principle of Separation of Duties, where more than one person is

required to complete a task. The principle acts as an internal control to prevent fraud

and error throughout the process. The Statically Constrained RBAC, on top of the

Hierarchical RBAC, supports the principle of Separation of Duties by restricting user

assignment to certain roles under all circumstances.

1.1.4.4 Dynamically Constrained RBAC

Dynamically Constrained RBAC also is an implementation of the principle of Sepa-

ration of Duties. Instead of disallowing users being assigned to some set of roles at

all times, it restricts the roles a user can be at a certain period of time. For example,

10

a user can be a bank teller and also have an account at a bank. However, this user

can only play one role at a time to prevent illegal money operations. Furthermore,

there could be a restriction of the maximum number of users assigned to a role. Say,

for the position of project manager, it is reasonable to allow only one person assigned

to this position at a time. This provides the flexibility of changing the manager when

one is absent and also guarantees that there is only one person in charge of decision

making.

1.1.5 UNIX Permissions

UNIX permissions is the fundamental access control system that comes in the package

with UNIX-based operating systems, and has been the most widely used access control

model. In UNIX-based systems, each file and directory is associated with its owner,

owner’s group, and a 9-bit permission set which is decided by the process that creates

it. The permission set shows the permission of the owner, members of the owner’s

group, and everyone else in three of 3-bit parts. Hence, the 3-bit parts are named

the user bits, the group bits, and the other bits, respectively. Within each part, the

three bits represent read, write and execute permissions. Through setting the bits,

rights can be assigned to read a file, write a file, and execute a file (i.e., run the

file as a program). Therefore, the UNIX permissions leverage the owner and owner

group of an object, and the permission set to collectively determine the access to

11

the object. It gives the owners the flexibility of restricting and sharing the access to

files of their own. That is, it can also work with mandatory access control models to

provide fine-grained control for file owners under system-wide security specifications.

The following parts explain the mechanism of UNIX permissions that includes the

notations of permission bits, the process of determining access to an object without

and with directory traversal.

1.1.5.1 Letter and Octal Notations

The 9-bit permission set can be expressed in two types of notations: letter notation

and octal notation. The letter notation uses “r”, “w”, and “x” in order to represent

read, write and execute permissions in the user, group, and other bits. A letter in

place means the relative permission is granted, otherwise, a dash is in place meaning

that permission is disallowed. Therefore, “rwxrwxrwx” means the owner, group and

others all have read, write and execute permission to the object; “rwxr-xr–”, on the

other hand, means that the owner has all permissions, the members of owner’s group

can read and execute the object, and all other users can only read the object.

If we write all 3-bit parts with 1 representing the letter (allowed permission) and

0 representing the dash (disallowed permission), then the permission set is in its

octal notation. In the example of “rwxrwxrwx”, we have “111 111 111”. So the

octal notation is “777”. Similarly, for “rwxr-xr–”, the octal notation is “754”. The

12

permission set of an object can be viewed and modified through the UNIX command

ls -l and the chmod, respectively.

1.1.5.2 Access to Objects

The access to an object is decided with a combined consideration of its owner, owner’s

group and permission set. For files and directories, read, write and execute permis-

sions have different meanings:

For a file,

- Read: Read the content of a file.

- Write: Write the content to a file.

- Execute: Execute the file as a program.

For a directory,

- Read: Allow the listing of the files and directories under the directory.

- Write: Create or delete the files and directories under the directory.

- Execute: Go through the directory. This permission is crucial if a user needs

to have access to the files and directories under the directory.

13

When determining one’s access to an object, the owner and the owner’s group of the

object are compared to the user who makes the access request. If the user is the

owner, then the user has the permissions indicated in the user bits. Otherwise, the

user is checked upon its membership of the owner’s group. If it belongs to the group,

then the group bits are used for access evaluation. If not, the user has the permissions

specified in the other bits. When the directories containing the object of interest are

considered, extra evaluation of the execute permissions of all directories should be

included as well to check if the user is able to reach the object.

1.2 Challenges

In the past few years, with the increasing recognition of protecting digital resources,

more and more sophisticated access control components have become available in

operating systems. Many Linux distributions also contain packages of access control

components such as AppArmor and SELinux. Fedora and the RHEL distributions

come with the security components initially enabled. However, while data breach

incidents keep pushing the need for systems and information with stronger security

protection, access control only managed to provide limited help in improving the

integrity, confidentiality, and availability of digital resources.

One reason for this is that security is usually considered secondary by end users

14

compared to completing their primary jobs on time [81]. It is common that limited

time is spent on incorporating proper access control, and it is usually conducted if

access control is a required work. But even when access control is being used, there are

problems. End users, unlike security professionals, are nontechnical individuals who

use access control tools to fulfill macro security requirements and lack the knowledge

and experience of access control models. Reeder et al. [45, 52] found that the end-users

can not correctly interpret the changes in access control lists through the traditional

ACL user interface. It is also interesting that even experts do not use ACLs due to

the same reason [11]. Moreover, RBAC, the most widely used access control model,

suffers from the same usability problem. It takes substantial time and effort of end

users to learn and use RBAC. Therefore, another obstacle to accurate access control

policies is human error [2, 32, 45], which is brought by the lack of knowledge of the

access control model in use.

Many access control languages and tools were developed to make policy authoring

easier. However, the usability of access control did not show significant improvement.

In the case of RBAC, most tools are designed for system administrators and security

professionals [18]. Some of them have a simple user interface but require prior knowl-

edge of the model for users to understand the terms in the user interface. XACML, as

a dialect of XML, is used to specify attribute-based policies. Its use not only requires

the understanding of the access control model itself, but also the knowledge of the

language syntax if the fact that writing an XACML could be rather tedious with

15

numerous nested tags is ignored.

With more and more nontechnical individuals and groups are getting involved in

setting up access control within organizations, current tools did not help much in

making access control easy to learn and use for the protection of their resources.

From the previous work, we see that 1) users spend little time learning the models

and the models are difficult to learn even for expert users; 2) when they have to learn

or use access control, the existing tools are not designed for their use as too much

prior experience is needed; 3) some tools suffer from usability problems even when

used by security professionals. In summary, the current status shows a lack of a set of

tools with decent usability and systematic design to kick start the learning of access

control models and ease the authoring and management of access control policies.

1.3 Methodology

To resolve the above issues, we developed a system to facilitate both the learning and

policy management of access control models. The system consists of three parts: 1)

a set of pedagogical tools for the commonly-used access control models, 2) a policy

authoring component where policies can be designed using user-object-action lan-

guage and graphical interfaces, and 3) a policy analysis component where policies are

presented through visualization, and misconfiguration can be detected and resolved.

16

The current tools in the field have shown a lack of focus on aiding the learning of

the models and a shortfall in covering multiple models. We design our pedagogical

system to have a set of tools, each of which is developed specifically for one well-known

model, in a unified design structure. As policy language aids correct specification

over individual permission setting [37], our system will have a language for each of

the access control models. These policy languages will have similar syntax across

models and be in the form of a combination of natural language and programming

language that inherits the simplicity of the former and the precision of the latter.

Policies written in those languages are then taken as the input of our tools. In

the presentation of the policy properties, we opt to show the components and their

relationship of a model in a graphical manner. As thousands of lines of rules in one

policy could introduce large numbers of entities and complex relationship, users can

be easily overwhelmed if exposed to the information all at once. Hence, a method

that shows users the only necessary information at each step and provides response

and guidance to the users’ action is needed. To this end, incorporating visualization is

an appealing approach for this goal as it allows temporal and structural presentation

of entities and provides a dynamic response to users’ actions that could enhance the

understanding of the material [54]. Lastly, we believe that it is important to include a

way to exercise and examine their understanding as the role of class tests since there is

a significant amount of new learners who do not have access to those courses and help

from others. Therefore, they would miss the opportunity to test their understanding

17

from which some unrecognized misperception could be found out.

Our policy authoring and analysis tool focuses on easing the process of composure and

management of policies for new learners and security professionals. This component

would take a policy file and report property analysis to the users. We use RBAC as

the implementation model, but simplify the method of specifying access control rules.

For new learners, we have a graphical interface that allows users to enter values of

policy components through the user-object-action template. In this way, new learners

are exempt from the work of learning RBAC model language and would have an easier

start with a template that is akin to the common access control requirements. For

experienced users, we support the import of a policy file written in our user-object-

action language, which is designed to be a possibly more efficient way of writing

policies of large scales once the language becomes familiar to them. Due to the fact

that policies are usually designed and implemented by more than one person, rules

that affect the access to an object can be difficult to locate and interpret altogether.

Even if the rules are tested afterward, which is a rare practice, understanding the

effective permission and whether problems exist among rules are still obscure to users.

We design the tool to directly depict the effective permissions for users, and automate

the process of detecting and reporting issues within the policy. Through visualization,

users could have step-by-step guidance of what has been affected by their operations,

and further get to know possible problems and make informed decisions. We plan

to provide two levels of detail for the illustration of a policy for different users. For

18

users who are only interested in getting a security module set up, the effect of the

policy is shown while how the effect is achieved is hidden. The check of access can be

accomplished in both textual property checker and graphical representations where no

underlying model information is displayed. For users who are interested in knowing

more, such as the details of which rules are in effect, how RBAC components affect the

access results and whether and why any issue exists in the policy, our tool will provide

interactive visualization to notify the problems to users. In this way, new learners

will be able to observe the analysis of the policy rules in detail while experienced

professionals, whose primary goal is to finish the task with the least amount of time,

could opt to directly test the policy and resolve problems to obtain immediate results.

1.4 Organization

This dissertation is structured as follows. Chapter 2 introduces the works that have

been accomplished in the fields of access control authoring and analysis, and discusses

our approaches to tackle the existing problems. Chapter 3 presents a set of pedagog-

ical systems we designed for new learners to study individual access control models.

Chapter 4 introduces ACvisual, another visualization system for policy authoring and

analysis provided for both new learners and security professionals. Chapter 5 includes

two pieces of software that facilitate the teaching of Fluid Dynamics, FlowVisual for

two- and three-dimensional flow fields. Lastly, chapter 6 presents the conclusion of

19

our work and findings, and future directions for improvement.

20

Chapter 2

Related Work

In this chapter, we first investigate the use of access control in large corporations

and organizations, followed by a discussion of the languages for access control policy

design. Then we review the tools that were developed to help facilitate the teaching

and learning of access control and security models, and the authoring and analysis of

access control policy both in the academic and industrial environment.

After the occurrence of system incursion and data compromise, companies and organi-

zations nowadays have an increased recognition of the importance of controlling access

to the intellectual property on the computer systems to protect their privacy, safety,

finance, business, and so on. Access control is developed for this purpose, and many

advanced models, such as DTE, MLS, and RBAC, were implemented and packaged

21

with operating systems. A good amount of languages and tools have been developed

to make access control models easier to learn and use. However, UNIX permissions is

still many administrators’ favorite choices, even when it comes to protecting system

data.

2.1 Access Control Languages

EXtensible Access Control Markup Language (XACML), is a specialization of XML

for composing security policies. It is taken as the standard access control policy lan-

guage in many tools and operating systems. For large organizations where policies

may be enforced in a distributed manner, XACML-based policies have the advantage

of high re-usability in implementing effective and consistent access control mecha-

nism. Similar to XML, the drawback of XACML is that it is a strict language where

numerous tags should be used to specify attributes. The concepts of the rule, pol-

icy, and policy set are supported. Each of them can be an intensively nested tagged

property, and the latter is a collection of the former concept, which makes writing an

XACML policy tedious and error-prone.

Another widely-acknowledged language is provided by Security Enhanced Linux

(SELinux). SELinux is a Linux kernel security model that provides a means of fine-

grained and cross-model mandatory access control. It sets up access control using

22

configuration files that describe a security policy. SELinux is highly configurable and

can handle a large number of applications as well as system resources with rather fine

resolutions. But high configuration also brings high complexity as more resources

and conditions are considered. SELinux could also be rather challenging to start

with given a rich collection of tools and commands it provides. This is because its

ability to set up rules of multiple access control models requires prior knowledge of

those models. Additionally, the fact that SELinux uses a prototype of mixed mod-

els for policy writing could cause more confusion than using separate languages for

individual models, which may be further less error prone.

2.1.1 Our Approach

Unlike XACML and SELinux being programming type of languages, the languages in

our tools are designed with a common goal of being as close to the original structure

of the model to express as possible. In the set of pedagogical systems for individual

access control models, a language specifies the key components of a model. Take UNIX

permissions for instance, a policy is consisted of specifying 1) a root directory; 2) a list

of users; 3) a list of users assigned to each group; 4) the permission bits and user and

group owners of each object in the form similar to the output of command “ls -l”. Even

though each model has a distinctive language, the languages fill in the key components

in a linear manner, which could also help familiarize user to the structures of the access

23

control model during the policy writing. In the policy authoring and analysis tool,

users are provided with a user-object-action template, where each rule specifies users

who can access the file or directory objects through what is allowed in the action.

This type of specification resembles the form of the common security requirements

in an organization, and allows the explicit assignment of each component. Both the

model-specific and the user-object-action languages exempt users from unnecessary

complexity of learning a programming or script language, thus could possibly let

new learners and security professionals alike focus on the core task of setting the

correct policies. To make writing policies even easier, the tools also provide graphical

interface to build specifications from scratch.

2.2 Tools for Security Education Using Visualiza-

tion

Visualization has been applied to the teaching and demonstration of access control

models. Schweitzer et al. developed a visualization system to enable active learn-

ing about the HRU (Harrison, Ruzzo, Ullman) and Take-Grant models of access

control [61]. The system teaches the concepts at an abstract level combined with

instructor demonstration and student interaction. It saved students from getting into

the unnecessary details of the underlying system. Compared with no assistance of

24

the tool a year ago, the average score of homework questions increased from 33% to

93%, which strongly indicates that the tool was beneficial in reinforcing the learning

of the concept. One drawback of the tool is that it is only limited to be effective in

the in-class study.

Visualization has also been applied to Computer Security pedagogy. Crandall et

al. [22] presented a Java applet that demonstrates in programming courses that how

and why buffer overflow occurs in C programs. The tool explains why some defense

mechanisms should be applied in different scenarios. The US Air Force Academy has

developed a set of interactive classroom visualization tools to increase the background

knowledge and experience of information security of the Computer Science majors as

well as all cadets [61]. One of these tools [26] was developed by students studying

Software Engineering course to demonstrate Public Key Infrastructure. The develop-

ment experience deepened the developers’ understanding of the topic. The tool itself

helped the non-computer science students learn better. Another tool [59] visually

demonstrates the sequence of passed information and computations of arbitrary pro-

tocols step by step. The effects of attacks, such as eavesdropping, forged messages,

communication blocks, and message replays, could be manipulated through interac-

tive protocols. This tool could be used in a laboratory exercise, and also is applicable

in classroom environment. A set of tools was also designed to help the teaching of

Cryptography in Information Assurance curriculum [58]. The tools aim to address

the lack of understanding of the basic concepts and both historical and current cipher

25

algorithms. They can be used in the classroom and as out-of-class exercises. Students’

reaction to the tool demonstrations were quite positive. During the class, students

were more engaged and showed better understanding over questions and concepts

that had challenged them when only taught through traditional lectures. However,

these tools are not intended for new learners without any instructional materials.

2.2.1 Our Approaches

Many tools were developed for topics of Secured Coding, Cryptography, and Cyber-

attacks. But there are not many for access control models when it is a subject that

students found challenging based on our teaching experience. This is due to the

fact that traditional lectures can teach the ideas, and the homework questions could

not reach a scenario of a realistic scale. Since the ideas are abstract in nature and

designing and setting appropriate policies is an art based on practice, there is a need

to fill the gap between learning through reading and effective learning by practice.

We design our tools so that students are given an interactive visual presentation of

concepts and their relationship, freedom to create and explore concrete policies at

different scales on their own, simple to comprehensive depictions of access evaluation,

and self-tests for assessment. The tools are designed as assistance to in-class teaching,

as well as a portable program for self-learning.

26

2.3 Tools for Security Policy Management

RBAC/Web is an RBAC administering tool developed for networked servers using

WWW protocols [7]. Through RBAC/Web, users can be assigned to roles and build

the role hierarchy through a graphical interface. It supports UNIX as well as Windows

NT environments. The advantage of RBAC/Web is that it can be run directly on

servers without any server internal changes or source code access. RGP-Admin [6],

developed by the same team, is another tool for specifying RBAC policies. It in-

troduced an independent concept of “Object Access Type” from objects for access

control specification. The tool provides a graphical interface for users to create/-

modify the role/permission association through“Object Access Type”, view existing

“Object Access Type”, and view a role’s permission to objects. While “Object Access

Type” does classify objects into different categories, the new concept also increases

the complexity of managing RBAC. First of all, how many and what “Object Access

Type” should be could be difficult to determine. This concept is similar to the concept

of role. The only difference is that one is for organizing users while the other is for

objects. Secondly, as selecting good roles is still a research topic today [41], adding

this role-like concept could double the amount of intricacy in the RBAC model. These

two tools were built on top of the RBAC model structure with a more user-friendly

interface. However, neither of them provides a way of teaching user the model or any

interactive feedback during policy writing. As the improvement is solely based on

27

better interface design, it fails to guarantee the learning of the model and the quality

of the resulting policy.

Access Control Policy Tool (ACPT) [38] was developed by the Computer Security

Division of NIST and North Carolina State University. It provides four aspects of

functionality: 1) providing a graphical interface template for policy writing; 2) provid-

ing access control property conformance check; 3) providing a complete test suite; 4)

providing automatic generation of XACML output files for verified policies. Through

these functionalities, ACPT reduces the challenge and increases the correctness of

writing an access control policy. It also exempts users from the tedious conversion

from designed access control rules to the usable XACML policies. ACPT supports

the RBAC and MLS model as well as the user-object-action rules, which is specified

in the form of whether a subject can perform certain actions to some objects. Though

new learners can opt to use the user-object-action rules as a generic way of policy

writing, RBAC, MLS or any other access control models is left unknown to them.

With the convenience ACPT brings, it still requires knowledge of an access control

model if policies must be composed under the model’s framework.

Some tools incorporated visualization for the illustration of the mechanism of access

control models. DTEedit/DTEview [34] are tools that were developed to help the

understanding and administration of the DTE model. The file type analyzer in DTE-

view allows a user to traverse from a specified directory and show the types of the

28

objects along the path interactively. The process analyzer simulates the initiation of

a system. Possible domains to enter in the next step are shown and could be further

selected upon the user’s request. Then the detail of the types that the selected do-

main has access to will be displayed. DTEview can also analyze a policy and give out

warnings when a potential security compromise is detected. The tool can help a user

walk through and analyze a DTE policy in detail, but does not serve a pedagogical

purpose. Expandable Grids [52] is a tool that shows effective access control using

an interactive matrix given a policy. Permissions can be directly edited through the

graphical interface, and effects to other grids will be reflected immediately. Their user

study shows, with a control group using the Windows XP file permission interface,

that the Expandable Grid interface allows the users to write policies with higher ef-

ficiency and correctness. The positive results were obtained through testing a range

of fundamental policy authoring operations and held for policies of both small and

large scales.

More policy management tools such as Adage [87] and IAM [20] were designed for

manipulating RBAC model, access control on the web and effective access control

policy for WebDAV. Both of the tools have been tested in a user study. Adage showed

that novice users were able to effectively manipulate many access control properties

such as use of groups, attributes, constraints, and rules without any guidance. The

user study of IAM showed that it achieved more accurate manipulation and better

usability than many traditional tools.

29

Commercial tools were also developed to facilitate access control on systems. Per-

missions Analyzer [64] analyzes a user’s effective NTFS permissions for a specific file

or folder. It takes the network share access into account, then displays the results in

a nifty desktop dashboard. Eiciel [48], as a built-in component of the GNOME file

manager, lists users and groups of an opened file and helps to manage the ACLs for

those users/groups on that file.

2.3.1 Our Approaches

These past works improved interface design and policy visualization to make access

control usable, but were all designed for technical administrators. For novice users

who need to apply security to their work but lack the security background, the ex-

isting tools advance forward to the policy management part and have ignored the

importance of explaining the models. So the tools are hard to pick up and thus of

less help. We believe that it is important to design a tool that can make learning

the access control models easier, so that the understanding could further help the

production of quality policies. In order to make access control usable for users with

different levels of experience, we integrate policy writing with an easy-to-understood

template and policy analysis with both textual and graphical representations. Fur-

ther, we provide the cyclic role inheritance and violation with separation of duties

detection, and access property checker for the enforcement of policy correctness.

30

Chapter 3

Model-Specific Pedagogical

Systems

This chapter introduces the first part of our work, a set of pedagogical systems de-

signed to facilitate the teaching and learning of access control models. Individual

systems, namely DTEvisual, MLSvisual, RBACvisual, and UNIXvisual, were developed

for the most commonly used models of DTE, MLS, RBAC, and UNIX permissions.

The visualization systems take a policy as input and provide a highly interactive

illustration of the entities and the relations within an access control model. Model-

specific languages with simple syntax and intuitive semantics are also designed for

policy authoring. This makes it easier for users to experiment with policy writing

and to focus on how each model works instead of taking extra efforts to get familiar

31

with the configuration of a specific model. The following sections introduce each of

the tools in the aspects of their model-specific languages, the design of the major

components, and the user evaluation results. We will describe UNIXvisual in details

as UNIX permissions is most widely used access control model. At last, a framework

is introduced for designing pedagogical tools in the field of access control.

3.1 DTEvisual

DTE access control model allows processes with similar access requirements to be col-

lected into domains, and objects to be assigned to different types. The access rights

of each domain has to be associated to objects of a given type, and thus facilitates

tight control over policy granularity. DTEvisual [44] is the first of the series of tools

under the “Accessible Access Control” NSF project developed by my group mem-

ber YiFei Li, and maintained by myself. The tool designed to ease the learning and

teaching of the DTE model. It supports two types of textual input/output files: DTE

specification (*.dte) and visualization description (*.dtevis). The DTE specification

could be directly composed in the DTEL syntax; the visualization description can be

composed using DTEvisual through graphical editions. It records the DTE specifica-

tion in graphical entities as well as the layout of the visualization. This provides an

advantage of storing a reusable depiction that users could refer to later to build jobs

step by step.

32

3.1.1 Language

DTEvisual simply incorporates the existing DTEL as its policy language, given that it

is an intuitive and standard language for DTE policies. DTEL uses implementation-

level structure to specify the properties and constraints for security settings. A DTE

policy usually contains four sections. The syntax for rules in each section is as follows:

1) Type Definition

Declares all object type names in a system, which may be used in other parts

of a DTE policy. The statement starts with a keyword Type followed by an

unordered list of object types. The names of types follow the convention of

having a suffix of “ t” as an indication that it is an object type.

Syntax format: Type typeId1_t, typeId2_t, typeId3_t,...;

2) Domain Definition

A domain is defined as a list of tuples. The statement starts with keyword

domain and is followed by the domain name and its execution environment. The

execution environment is comprised of three parts. The first part is a list of

entry point programs. These entry point programs are identified by pathnames,

one of which a process must execute in order to enter the domain. For instance,

the entry point program of domain login d could be /usr/bin/login. The

33

first line of the domain definition then is:

domain login_d = (/usr/bin/login),

The second part is the access rights to some object types. Say if login d can

read the objects and go through the directories of readable t. The domain

definition so far is:

domain login_d = (/usr/bin/login),

(dr->readable_t);

The third part is to specify transitions between domains. There are two types

of transitions. The auto transition is a mandatory transition that will be con-

ducted if an entry point program into a domain to which the current domain

has auto access is executed through system call execve. The exec transition is

a user-requested transition on system call sys dte execve. This transition can

allow the process stay in the same domain or transition to a different domain

upon request. If login d can switch to domain user d through exec transition,

then the entire definition of login d is:

domain login_d = (/usr/bin/login),

(dr->readable_t),

(exec->user_d);

Additional access to other object types could be added before the line of domain

transition in the same syntax of the second line.

34

3) Initial Domain

Initial domain specifies the domain the system starts with.

Syntax format: initial_domain = login_d;

4) Type Assignment

The type assignment associates a type with one or more objects under the

restriction that each object can only be assigned to one type.

Syntax format: assign [OPTION] typeId_t object1, object2,...;

The OPTION could be a combination of the following flags:

(a) -s indicates that the type assignment is static. It means that the type

associated with the pathname cannot be changed at runtime, even if the

object is renamed.

(b) -r indicates that the type assignment is recursive. That equivalently means

that the type is assigned to both the objects listed in the statement and

all objects in those directories.

A type assignment can be overridden if there are multiple type statements

referring to an object. The effective type of the object is determined by the

type assignment with the object of the longest path prefix. For instance, there

are type assignments:

35

assign -r unprotected_t /;

assign -r -s dte_t /dte;

Then the type of /dte/config.txt is dte t instead of unprotected t as /dte

is a closer ancestor.

A complete example policy is as below:

type unprotected_t, passwd_t, dte_t;

domain unprotected_d = (/sbin/init),

(cdrwx->unprotected_t),

(exec->passwd_d);

domain passwd_d = (/usr/bin/passwd),

(crw->passwd_t);

initial_domain = unprotected_d;

assign -r unprotected_t /;

assign -r -s dte_t /dte;

assign passwd_t /etc/passwd, /etc/shadow;

Figure 3.1: DTE policy in DTEL

3.1.2 Visualization System

DTEvisual supports two types of textual input/output files: DTE specification in

DTEL (*.dte) and visualization description (*.dtevis). The DTE specification could

be directly composed in the above syntax or composed using DTEvisual through graph-

ical editions. The visualization description records the DTE specification in graphical

entities as well as the layout of the visualization. This provides an advantage of storing

a reusable depiction that users could refer to later to build jobs step by step.

36

(a) General Graph (b) Type Graph

Figure 3.2: Visualization in DTEvisual

DTEvisual consists of two major graphs: the General Graph and the Type Graph. The

General Graph depicts the domain definition, the domain-to-type permissions, and

the domain-to-domain transitions. In Figure 3.2 (a), domains are represented by

ellipses, and types are represented by rectangles. Permission a domain has to types

are depicted in undirected edges between an ellipse and rectangles. The text labels

on the edges specify the permissions, where c, d, r, w, and x denote create, pass

through (a directory), read, write and execute, respectively. The d permission applies

to directories and is similar to the x permission to directories on UNIX. The r, w,

and x permissions are similar to r, w, and x on UNIX. The c permission indicates the

default type for objects created by processes in the domain. Solid and dashed arrows

represent auto and exec transitions between domains, respectively. The Type Graph

37

depicts the type assignments to objects and provides an overview of the distribution of

all types in a system. In Figure 3.2 (b), objects are represented as circular nodes and

structured in a radial tree [12] where the center is the root directory, and directories

and files at the same level are placed on one circle. Each type has a unique color and

is listed on the left side of the visualization area. The object nodes associate with

their types by sharing their colors.

DTEvisual allows users to highlight part of a graph for focused analysis. There are

global and local highlighting available. From the global highlighting, one could make

visible gradually 1) all domain nodes and their edges, 2) domain transition edges,

and 3) domain-to-type edges. The local highlighting, on the other hand, is user-click

triggered. A user can start the highlighting by clicking any node or edge and only the

clicked item and the nodes and edges connected will be shown with the rest of the

graph grayed out. A second click on the same item will show the opposite. The third

click will bring the visualization back to the normal display. DTEvisual also supports

graphical policy editing through the context menu of adding, moving, modifying and

deleting items. Editions are checked with syntax references and reflected on the

visualization immediately.

To facilitate self-learning of the model, a query subsystem is designed to provide

solutions to 10 commonly asked questions. The questions are listed in a side widget.

When running a query, the answer text is displayed in that widget and an animated

38

visualization provides a detailed explanation of the steps leading to the solution.

Users may enable and disable the animation and its speed. The animation process

could be paused or resumed at any time. Figure 3.3 has the example animation from

two queries.

(a) Query 1 (b) Query 2

Figure 3.3: Query Subsystem

3.2 MLSvisual

MLSvisual1 is the second tool we developed in the same series for the Bell-Lapadula

model. It follows a similar framework of using the same types of input and output files,

representing textual policies through visualization, and providing solutions through

an embedded query system. In addition, MLSvisual implements a Quiz module where

users can conduct a test to evaluate their understanding of the model.

1The material contained in this section was previously published in proceedings of the 2014 ACM
Conference on Innovation and Technology in Computer Science Education [73]

39

3.2.1 Language

Unlike DTE, MLS does not have a standard high-level language to specify policies.

We designed a language of this kind in a similar syntax with that of the DTEL to

minimize the learning overhead. The syntax is as below:

1) Clearance Statement

Define one or more clearance levels, which are then available to other parts of

an MLS specification. Clearance Statement starts with keyword clearances

followed by a list of all security levels from low to high sensitivity.

Syntax format: clearances: clearance1<clearance2<...

2) Category Statement

Define one or more categories, which are then available to other parts of an

MLS specification. The Category Statement starts with keyword categories

followed by an unordered set of categories separated by commas.

Syntax format: categories: category1, category2...

3) Object Security Assignment

Assigns security levels to objects in file systems. The statement consists of the

keyword assign, a security level, optional recursive flag, and a list of objects.

40

Syntax format:

assign clearance:category1:category2:... [-r] object1, object2,...

The recursive flag has the same meaning as that in the DTEL, and an object’s

security level is determined by the assignment with its more recent ancestor.

4) User Security Assignment

This type of statement assigns security levels to users. A statement contains

the keyword users, a security level, and a list of users.

Syntax format:

users clearance:category1:category2:... user1, user2,...

Figure 3.4 has a complete example of MLS policy.

clearances: secret < topsecret < seven

categories: michigan, texas

assign secret:michigan -r /usr, /top

assign seven:michigan /usr/somefile

users secret:michigan:texas fred, ethel

users seven:texas ricky, lucy

Figure 3.4: MLS policy

41

3.2.2 Visualization System

MLSvisual supports the import and export of textual specification files (*.mls) and

visualization files (*.mlsvis). A specification file is a human-readable, text-based

specification written in the above language. A visualization file stores the graphical

entities and their layout so that the visualization can be restored for later use. These

two types of file can be converted to each other through the visualization system.

Figure 3.5: Main Window (© 2014 ACM. Reprinted by permission.)

Figure 3.5 shows the interface of MLSvisual. The main area is divided into a toolbar,

a clearance section, a category section, and a visualization section. The clearances

are arranged in the least to the most sensitive order from top to bottom with different

colors. The unordered categories are associated with numbers. With the colors rep-

resenting the clearances and the numbers representing the categories, a security level,

42

which is comprised of a clearance and a category set, can be denoted as a colored

node labeled with a set of numbers. The lattice in the visualization area is built from

the dominates relation between security levels.

MLSvisual contains the Whole Graph, the General Graph, and the Object Graph. The

Whole Graph draws a lattice of the dominates relation among all security levels. The

General Graph shows the relations between security levels of the user’s interest. It can

be used to demonstrate the change of dominates relation between security levels as

they are put into use one by one. The Whole Graph and the General Graph together

provide overall and partial views of the relationship among security levels to facil-

itate a full understanding of a policy. The Object Graph depicts the security level

assignment to objects (Figure 3.6 (c)). This graph has a number of concentric circles

with the center being the root directory. The circles with increasing radii represent

directories of increasing directory depth. The nodes in the graph are objects and the

edges represent the membership of the directory. Each node is a rectangle with two

colors. The left color indicates its clearance and the right one shows the category

based on the color-category correspondence in the legend.

43

(a) (b) (c)

Figure 3.6: General Graph and Object Graph. (a) and (b) show two
different General Graphs. (c) shows the Object Graph. (© 2014 ACM.
Reprinted by permission.)

In the General Graph, there are two ways to explore the relation between security

levels. One is to add one security level node at a time. The other one is to specify

the starting and ending nodes and generate the full directed graph of all in-between

security levels at once. The first method draws an edge directly between nodes when

they are related under the dominates relation. The lattice is updated when more

nodes are added into the visualization. This shows how dominates relation works in

progress. The second method shows a full graph including the intermediate levels.

This is useful when investigating the reachability of two given nodes, the possible

paths and the involved security levels. It also avoids the overwhelming and repetitive

operations of adding nodes one by one. Figure 3.6 (a) shows two nodes and their

relationship. Figure 3.6 (b) shows the resulting lattice after applying the second

44

method. The security level node with an icon of human outline indicates there are

users assigned to the security level. When mousing over the node (e.g., the red node

with label (2) in Figure 3.6 (b)), the users’ names are displayed, and its permissions to

other security levels are shown in highlighted paths. These subjects can write to the

nodes along the blue paths and can read the nodes along the orange ones. Combined

with the Object Graph, the permissions those users have to certain objects can be

identified. As a fine-grained policy may introduce large numbers of clearances and

(a) (b)

Figure 3.7: Whole Graph. (a) shows the graph without Grouping. (b)
shows the graph with Grouping. (© 2014 ACM. Reprinted by permission.)

categories, the lattice of security levels in the Whole Graph can be rather cluttered.

We apply node grouping to the nodes of the same clearance at the same depth of the

complete lattice and label the group node with the number of the nodes contained.

This group node can be expended and replaced by a contained node. Figure 3.7 (a)

and (b) show a Whole Graph without and with grouping.

45

MLSvisual also supports an edit mode, where clearances and categories as well as

the security level assignments to subjects and objects can be edited. This mode

allows users to modify a policy through visualization and aims to help them design

policies to fulfill specific security requirements. In addition, Specification and Exercise

(a) (b)

Figure 3.8: Specification and Query. (a) shows the Specification Diagnosis
Window. (b) shows the Query Window. (© 2014 ACM. Reprinted by
permission.)

modules are designed to assist the authoring of MLS policies and self-evaluation

of the understanding of the MLS model. The Specification module has Specification

Window and Specification Diagnosis components. The Specification Window component

generates a specification of the policy under consideration and is useful when a policy

is being created graphically or the imported one is modified. The specification can

be used as a guidance for writing correct specifications. The Specification Diagnosis

component is used to check the syntax of a specification file loaded in this module. If

46

it is correct, confirmation of correctness will show up as the last line in green along

with the original specification content in a pop-up window. Otherwise, information

on how to correct the errors will be given under each problematic line (Figure 3.8

(a)). The Exercise module has two components for self-evaluation: Query and Test.

The Query component has seven questions (Figure 3.8 (b)) to help the exploration

of MLS policies. It provides answers to some frequently asked questions such as what

are all sets of categories, what are the possible security levels and whether a specific

subject has read or write permission to an object. The Test component provides a way

to evaluate the understanding of clearance, category, relationships and permissions

through 13 questions on policies in different scales. Users have to choose an answer

to proceed to the next question. This can be used for in-class exercises or quizzes.

Instructors will receive a student’s answer, a grade on each question and overall grade

via email. This component currently has an example set of questions covering the

core aspects of the BLP model. Instructors may populate the test with their own

questions by modifying an input text file.

3.2.3 Evaluation

The effectiveness of MLSvisual was tested in an evaluation conducted in a senior-level

computer security class. The course introduces computer security topics of secure

coding, access control, cryptography, key managements, etc. Access control includes

47

the UNIX permissions, the DTE, the Bell-Lapadula, and the RBAC models. Students

were given extra credit for the participation of the evaluation. They were asked to

answer a series of assignment questions.

The effectiveness of MLSvisual was tested in an evaluation conducted in a senior-level

computer security class. The course introduces computer security topics of secure

coding, access control, cryptography, key managements, etc. Access control includes

the UNIX permissions, the DTE, the Bell-Lapadula, and the RBAC models.

Students were given paper and pencil exercises on the BLP model as part of the

regular course homework. For this first use of MLSvisual, students were additionally

given an extra credit assignment that required use of the tool. The problem was to

evaluate a simple policy via a series of questions and then complete a test using the

Test module. After the students had submitted their solutions to the extra credit

assignment problem, the instructor distributed a survey to the class. Completion of

the survey was voluntary.

The MLSvisual evaluation consists of two components, 17 rating questions (Table 3.1)

and 9 write-in comments. The first 14 questions (Q1-Q14) study the effects of

MLSvisual. The choices are: 1:strongly disagree, 2:disagree, 3:neutral, 4:agree, and

5:strongly agree. The Q15, Q16 and Q17 study the time participants spent on the

tool. The choices for Q15 are 1:less than 5 mins, 2:5-10 mins, 3:10-15 mins, 4:15-30

mins and 5:more than 30 mins. The choices for Q16 are 1:once, 2:1-3 times, 3:3-5

48

Table 3.1
Survey Questions (© 2014 ACM. Reprinted by permission.)

Number Question

Q1 MLSvisual helped better understand BLP model

Q2 MLSvisual was helpful for my self-study

Q3 General graph’s analysis mode illustrated the
relationship between different SLs clearly

Q4 General graph’s edit mode allowed easy
creation/modification to policies

Q5 Object graph depicted the files’ SLs directly

Q6 Whole graph helped better understand of policies

Q7 Representation and layout eased use of the tool

Q8 Colors helped understand BLP’s information flow

Q9 The tool clearly depicted read/write among SLs

Q10 The tool helped realize BLP’s limitations

Q11 The tool helped learn Principles of Tranquility

Q12 Feel prepared to policy design after using the tool

Q13 The tool helped understand what was’t understood

Q14 RBACvisual enhanced the course

Q15 How long did it take you to understand the
BLP model by using the software

Q16 How many times did you use the software

Q17 How long did you use this software in total

times, 4:5-10 times and 5:more than 10 times. The choices for Q17 are 1:less than 5

mins, 2:5-15 mins, 3:15-30 mins, 4:30-60 mins and 5:more than 1 hour. We collected

22 valid forms. The distribution of majors is as follows: 10 in Computer Science, 6 in

Computer Engineering, 3 in Computer Systems Science, 1 in Software Engineering,

and 2 undeclared.

49

3.2.3.1 General Discussion

Table 3.2 shows the mean and standard deviation of each question. Feedback from

participants was positive with an overall mean of 3.77 and standard deviation of 0.73.

Q3 and Q8 received the highest scores of 4.2 and 4.3 with standard deviation 0.8

and 0.6, respectively. This indicates that the General graph showed the relationship

among security levels clearly and that the use of colors helped students understand

the BLP model. Q5 and Q11 received the lowest score 3.0. Q5 investigates whether

the security levels of objects are straightforward in the Object graph. The low score

may be because the Object graph and General graph were supposed to be used

together. However, even if the security level assignment to the objects is visually

presented, students probably treated them as separate and independent components,

and hence Q5 received a neutral rating. Q11 received 3.0 because there is no direct

visual presentation of this principle. Students have to edit a policy in several iterations

to get hands-on experience of whether the strong or weak tranquility principle should

be preserved. The Edit mode is designed for this purpose. The other questions

received scores around 4.0. Hence, the general response to the tool was positive

and participants considered that the tool helped them understand the concepts and

enhanced the course.

Of the three usage questions (Q15-Q17), Q17 had an average of 3.6, which indicated

50

that students used the tool for 15 to 30 minutes. The average of Q15 was 2.9 which

means that it took around 10-15 minutes for students to understand the BLP model

using MLSvisual. The average of Q16 was 1.5 showing that students used the tool once

or twice. Table 3.3 has the distribution of answers to these three questions. Q15 had

9%, 23% and 41% of students select Choice 1, Choice 2 and Choice 3, respectively.

Thus, 73% of all students required less than 15 minutes to understand the BLP model.

Since no student selected Choice 5, all of them understood the BLP model within 30

minutes. The answer distribution of Q16 indicated that 50% of all students used it

only once while the rest used MLSvisual twice. For Q17, 87% of all students selected

among Choice 1 to Choice 4, which means that 87% of all students spent less than

one hour using the tool.

Table 3.2
Mean (µ) and Standard Deviation (σ) (© 2014 ACM. Reprinted by

permission.)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

µ 4.0 3.8 4.2 4.1 3.0 3.7 3.7 4.3 3.8 4.0 3.0 3.6 3.6 3.9 2.9 1.5 3.6

σ 0.6 0.7 0.8 0.7 0.9 0.6 0.7 0.6 0.9 0.7 0.9 0.6 0.8 0.5 0.9 0.5 1.0

Table 3.3
Usage Distribution (© 2014 ACM. Reprinted by permission.)

Choice1 Choice2 Choice3 Choice4 Choice5
Q15 9% 23% 41% 27% 0
Q16 50% 50% 0 0 0
Q17 5% 9% 23% 50% 13%

51

We also looked at the correlations between each pair of questions from Q1 to Q14. The

ratings of each question are loosely positively related with the highest correlations 0.65

for (Q3, Q10) and 0.64 for (Q7, Q8). The correlation between Q3 and Q10 suggested

that those who considered the Analysis mode showed the relationship among security

levels clearly (Q3) also tended to believe that MLSvisual helped them realize the BLP’s

limitations (Q10). For Q7 and Q8, those who considered the representation and layout

made the use of MLSvisual easy (Q7) also might feel that the color scheme helped

them understand the information flow of the BLP model (Q8). There are some other

pairs having correlations around 0.55. The correlation between (Q3, Q4) was 0.56,

indicating that students who liked the Analysis mode of the General graph (Q3)

also rated the Edit mode of the General graph (Q4) higher. The correlation 0.55 of

(Q6, Q10) suggested that students who rated the Whole graph (Q6) higher might find

it easier to realize the limitations of the BLP model (Q10). The correlations between

(Q1, Q13) and (Q2, Q13) were 0.52 and 0.55, respectively. This suggested that many

students who felt that MLSvisual helped them understand what was not understood

also tended to consider the tool beneficial to self-study and a better understanding

of the BLP model.

52

3.2.3.2 Statistical Analysis

We used MANOVA and ANOVA to investigate if the use of the tool may affect student

ratings. The level of significance is α = 0.05. The null hypothesis for this study is:

the time spent on understanding the BLP model (Q15), the number of times using

this tool (Q16), and the total time spent on this tool (Q17) did not affect the answers

to the 14 questions (Q1-Q14). Based on the answers to Q15, we divided students into

3 groups. Group 1 had students who spent less than 10 minutes to understand the

model. Group 2 spent 10 to 15 minutes, and group 3 spent more than 15 minutes. The

p-value of a MANOVA Wilk’s lambda test was 0.525, suggesting that there was no

significant difference among these groups. To verify the result, we also used ANOVA

to perform individual test against Q15, and found that Q5 vs. Q13 had the smallest

p-values 0.051. Since it is still larger than the level of significance, we can not reject

the null hypothesis.

Students were divided into two groups according to their responses to Q16. The first

group had 11 students who used the tool only once. The second group had the other

11 students who used the tool twice. The p-value of a MANOVA Wilk’s lambda test

was 0.677, which indicated that the null hypothesis can not be rejected. ANOVA

tests against Q16 showed that Q1 and Q12 had the two smallest p-values 0.062 and

0.070, respectively. Since they are still greater than the significance level, the null

53

hypothesis can not be rejected.

For Q17, we divided students into 2 groups. The first group included 8 students who

used the tool for less than 30 minutes while the other group of 14 students spent

more than 30 minutes. The MANOVA Wilk’s lambda test had a p-value of 0.332,

and the null hypothesis can not be rejected. ANOVA tests against Q17 showed that

the p-value for Q13 (0.0046) was the only one less than the significance level. The

null hypothesis was rejected. Therefore, students who spent less than 30 minutes

and students who spent more than 30 minutes responded to Q13 differently. This

happened because students used the tool after learning the BLP model in class. The

parts they did not understand before were some challenging aspects. The different

responses showed that many students were able to understand the challenging parts

after spending enough time on the tool. Based on the findings, we have sufficient

evidence to claim that the time students spent on the tool affects whether they could

understand the parts that they did not understand before. But, in general, the use of

the tool does not affect student rating when all questions are considered at the same

time.

3.2.3.3 Student Comments

The set of 9 write-in questions was designed to gather suggestions from students for

future improvement. The aspects we investigated are: whether the graph presentation

54

is helpful, the Specification diagnosis module, the Test module, the use of colors

and user interface, features to add and the software installation issues.

Student feedback was quite positive to the graph presentation. Some students said

“It clearly illustrated the lattice formed by the policy, and helped me see the relation-

ship between levels”, “The graph was very nice and definitely helped me understand

the BLP model better”, “The graph showed useful information with button to auto-

generate”, and “It worked perfectly as I imagined”. Therefore, we believe that the

graph presentation did help students understand the BLP model better.

The comments on the Specification diagnosis model were generally positive. Stu-

dents mentioned that “It was definitely useful” and “It was a nice addition to the

visual”. However, some students mentioned that they were not sure whether they

had used the module. This is understandable since the extra credit assignment did

not include the use of this module.

The Test module received positive feedback. Students mentioned that “I was im-

pressed by how well the software handled examples” and “The most populated object

graph was nice”. A suggestion “It would be better if there were answers to the ques-

tions at the end of the test” was also mentioned. Since instructors usually use the

module as a quiz, the questions can be answered on demand in class.

All students were satisfied with the use of colors and the user interface. A student

55

suggested that “Queries should default to a pop-out window”. Most of them did not

think about additional features; however, one student suggested that “Maybe a quick

run down on the model and particular specification”. No software installation problem

was reported.

Students also provided some general comments for further improvement. They sug-

gested adding tooltip to all buttons, having the larger default window size, and provid-

ing a version for 64-bit Linux since some of their systems were not 32-bit compatible

and needed some packages installed before use.

3.3 RBACvisual

RBACvisual2 is another user-level visualization tool designed to facilitate the study

and teaching of the role-based access control (RBAC) model, which has been widely

used in companies to restrict access to authorized users. The tool provides two graph-

ical abstractions of the underlying specification. Policies can be input and modified

graphically or using text-based files. Students can use an embedded Query system to

answer commonly asked questions and to test their understanding of a given policy.

A Practice subsystem is also provided for instructors to assign quizzes to students;

2The material contained in this section was previously published in proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science Education [76]

56

the answers can be sent to the instructor via email. We also conducted an evalua-

tion of RBACvisual within a senior-level course on information security. The student

feedback was positive and indicated that RBACvisual helped students understand the

model and enhanced the course.

3.3.1 Language

We designed the language for RBAC policies based on the elements involved in the

model: roles, users and objects, where users are assigned to roles based on their

job functions; roles are associated with objects through permissions. Also, roles can

be in a hierarchical relation, which is represented by the statements starting with

the keyword inheritance. Statements with keywords user and object specifies

the users’ assignment to roles and roles’ permissions to objects. The syntax of the

specification is shown below:

1) Role Statement

Define one or more roles, which are available to other parts of an RBAC spec-

ification. Role Statement with keyword inheritance can be followed by one

role and a list of role names from low to high seniority separated by <.

Syntax format: inheritance: role1<role2<...

2) User statement

Define the assignment of users to roles. User statement starts with keyword

57

user followed by a list of users separated by commas. It means that the users

in the list are assigned to the role in the statement.

Syntax format: user: role user1, user2...

3) Object statement

Define the permissions a role has to a list of objects that are delimited by

commas. The statement starts with keyword object, then followed by the

name of a role, a permission set, an optional recursive flag and a list of objects.

The permission set permSet is a subset of {r, w, x}, where r, w, x represent

read, write, and execute permissions, respectively.

Syntax format: object: role permSet [-r] object1, object2...

Figure 3.9 has an example of RBAC policy.

inheritance: ADMIN > OSTEACH

inheritance: ADMIN > SECTEACH

inheritance: OSTEACH > OS

inheritance: SECTEACH > SECURITY

user: ADMIN alan

user: OSTEACH tina

user: SECTEACH tina

user: SECURITY sally, sam

user: OS oscar, sally

object: ADMIN r,w,x -r /

object: OSTEACH r,w,x -r /cls/os

object: SECTEACH r,w,x -r /cls/security

object: SECURITY r,x -r /tools

object: OS r -r /cls/os/public

object: OS r,x -r /tools

Figure 3.9: RBAC policy

58

3.3.2 Visualization System

RBACvisual also has the specification file (*.rbac) and visualization file (*.rbacvis)

as input and output files. These two types of file can be converted to each other

using the visualization system. RBACvisual implements the RBAC model in Core and

Hierarchical forms [31]. The basic concept of Core RBAC is that users as well as

permissions to objects (files and directories) are directly assigned to roles based on

their job functions. Therefore, users’ membership to roles determines if they have

access to objects in the system.

Figure 3.10: User Interface with Matrix View (© 2015 ACM. Reprinted
by permission.)

RBACvisual has two different views: the Matrix View and the Hierarchy View. Fig-

ure 3.10 has an example of the Matrix View. The top matrix is for the user-to-role

assignment and the bottom matrix shows the role-to-object permissions.

59

Figure 3.11: Role Node Highlight without Inheritance (© 2015 ACM.
Reprinted by permission.)

Figure 3.11 shows the Hierarchy View, which consists of two parts. The Role Hierarchy

Section with green background constructs a graph based on the role hierarchy. The

Object Hierarchy Section with red background shows the hierarchy of objects in the file

system. Green nodes represent roles, red nodes represent objects, and yellow nodes

representing users are located around their role nodes. An edge is drawn from node

r1 to node r2 when node r1 inherits node r2 (Edges inferred by transitivity in the

role hierarchy are removed to reduce visual clutter.). All inheritance relationships

are extracted from the policy and are depicted by an edge. If the inheritance is not

specified explicitly in the policy file, the edge line is dashed.

RBACvisual supports highlight schemes with and without role hierarchy. When the

hierarchy is included, highlighting shows the users assigned to the role and the objects

the role has access to from itself as well as through the inheritance relation. When

60

the hierarchy is not included, highlighting only shows information from the explicit

definition of the role itself.

(a) (b)

Figure 3.12: Role Node Highlight. (a) shows the highlight with Children.
(b) shows highlight with Parents. (© 2015 ACM. Reprinted by permission.)

When highlighting with role inheritance involved, choices of highlighting the children,

parents, or both children and parent nodes of the clicked role node are available. The

clicked node will be highlighted in a red frame, and role nodes with the selected

inheritance relation will be highlighted in blue frames. User nodes and object nodes

will be highlighted in red frames if directly accessible from the clicked role or in blue

frames if accessible from blue-framed roles. Figures 3.12 (a) and (b) depict the nodes

related to role dev. The highlighting in the left view shows that the child and parent

role nodes of dev are qc and pres, respectively. The right view shows that dev and

qc both have access to /path/to/tests with different permissions and pres additionally

has access to /path/to/evidence. Likewise, when a user node is clicked, the roles it

is assigned to and the objects accessible from those roles will be highlighted. When

61

an object node is clicked, the roles and users that have access to the object are

highlighted.

(a) (b)

Figure 3.13: Edit mode. (a) shows the role hierarchy before an edit.
(b) shows the role hierarchy after the edit. (© 2015 ACM. Reprinted by
permission.)

Both views allow building a policy from scratch and editing the policy graphically.

In the Matrix View, the table cell values can be changed. In the Hierarchy View, a

context menu (not shown) can be used for editing the properties of each node. The

toolbox provides a dialog to modify, add, or delete any element of the user-to-role or

permission-to-role assignment. Figure 3.13 shows the role hierarchy of a policy before

and after user assignment to roles.

The Specification Window in Figure 3.14 (a) shows the text-based specification of the

existing policy, which can be edited via graphical operations on views or textual edit

within the window. The textual highlight shows the related nodes within red and

blue frames in the highlight mode. The Query Window in Figure 3.14 (b) contains

62

questions commonly asked about an RBAC policy. Parameters for certain questions

can be configured on the interface and answers to questions can be found in the

bottom field, with the most recent answer being highlighted.

(a) (b)

Figure 3.14: Specification and Exercise Modules. (a) shows the Specifi-
cation Diagnosis Window. (b) shows the Query Window. (© 2015 ACM.
Reprinted by permission.)

RBACvisual allows an instructor to give a series of questions (or a “quiz”) to students.

Three quiz modes are available which control how a student may progress through

the questions. The questions are configurable so that instructors can use their own

questions to achieve various teaching goals. All the questions are multiple-choice

questions. Instructors specify the quiz mode and the questions that comprise the quiz

through a file that adheres to a prescribed format (given in the Instructor Manual).

63

Instructors can share the question file with their students and a test can be started

by importing the question file into the system through a dialog.

(a) (b)

Figure 3.15: Quiz Mode. (a) shows Multiple Trial Quiz Mode with Wrong
Answer. (b) shows Self-test Quiz Mode with Wrong Answer. (© 2015 ACM.
Reprinted by permission.)

RBACvisual supports three quiz modes. The first mode is Traditional Mode where

students’ answers will be sent at the end of the quiz. The quiz moves forward after the

first response to each question. The second mode is Multiple Trial Mode (Figure 3.15

(a)). In this mode, students are allowed to try multiple times until they get the correct

answer to a question. The number of attempts for each question will be stored. The

third option is Self-test Mode (Figure 3.15 (b)). Correct answers will be shown to the

students after a choice has been confirmed for a question.

64

3.3.3 Evaluation

The RBACvisual evaluation included two parts: 18 rating questions (Table 3.4) and

seven write-in comments. The first 15 rating questions study the effects of RBACvisual.

The choices are: 1:strongly disagree, 2:disagree, 3:neutral, 4:agree, and 5:strongly

agree. Q16, Q17 and Q18 study the time participants spent on the tool. The choices

for Q16 are 1:less than 5 mins, 2:5-10 mins, 3:10-15 mins, 4:15-30 mins and 5:more

than 30 mins. The choices for Q17 are 1:once, 2:1-3 times, 3:3-5 times, 4:5-10 times,

and 5:more than 10 times. The choices for Q18 are 1:less than 5 mins, 2:5-15 mins,

3:15-30 mins, 4:30-60 mins, and 5:more than 1 hour. This evaluation was conducted

in a senior-level Computer Security course. For this first use of RBACvisual, students

were given extra credit if they used the tool to solve their assignment questions.

A survey was distributed at the end of the semester for students to participate in

voluntarily. We collected eight valid forms from students, five of whom major in

Computer Science, one in Computer Systems Science, one in Software Engineering,

and one in Computer Engineering.

3.3.3.1 General Discussion

Table 3.5 has the means, standard deviations and confidence intervals (at 95% sig-

nificance level of mean) of rating questions Q1 to Q15. The ratings of questions are

65

Table 3.4
Rating Questions

Q1 Matrix View helped understand RBAC

Q2 Hierarchy View helped understand RBAC

Q3 Toolbox made it easy to create/edit policy

Q4 Context Menu in Hierarchy View is
convenient for policy editing

Q5 Query helped study RBAC policy

Q6 RBACvisual made correct modification
on policies easier

Q7 Matrix View was intuitive and clear

Q8 Hierarchy View was intuitive and clear

Q9 Hierarchy View helped understand role
inheritance

Q10 Colors used can distinguish different items

Q11 Width of edges was reasonable

Q12 Understood RBAC better after using the tool

Q13 The tool helped find mistakes in my policy

Q14 RBACvisual enhanced the course

Q15 The software was easy to use

Q16 How long did it take you to understand the
RBAC model by using the software

Q17 How many times did you use the software

Q18 How long did you use this software in total

no less than 3.88. Their overall mean value is 4.34 with a standard deviation 0.69,

suggesting that the feedback to the tool was positive in general. Q6 and Q13 have the

lowest mean of 3.88 with standard deviation of 0.99 and 0.64, respectively. Q6 inves-

tigates whether the tool makes the correct modification of policies easier. The lower

scores it received might be because some modifications did not introduce big changes

in visualization and thus some efforts should be taken to examine the changes. Q13

probably shares the same reasoning when changes are applied and it is hard to tell

the correctness of a change as it depends on the users’ intention, which is hard to

detect. The means and confidence intervals of Q7 and Q8 are 4.29 and 4.57, (3.92,

66

4.65) and (4.18, 4.97), indicating that students generally thought the Matrix View and

the Hierarchy View were intuitive and clear. Q1, Q2, Q12 and Q14 received scores no

less than 4.13. This suggests that RBACvisual helped students understand the RBAC

model better and enhanced the course. Q3, Q4 and Q15 on the easiness of using the

tool were rated over 4.25 and thus showed that the tool was easy to use.

Table 3.5
Mean (µ), Standard Deviation (σ) and Confidence Interval (CI−, CI+)(©

2015 ACM. Reprinted by permission.)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15
µ 4.38 4.25 4.38 4.25 4.38 3.88 4.29 4.57 4.86 4.57 4.29 4.13 3.88 4.25 4.63
σ 0.52 0.89 0.74 0.89 0.74 0.99 0.49 0.53 0.38 0.79 0.76 0.64 0.64 0.46 0.52

CI− 4.02 3.64 3.86 3.64 3.86 3.19 3.92 4.18 4.58 3.99 3.73 3.68 3.43 3.93 4.27
CI+ 4.73 4.86 4.89 4.86 4.89 4.56 4.65 4.97 5.00 5.00 4.85 4.57 4.32 4.57 4.98

The last three questions (Q16 to Q18) are about the usage of the tool. Table 3.6 has

the distribution of answers. On Q16, 62.5% of students selected Choice 2 and 37.5%

chose Choice 4. This implies that all students were able to understand the RBAC

model within 15 minutes. The distribution of Q17 indicates that half of the students

used the tool for one to three times and all of them used the tool for less than 5

times. Answers to Q18 suggest that 75% of the students used the tool for less than

30 minutes while there were some students who used the tool for up to one hour.

Table 3.6
Usage Distribution (© 2015 ACM. Reprinted by permission.)

Choice1 Choice2 Choice3 Choice4 Choice5
Q16 0 62.5% 37.5% 0 0
Q17 12.5% 50% 37.5% 0 0
Q18 12.5% 25% 37.5% 12.5% 12.5%

67

3.3.3.2 Statistical Analysis

We were interested in knowing the rating correlation of each question pair. To this

end, the Spearman rank correlation test was applied to the first 15 questions. We

found 16 out of the 105 question pairs had a p-value less than the level of significance

α = 0.05. This means that nearly 85% of the question pairs did not have a significant

monotonic correlation. Moreover, all Spearman ρ’s between Q10 and other questions

were insignificant, meaning the rating of the use of colors is likely to be independent

of the rating of other questions. Figure 3.16 shows the 16 pairs with the value of ρ

shown on each edge. It is clear that the ratings of Q2, Q3, Q5, Q6, Q8 and Q11

were very closely inter-related with a Spearman ρ value of at least 0.78. Therefore,

the Hierarchy View, Query, easy policy modification, and policy creation/editing were

rated similarly in a monotonic way. Q5, Q12, Q13 and Q9 formed a linear chain with

ρ(Q5, Q12) = 0.839, ρ(Q12, Q13) = 0.820 and ρ(Q9, Q13) = 0.764. This indicated

that if a student rated “Query helped study RBAC policy” (Q5) higher this student

would very likely provide higher ratings to questions “RBACvisual helped understand

RBAC better” (Q12), “RBACvisual helped find mistakes” (Q13), and “Hierarchy View

helped understand role inheritance” (Q9). It is interesting to note that the Spearman

ρ between “RBACvisual enhanced the course” (Q14) and “RBACvisual was easy to

use” (Q15) is 0.4 with a p-value of 0.374. As a result, we cannot reject the null

hypothesis, which means there was no statistically significant monotonic correlation

68

between the rating of Q14 and the rating Q15. On the other hand, the two high

Spearman ρ dangling pairs ρ(Q6, Q14) = 0.882 and ρ(Q3, Q15) = 0.794 were perhaps

coincidences.

Figure 3.16: Graph of Significant Spearnman Correlation Pairs (© 2015
ACM. Reprinted by permission.)

We also used a Student’s t-test to compare the differences among ratings. While the

sample size is small, Student’s t-test is rather robust and still can be used in this

study [25]. We first looked at the “helped” question group (Q1, Q2, Q5, Q9, Q13).

Pairwise t-test shows that except for pairs (Q5, Q9) and (Q9, Q13) with p-values

0.03 and 0.00, respectively, all other p-values were larger than 0.1. This suggested

that except for (Q5, Q9) and (Q9, Q13), the null hypothesis (that the questions were

rated equally) cannot be rejected. The p-value for pair (Q7, Q8) is 0.17, and, hence,

students rated the Matrix View and the Hierarchy View equally even though the means

were 0.429 and 0.458, respectively. Finally, we looked at three summary questions

“Understood RBAC after using the tool” (Q12), “RBACvisual enhanced the course”

(Q14), and “The software was easy to use” (Q15). The mean values of Q12, Q14 and

Q15 were 4.13, 4.25 and 4.63, respectively, and the p-values for (Q12, Q14), (Q12,

Q15) and (Q14, Q15) were 0.60, 0.03 and 0.08, respectively. Therefore, the rating

69

difference between Q12 and Q15 is statistically significant, and students considered

ease of use higher than improved understanding of RBAC after using the tool. Since

only 13 out of 105 pairwise t-tests were significant and many question pairs were not

directly related, the rating differences would be small. Coupled with high ratings of

questions, we conclude that the evaluation results were very positive for this sample.

3.3.3.3 Student Comments

The seven write-in questions were designed to gather suggestions from participants

for further improvement. The aspects include: representation in visualizations, the

effects of in-class demo of the tool, new feature suggestions, and performance and

installation of the tool.

The overall feedback to visualization representations was positive. Some students

stated “I enjoy this view when looking at who has permissions quickly. I can click

on what I need to know and it will light up anything corresponding to.”, “This was

the best part. The hierarchy showed the role dominance and which users belonged to

which roles very clearly.”, and “The hierarchy view helped me understand what roles

are ranked higher and lower than one another.” Some issues were mentioned: (1) to

add header scrolling in the matrix view; and (2) presentation of permissions to objects

that fits the visual theme better than the text presentation.

70

The in-class demo received neutral feedback. For the students who sent evaluation

forms back after final exams, it was hard to remember the in-class demo afterwards,

and they generally gave a neutral feedback. For the feedback received on time, the

feedback was positive. Students mentioned “I think the most advantage is [that] I

am involved and get a helpful feedback quickly.”, and “I think the most helpful part is

being able to click on elements and see the relations between roles, users and objects.”

Students also provided some general comments for further improvement. They sug-

gested: (1) the Matrix View should have multiple selections that allow comparisons;

(2) Keyboard shortcuts should be supported; and (3) the specification should be

directly editable in the Specification Window. No installation issues were reported.

In summary, we found that students who rated “Query helped study RBAC policy”

tend to give high ratings to “RBACvisual helped understand RBAC better”, “RBACvi-

sual helped find mistakes” and “Hierarchy View helped understand role inheritance”.

We also found that students rated the Matrix View and the Hierarchy View equally.

Combined with the high ratings of questions and students comments, we believe that

RBACvisual effectively helped students understand and the instructor teach the RBAC

model better with intuitive visual representation.

71

3.4 UNIXvisual

UNIXvisual3 is the fourth visualization tool in the series designed to facilitate the study

and teaching of access control in UNIX. UNIXvisual is aimed both at novice users, who

need only to control access to their own files, and students of computer security, who

need a deeper and more comprehensive understanding. The system allows students

to analyze permission settings in the underlying real file system, as well as in a

combination of real and pseudo file systems defined through a specification file. It

also allows a student to trace the value and effect of credentials within an executing

process. UNIXvisual gives instructors flexibility in the allocation of lecture time by

supporting self-study, it lowers the overhead required for teaching access control by

running under an ordinary user account, and it enhances learning through the usage

of visualization.

3.4.1 Language

The language designed for UNIX policies is based on the mechanism of access decision

making in UNIX permissions. The policy uses a root directory to specify the starting

point to extract the users, groups and permission to objects from the underlying file

3 The material contained in this section was previously published in proceedings of the 2016 and
2017 ACM Conference on Innovation and Technology in Computer Science Education [74, 75]

72

system. The policy can also be used to define a hypothetical file system through

User, Group and Object Statements. Figure 3.17 shows an example policy that can

be processed by UNIXvisual. The syntax of the statements is listed below:

root: ./pseudoroot

user: tony, mike, lucy, mary

user: jim

group: manager mary, jim

group: tester mike, lucy

group: developer tony, lucy

object: drwsrwxr-- tony:developer -r /code

object: rwxrwSr-- tony:developer /code/program1

object: drwxrw-r-- mary:manager -r /document

object: drwxrw-r-- mary:manager -r /document/projectA

object: drwxrw-r-- jim:manager -r /document/projectB

object: drwxrwx--x mike:tester -r /test

object: drwxrwxr-x mike:tester -r /test/projectA

Figure 3.17: UNIX policy (© 2017 ACM. Reprinted by permission.)

1) Root Statement

Define the root directory for the visualization system as the starting point to

extract the real file system information. rootDirectory must exist in the real

file system.

Syntax: root: rootDirectory

2) User Statement

Define one or multiple pseudo users. The users can later be used in the Group

and Object Statements. The statement starts with keyword user, followed by

a list of users.

Syntax: user: user1, user2...

73

3) Group Statement

Define the user members of a group. The statement starts with keyword group,

followed by a groupName and a list of users.

Syntax: group: groupName user1, user2...

4) Object Statement

Define the access to objects in a similar format with the output of command ls

-l. The statement starts with keyword object. Object’s nine permission bits

and user and group owners are followed. Then there are an optional recursive

flag and the object’s path.

Syntax: object: permBits userOwner:groupOwner [-r] objectPath

3.4.2 Visualization System

The visualization illustrates the process of determining the access a user or group has

to objects. In this, UNIXvisual supports four main perspectives. The Decision Mode

View illustrates a single decision by the access control system, excluding directory

traversal. The Object View explores which users and groups have access to a selected

object. The User View and Group View explore the set of objects accessible to a user

(through the user bits) or to a group (through the group bits) respectively.

74

3.4.2.1 Decision Mode

The Decision Mode aims to provide obvious access to an interactive question system in

order to encourage students to test their understanding. The interface has two parts

(Figure 3.18). The bottom part is the question and answer area where the question

statement is presented and answers to the question can be chosen. The top part is the

question parameter area where the parameters of the question to ask can be configured

by users. This mode provides two types of commonly asked questions: (1) whether a

process with certain credentials can access an object with a selected permission and

(2) conversion between the letter notation and octal permission notations. Students

can answer the question and check their correctness. An animation is also supported

to provide a step-by-step explanation to guide students to the solution.

Figure 3.18: Decision Mode (© 2017 ACM. Reprinted by permission.)

75

3.4.2.2 Object View

The Object View asks for an object of interest and illustrates the determination of

which users have access to the object. Figure 3.19 shows a snapshot of the Object

View. The visualization shows the analysis in a matrix form. On the left, paths

from the root directory to the target object are represented as nodes with permission

information at each directory level. This defines the rows of the matrix. On the right,

the permission bit groupings, “Owner bits”, “Group bits” and “Other bits” define

the columns.

By default, all users are considered for access to the object. Options of focusing on

one user or one group are also supported. In the visualization, results of users’ access

are shown in the last row as color-coded user names. The columns in which a user

name appears indicates the bits that will be applied at the object level. Clicking

on a user name enables an analysis of that user’s access. Color-coded letters of “Y”

and “N” are placed in the row that corresponds to object level and the column that

corresponds to the group of bits that are applied. In Figure 3.19, the user has selected

lucy from the last row to obtain more information on the access lucy has to the object.

Clicking on the letters of “Y” and “N” allows another level of detailed explanation

of why these bits are applied and why the access is or is not allowed. This triple-

layered analysis from color-coded user names to detailed explanation avoids showing

76

the complete explanation all at once and thus encourages students to think about

how the permissions work.

Figure 3.19: Object View (© 2017 ACM. Reprinted by permission.)

3.4.2.3 User and Group View

The User and Group View illustrates the access allowed by a user or group through

the file permission bits to objects under a user-specified directory. An example of

the User View is given in Figure 3.20 (a). The visualization can be divided into two

parts. The left part contains information about a user (above) or group. A user

is represented as a node connected with three nodes to represent the owner, group

and other permission bits. A group is represented as a node connected with all its

member users (not shown). The right part has four sections. The top left window is

the Permission Setting section.

77

(a) (b)

Figure 3.20: User and Group View and Program Trace View. (a) shows
User and Group View. (b) shows Program Trace View. (© 2017 ACM.
Reprinted by permission.)

In this section, students may choose the type of object access they want to investigate.

The bottom left window is the Directory Tree section. It shows the object structure in

a standard directory tree hierarchy. Directories are clickable to expand and contract

for one directory level. The two windows on the right are the Object Permissions

and Access Analysis sections. They are blank initially. Once a user/group is selected,

each object in the object hierarchy window is checked against the specified permission

in the Permission Setting section. If an object can be accessed by the user with the

specified permission, the object remains black. Otherwise, it is shown in red. Clicking

on an object in the Directory Tree enables the Object Permissions and Access Analysis

windows which shows a detailed analysis. The permission information for the object

selected from the Directory Tree and all directories up to the root directory is supplied

78

in the Object Permissions section. An explanation of the access is given in the Access

Analysis section. The analysis includes an explanation of which bits were applied and

the access decision at the level.

3.4.2.4 Program Trace View

The Program Trace View is designed to help students understand initial assignment of

credentials to a process, dynamic modification of credentials, and the effect of these

credentials on an access request. This view allows the import of a C program and

tracks process credentials across access control-related system calls, like open, fork,

setresuid, read, write, etc. Figure 3.20 (b) shows an example of the visualization.

After loading a C source code or binary, the initial real and effective user/group

IDs are shown in the top left corner. Invoked system calls are depicted sequentially

as blocks with effective and saved user/group IDs. The success of a system call is

reflected in its block color; green indicates success and red indicates failure. The

credentials on the side use red highlighting to indicate changes in credential values

after the system call.

79

3.4.2.5 Permission Calculator

(a) Letter to Octal Notation (b) Octal to Letter Notation

Figure 3.21: Permission Calculator (© 2017 ACM. Reprinted by permis-
sion.)

Octal and letter notations are frequently used to specify UNIX permissions values

through the command line. The conversion between these two notations can be tricky

for beginners. The Permission Calculator is designed to help students learn different

permission notations. Figure 3.21 (a) and (b) show the interface of the letter-to-

octal and the octal-to-letter notation conversion. Both interfaces have three ways

of expressing permissions: a matrix of checkboxes denoting permission bits, octal

notation and letter notation. With the checkbox matrix and both notations side by

side, it is easier to interpret the meaning of each bit and how each bit is expressed in

different notations.

80

3.4.2.6 Query and Quiz

UNIXvisual also contains a Query mode and a Quiz mode. The Query mode includes

a list of commonly-asked questions on UNIX permissions. Question parameters are

configurable through the interface and answers to the questions are presented through

guided visualization. This mode provides the convenience of having problems clar-

ified outside of the classroom at any time. The Quiz mode provides an interactive

environment for conducting quizzes. Text-based and visualization-based questions

can be asked. All the questions are multiple-choice questions and can be configured

to accommodate instructors’ teaching goals.

The questions that comprise a quiz are written through a text file that adheres to a

prescribed format. Students can start the quiz by loading the question file distributed

by the instructor. Each question will have to be answered to move to the next one.

At the end of the quiz, a dialog will show the location of the student’s answer file

and the student will be able to send the email to the instructor in order to prevent

manual changes.

81

3.4.3 Evaluation

The evaluation was conducted in a required junior-level concurrent computing course

with a total of 55 students. In a 75-minute session, students were asked to take a

pre-test on UNIX permissions, followed by a 35-minute UNIX permissions lecture

and a 15-minute demo of UNIXvisual. Students were allowed to use UNIXvisual in the

following two weeks, and completed a post-test and an evaluation form. The lecture,

the demo and the use of UNIXvisual only focus on the basics of UNIX permissions

including the letter and octal notations, and the permission to objects without and

with directory traversal. The whole process was conducted near the end of a semester

on a voluntary basis. Students may not participate due to no attendance policy

and were not required to use the software because some of them had learned UNIX

permissions in Systems Programming and other courses. Students who completed

the pre-test, post-test, and evaluation form were granted extra credits.

We collected 40 valid pre-tests, 44 valid post-tests, and 44 valid evaluation forms.

We also collected 51 final exam papers, and recorded grades of the UNIX permissions

section. Of the 44 students who submitted the evaluation form, 21 used UNIXvisual,

40 attended the lecture, and 38 submitted the pre-test, post-test and final exam.

82

3.4.3.1 Test Problems

The questions in the pre-test, post-test and final exam have the same form with the

same level of difficulty. There are 10 questions in each test (1 point per question).

Questions Q1 and Q2 (Group 1 or G1) ask about conversion between the octal and

letter notations of UNIX permissions. Questions Q3-Q6 (Group 2 or G2) ask about

access requests to an object without directory traversal. Questions Q7-Q10 (Group

3 or G3) are about the access requests to an object with directory traversal.

Table 3.7
The Means (µ) and Standard Deviations (σ) of the Pre-test, Post-test, and

Final Exam Questions (© 2017 ACM. Reprinted by permission.)
Pre-test

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total
µ 0.80 0.78 0.98 0.88 0.88 0.80 0.34 0.88 0.37 0.44 7.05
σ 0.40 0.42 0.16 0.33 0.33 0.41 0.48 0.33 0.49 0.50 1.66

Post-test
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total

µ 0.98 0.95 0.95 0.89 0.91 1.00 1.00 0.98 0.68 0.75 9.09
σ 0.15 0.21 0.21 0.32 0.29 0.00 0.00 0.15 0.47 0.44 1.29

Final Exam
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total

µ 0.92 0.90 0.88 1.00 0.96 0.98 0.69 0.88 0.61 0.78 8.61
σ 0.27 0.30 0.33 0.00 0.20 0.14 0.47 0.33 0.49 0.42 1.60

Table 3.8
The Means (µ) and Standard Deviations (σ) of G1, G2 and G3 in the

Pre-test, Post-test and Final Exam (© 2017 ACM. Reprinted by
permission.)

Pre-test Post-test Final Exam
G1 G2 G3 G1 G2 G3 G1 G2 G3

µ 0.79 0.88 0.51 0.97 0.94 0.85 0.91 0.96 0.74
σ 0.41 0.32 0.50 0.18 0.24 0.36 0.29 0.21 0.44

83

Tables 3.7 and 3.8 have the mean and standard deviation of each question and question

group in these tests. The correctness of questions in G1 and G2 are above 91% in

the post-test and the final exam, and G3 in all three tests has the lowest means and

the highest standard deviations. It is reasonable that G3 received the lowest means

as access request questions with directory traversal include more levels of permission

checking and thus make the questions more challenging. Figure 3.22 depicts the group

comparison of the three tests. It shows that 1) students’ overall performance in all

groups improved in the post-test and the final exam; and 2) students performed better

in G1 and G3 in the post-test than in the final exam.

Figure 3.22: The Means with Confidence Intervals of G1, G2 and G3

in the Pre-test, Post-test and Final Exam (© 2017 ACM. Reprinted by
permission.)

Table 3.9 has the means and standard deviations of question scores of students who

used UNIXvisual and who did not use UNIXvisual in all three tests. Students who used

UNIXvisual received higher scores in all question groups in the post-test and the final

exam than students who did not use UNIXvisual.

84

Table 3.9
The Means (µ) and Standard Deviations (σ) of G1, G2, G3 and Total
Scores of Students Who Used and Did Not Use UNIXvisual (© 2017

ACM. Reprinted by permission.)

Students Who Used UNIXvisual
Pre-test Post-test Final

G1 G2 G3 Total G1 G2 G3 Total G1 G2 G3 Total
µ 0.84 0.86 0.46 6.95 0.98 0.98 0.92 9.52 0.95 0.99 0.88 9.35
σ 0.37 0.35 0.50 1.58 0.15 0.15 0.28 0.81 0.22 0.11 0.33 1.23

Students Who Did Not Use UNIXvisual
Pre-test Post-test Final

G1 G2 G3 Total G1 G2 G3 Total G1 G2 G3 Total
µ 0.76 0.90 0.54 7.29 0.96 0.90 0.79 8.70 0.89 0.94 0.65 8.13
σ 0.43 0.30 0.50 1.65 0.21 0.30 0.41 1.49 0.32 0.25 0.48 1.65

3.4.3.2 Test Problems Analysis

In this part, significance tests were applied to find out 1) whether students’ perfor-

mance in the tests improved; and 2) whether UNIXvisual introduced the improvement.

The significance tests include Student’s t-test, ANOVA (parametric) and Kruskal-

Wallis (KW) test (non-parametric), and repeated measures ANOVA (parametric)

and Friedman test (non-parametric). We mainly used parametric methods with the

non-parametric methods as backups. All significance tests were conducted at 95%

significance level.

To evaluate students’ performance throughout the tests, we first compared the pre-

test and post-test using Student’s t-test and KW test. Only Q1, Q2, Q6, Q7, Q9,

Q10 and the total score had p-value less than 0.05. With their increased means from

the pre-test to the post-test (Table 3.7), this indicates that the students’ performance

85

on notation conversion, access requests with directory traversal, and the total score

had significantly improved. We also applied Student’s t-test and KW test to compare

the pre-test and the final exam. The results show that students performed differently

in only Q4, Q6, Q7, Q9, Q10 and the total score. As the means of these questions

increased (Table 3.7), the performance significantly improved on questions of access

request without and with directory traversal and the total score in the final exam.

The scores of the post-test and the final exam were also compared using the same

method. The results indicate significantly improved performance in Q4 and declined

performance in Q7, which means that the performance in other questions and the total

score did not differ significantly. Therefore, for the declined performance in G1 and

G3 from the post-test to the final exam in Figure 3.22, we know that the performance

decline in G1 is insignificant, and that Q7 is the only question that showed a decline

in performance in G3. Note that G3 has the most challenging questions in the tests.

Since there was no homework or project on UNIX permissions between these two tests,

the decline in performance in Q7 was likely caused by students’ reduced familiarity

with the material over time due to a lack of practice.

To investigate the reason for the improvement throughout the tests, we looked into the

students who submitted all three tests. As they participated in the UNIX permissions

lecture and the UNIXvisual demo, and the use of UNIXvisual, this student group formed

an important sample to assess the effect of the lecture with demo and the use of

UNIXvsual on the scores of the tests. The repeated measures ANOVA and Friedman

86

test were used, and the p-values of Q1, Q5-Q10, and the total score are less than

0.05. As the means of the total score of the post-test and the final exam are higher

than that of the pre-test (Table 3.7), the lecture with demo and the use of UNIXvsual

helped students perform better in the post-test and the final exam.

We further examined whether the use of UNIXvisual helped the improvement in the

post-test and the final exam. We applied Students’ t-test and KW test to the post-

test question group scores of students who used UNIXvisual (21 students) and students

who did not use the tool (23 students). The results show that G2, G3 and the total

score had a p-value less than 0.05. With their means in Table 3.9, the performance

of students who used UNIXvisual is significantly better than those who did not use

the tool. We also divided students who took the final exam into a group of 20

students who used UNIXvisual and a group of 31 students who did not use the tool,

and compared their performance using the same tests. G3 and the total score had a

p-value less than 0.05. Given their means in Table 3.9, students who used UNIXvisual

performed significantly better than those who did not use the tool in G3 and the total

score. Lastly, we evaluated the background of students who used UNIXvisual and who

did not use the tool by comparing their pre-test scores. The t-test and KW test show

that the p-values for all question groups and the total score are greater than 0.05.

Therefore, these two groups of students had similar background.

So far we have seen that UNIXvisual helped students improve significantly from the

87

pre-test to the post-test, and that the improved performance continued in the final

exam. Students who used UNIXvisual and those who did not use the tool had a similar

UNIX permissions background. But students who used UNIXvisual made significant

improvement and received higher scores in all question groups in the post-test and

the final exam than students who did not use the tool. More specifically, the use

of UNIXvisual significantly increased the scores of G3 in the post-test and the final

exam. This suggests that UNIXvisual is very effective in helping students understand

the access to objects with directory traversal, which forms the most difficult questions

in the tests.

3.4.3.3 Evaluation Form

We used a set of questions to collect information on students’ perception of the

effectiveness of the tool. We also gathered information on the time spent on using

the tool and the students’ major. The first 12 rating questions study the effectiveness

of UNIXvisual. Q1 and Q2 examine the overall effectiveness; Q3 and Q4 relate to the

two views that show object permissions without and with directory traversal; Q5 and

Q6 are about the views that interpret permissions from the perspective of a user or

a group; Q7 and Q8 examine the Permission Calculator; Q9 is about the Query; Q10,

Q11 and Q12 are about the interface design. The choices are: 1:strongly disagree,

2:disagree, 3:neutral, 4:agree, and 5:strongly agree. Q13 and Q14 study the time

88

participants spent on the tool. The choices for Q13 are 1:once, 2:twice, 3:3-4 times,

4:5-10 times, and 5:more than 10 times. The choices for Q14 are 1:less than 5 mins,

2:5-14 mins, 3:15-29 mins, 4:30-60 mins, and 5:more than 1 hour. The questions are

as follows:

Table 3.10
UNIXvisual Rating and Usage Questions (© 2017 ACM. Reprinted by

permission.)

Rating Questions

Q1 UNIXvisual helped to better understand UNIX permissions

Q2 UNIXvisual enhanced UNIX permissions course coverage

Q3 Decision View helped to understand which users have access
to a certain object and why

Q4 Object View helped to understand which users have access
to a certain object and why

Q5 User View helped to understand how decisions are made
to the access request from a particular user

Q6 Group View helped to understand how decisions are made
to the access request from a particular group

Q7 Permission Calculator was helpful for understanding the
meaning of each bit in UNIX permissions

Q8 Permission Calculator was helpful for understanding how
to specify permissions for an object

Q9 Query was helpful for understanding UNIX permissions

Q10 The use of colors in the visualization is effective

Q11 The size of items is reasonable and clear

Q12 The layout of items is reasonable and clear

Usage Questions

Q13 How many times did you use UNIXvisual

Q14 How long did you use UNIXvisual in total

Table 3.11
The Means (µ), and Standard Deviations (σ) of UNIXvisual Evaluation

Questions (© 2017 ACM. Reprinted by permission.)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
µ 3.81 4.05 4.00 3.81 3.85 4.10 4.43 4.29 3.89 3.81 3.71 3.29 1.95 2.43
σ 0.60 0.50 0.58 0.91 1.09 0.72 0.81 0.85 0.60 0.75 0.72 0.90 0.74 0.81

89

Figure 3.23: The Means with Confidence Intervals of UNIXvisual Rating
and Usage Questions (© 2017 ACM. Reprinted by permission.)

2.0

2.5

3.0

3.5

4.0

4.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14

M
e
a
n

Table 3.11 and Figure 3.23 have the means and standard deviations, and the means

with confidence intervals of UNIXvisual rating and usage questions, respectively. All

questions except Q12 received a mean greater than 3.7. Students generally believed

that UNIXvisual helped the understanding of UNIX permissions and enhanced the

course coverage. Permission Calculator received the highest rating (Q7, Q8). The

layout received the lowest score (Q12). The reason may be, as mentioned in a student

comment, due to the Object View not being scaled properly. Some text overlap was

reported. The means of Q13 and Q14 are 1.95 and 2.43, indicating that students

generally used UNIXvisual twice for 10 minutes in total. We used the middle point of

a range for estimation.

90

3.4.3.4 Evaluation Form – Student Comments

The four write-in questions were used to collect information of the participants’ major,

their thoughts on the most and least useful features of the tool, features to add, and

problems with installation.

Of the 21 students who used UNIXvisual, 15 students considered the Permission Cal-

culator as the most useful feature. One student wrote that “the permission calculator

can be quite useful to ensure you know how the permissions will look for some file”.

Four students favored the User/Group View. Two other stated the overall features of

“being able to actually check access to a file and check different scenarios” and “the

instant feedback of whether something works or not with quick explanation” as the

most useful. As for the least useful feature, 16 students did not state any, and three

students answered the Permission Calculator. One student mentioned that “I person-

ally am familiar with permissions, so the calculator was not as helpful”. Therefore,

while 71% of the students considered Permission Calculator as the most useful feature,

it is also considered as the least useful one due to the familiarity to the notation

conversion on those students’ part. Another student considered the Object View the

least useful as the view did not scale properly and texts had some overlap.

The students did not encounter any installation problem. When asked to suggest

features to add, students were content with the available features. They wrote “I

91

think it is very well designed. Nothing needs to be added”, and “the software was very

friendly at aiding further learning and understanding of UNIX permissions the way

it currently is”. There are also some comments for further improvements. Students

suggested to add “something to detect if your files are visible by anyone else”, and

“having a video tutorial on how to use the software”.

3.5 Design Framework of the Visualization Sys-

tems

In practice, users cannot be allowed to modify mandatory policy on a system in gen-

eral use. A special environment may be created, for example in a virtual machine, but

this can require significant system administration overhead to create and maintain.

Additionally, the size and syntax of policy specifications for real systems: (1) may

unnecessarily obscure the underlying principles that are being taught and (2) make

it difficult to design and grade meaningful assignments. These challenges seriously

affect the use of access control.

92

3.5.1 Design Framework

The above four visualization systems were designed under a unified design frame-

work to mitigate these challenges and thus improve the learning and teaching of four

commonly-used access control models both for in-class lectures as well as self-learning

outside of the classroom. The design framework focuses on the following aspects:

1. Provide an environment to practice policies. Similar to many other com-

puter science subjects, the best way to learn access control is through practical

experiments. However, due to security reasons and heavy maintenance, the

learners do not have the luxury of practicing their own policies on real or vir-

tual machines. Learning access control would be much easier if there is an

environment where learners can write, modify and also load policies to examine

the effect of security configurations without concerns of technical details and

risks of undermining the security of the underlying systems.

2. Provide intuitive languages for policy writing. Mechanisms for setting an

access control policy are complex and detailed. For example, a single language

is used to specify an SELinux policy [63]. This language intermingles the Type

Enforcement, Multilevel Security, and Role-based Access Control models [82].

It is even worse that there is no language for specifying a policy under the UNIX

access control model. We believe this unnecessarily complicates the learning of

93

the basic abstractions of the models. These difficulties in learning and writing

policies using existing policy languages present a great distraction from the core

characteristics of a model itself. To address this issue, we develop a language

for each model that is in the form of a combination of natural language and

programming language. Hence, our languages could present the intuitiveness of

natural languages to make the core components of a model straightforward to

users, and the accurateness of programming languages so that each component

is specified and interpreted without ambiguity.

3. Provide visualization to improve learning. In the field of access control,

the essential concepts behind a model and their relationships within a policy

can be difficult to interpret. Visualization, as a means of itemizing the concepts

into graphical entities and connections, could extract the meaning of policies and

present only the important model characteristics to users. Its dynamic nature

also allows the presentation of visual and textual hints to users that could act as

an experienced professional to provide guidance at each operation. Leveraging

visualization for pedagogical purpose seems to be an appealing strategy.

4. Help students identify and correct misunderstandings. Given the diffi-

culty of testing an access control policy, it is common that a policy with error is

developed without its correctness being questioned. It is also common that sys-

tem administrators set access controls without testing their effects. Therefore,

there is a need to have pedagogical tools that show the result of a policy, so that

94

users can identify and correct their misunderstandings, and get into the habit

of analyzing developed policies before installment. Our framework implements

this feature through policy visualization and query systems.

5. Reach a large segment of learners. The number and the duration of lec-

tures available for access control, in an already crowded undergraduate security

curriculum, are often limited. Further, it is still common for important security

material to be learned by employees already in the workforce. This indicates

a need for software that supports deep, interactive self-study. Our framework

supports this aspect by distributing hand-selected policies to illustrate impor-

tant model characteristics. We use a tool for each model, to support learners

that want to focus on one particular model. The other framework charac-

teristics, like policy visualization and query systems, also support self-study.

Moreover, students have varying backgrounds and can comprehend the same

materials to different degrees. They also have their own learning styles and

preferences. Some may learn best through graphical representations, while oth-

ers may learn better working on examples and exercises. To address these issues,

our framework attempts to support these different learning modes by providing

a graphical representation of access control models showing the impact of each

rule dynamically, supporting the import of custom policies, and adding a quiz

system for conducting self-evaluation and instructor quizzes.

95

3.5.2 Implementation

Our software design framework for teaching and learning access control is composed

of four parts: a model-based specification language, a visualization system, a query

system, and a quiz system. The visualization introduces the basic concepts and

demonstrates concrete examples. The specification languages are distinct for each

access control model but share a similar syntax for the ease of use. Simple policies

can be written and visualized in class. Complex policies can be built graphically step

by step and effect of each modification is immediately brought to notice. The query

system includes a list of commonly asked question. When a question is asked, the

solution is provided and animation is utilized for step-by-step explanations. It serves

a dual purpose of policy testing and self-test on the understanding of the subject.

The quiz system takes two forms. There are Student self-test and Instructor written

test for students’ and instructors’ use. We designed the framework in a way that the

software built under it can increase the users’ understanding of the target subject, is

convenient to use at any time by people with different learning styles, and easy to

use so that users only have to focus on teaching/learning the target subject.

96

Chapter 4

Access Control Policy Authoring

and Analysis System

4.1 Overview

The previous chapter introduced visualization systems that were developed for cre-

ating and editing access control policies. The systems were proven effective in facili-

tating the teaching and learning of the access control models. This attains our first

goal of providing an easy approach for learning access control models.

For the second goal of efficient access control policy management, we developed a

user-level visualization system for policy authoring and analysis. The system of policy

97

authoring and analysis is to achieve the following properties:

1. Easy access control policy authoring. The system is designed to provide

new learners with an environment to practice access control policy design and

evaluation without affecting the underlying operating system, and to provide

security professionals with a tool to manage policies effectively and coherently

for different security goals. A simplified model language, akin to common En-

glish expression of access requirements within an organization, such as “Tom

can read and write to directory /Software development/Project zero”, was de-

signed for this purpose. At the implementation level, the system supports the

RBAC model. This model is incorporated because it has the flexibility of being

mandatory as well as discretionary access control, and is a model frequently

taught and used in many institutions and corporations.

2. Textual and graphical representations of policies and analysis feed-

back. In addition to the traditional textual representation, it is important

for a tool to be capable of presenting the policy properties through graphs as

human eyes naturally capture and organize information better through graphs

than through texts [5]. The graphical representation also has the advantage of

displaying an abundance of information and accommodating human cognitive

capability with the application of appropriate visualization strategies [67]. For

example, the access of a user to an object and all objects on the path starting

98

from the root directory to the object of interest could be displayed simulta-

neously. Users will be able to see the stopping point of access when there is

no access to the object of interest. Or users can see the penetration of ac-

cess going from the root to that object when access is possible. Therefore, a

graphical representation is able to show an abundance of information in a suc-

cinct way, and reveals information that otherwise would be hidden. We use

graphical representation to support large-scale policies which are challenging to

read and interpret collectively in practice, show the process of an event through

step-to-step guidance, and help notice problems.

3. Interactive access queries. Checking whether a request is allowed or dis-

allowed after a policy is composed has the same importance as testing after a

program is written. It should be an everyday practice, yet has been overlooked.

Our system values testing and supports it through access queries. The queries

include types such as which objects are accessible by a certain user, whether a

user has access to a certain object, which users can access a certain object, and

so forth. The answers to each query are represented in both texts and graphs.

Figure 4.1 depicts the main structure of the system with the ellipses representing data

models and the rectangles representing process modules.

99

Figure 4.1: System Structure

The system consists of four major parts. The first part is a model language for

the specification of policy rules. To minimize the learning overhead, the language

simplifies each rule to the assignment of the user, object, action components, which

aligns with the format of common access control requirements within organizations.

The second part is the policy authoring component that supports both template-

based GUI entry as well as text editor entry. The GUI allows direct entry of policy

components for setting up rules with detection of redundant rules in real time. As

100

traditional policy authoring requires knowledge of the model language, it can be diffi-

cult for beginners. This component was designed for easy configuration of permissions

through visualization and common computer operations without relying on users’ ac-

cess control expertise; the GUI template allows users to set access rules through the

least amount of policy elements (user, object and actions), so that new users can start

policy writing practice easily. Still, our system allows users who are familiar with the

model language to write policies in regular text editors.

The third part is the policy ratifier component. The policy ratifier takes a pol-

icy, translates the policy into a different format recognizable to a third-party model

checker, and allows access queries in textual forms.

The last part is the policy analyzer component. The policy analyzer takes a policy

file and interprets the rules into graphical entities. Users may interact with the

visualization to explore information of user’s access to objects, how a user gets the

access to certain objects, the roles associated with a certain user, and permissions

assigned to different roles. The following sections introduce the model language for

policy specification, the policy authoring component, the policy ratifier component,

and the policy analyzer component in order.

101

4.2 Model Language

A policy is a collection of specifications that define the values and relationship of key

elements, which include user, object and actions/permissions in this case. The users

are the user accounts existing in a file system. The objects are the files or directories

within the same system, which are the source of information needed for users to

accomplish different tasks. The permissions are a combination of read, write, and

execute. They represent the kind of actions a user is allowed to conduct on certain

objects. We use 〈User〉, 〈PATH〉, and 〈PERM〉 for the representation of a user, an

object and a set of permissions, respectively. In a policy, we allow two sources of

file system information; one directly defined through user, object and permissions,

and one from a preprocessed file containing directory hierarchy extracted from a real

system. Thus, our tool allows both individual and merged input of a policy-defined

file system and a real file system.

In our model language, each line of specification starts with a keyword. If the keyword

indicates the definition of an element, it is followed by one or more values in the type

of that element. Otherwise, the rule defines the relationship between elements and

the relationship expression follows the keyword. The following defines the use of

keywords:

102

- oscrawlfile defines the path pointing to the preprocessed file that contains

the directory tree within an operating system. This piece of information can

be obtained by our python script “crawlDirectory.py” included in the “policies”

folder. The file has the hierarchy of all objects under a root directory specified

when running the script. The crawled directory tree will be merged with the

policy-defined file system based on the containment of directories; the tool will

only use the policy-defined file system if no path is given for this keyword.

- root specifies the starting directory for the object hierarchical tree. For both

crawled directory tree and the policy defined file system, only the root directory

and its descendants will be read into the tool.

- user contains the list of all users.

- object contains the list of objects. The language allows the specifica-

tion of disconnected directories, and the objects between them are gener-

ated with the hierarchy being automatically computed. For example, if

/ and /Software development/Project zero/source code are the only directo-

ries specified in a policy, directories of /Software development and /Soft-

ware development/Project zero will be automatically added and their default

permissions are set to none. Users can modified the permissions either by ex-

plicitly specifying them in the policy, or through the visualization component.

- rule specifies the content of a rule. A rule is composed of a user, a set of

103

permissions, an optional recursive sign for permissions and a list of objects.

The grammar for specifying policies uses a format of User-Object-Action (UOA), and

is defined as follows:

UOA Specification

UOA→ Stmt | (Stmt UOA)

Stmt→ HeadStmt | UserStmt | ObjStmt | RuleStmt

Statements

HeadStmt→ (OSCrawlStmt | ε) RootStmt

OSCrawlStmt→ “oscrawlfile:” <PATH>

RootStmt→ “root:” <PATH>

UserStmt→ “user:” UserList

ObjStmt→ “object:” ObjList

RuleStmt→ “rule:” <USER> PermList Recursive ObjList

Tokens and lists

Recursive→ “-r” | ε

UserList→ <USER> | (<USER> “,” UserList)

ObjList→ <PATH> | (<PATH> “,” ObjList)

PermList→ <PERM> | (<PERM> “,” PermList)

104

Our prototype for the policy language also supports a comment sign “#”. Figure 4.2

has an example policy.

oscrawlfile: /User/Documents/classesCrawl.txt

root: /

user: alan, tina, sally, sam, oscar

object: /, /tools, /classes/os, /classes/security,

/classes/security/public, /classes/os/public,

/home, /classes/security/private, /classes/os/private

rule: alan r,x -r /tools

rule: alan r,w,x -r /classes/os, /classes/security

rule: tina r,x -r /tools

rule: tina r,w,x /classes/os, /classes/security

rule: tina r -r /classes/security/public, /classes/os/public

rule: sally r,x -r /tools

rule: sally r,w -r /classes/security/public, /classes/os/public

rule: oscar r,x -r /tools

rule: oscar r -r /classes/os/public

rule: sam r,x -r /tools

rule: sam r -r /classes/security/public

Figure 4.2: Policy in UOA Model Language

The policy constructs a file system from two parts. One part is a directory tree speci-

fied in the file /User/Documents/classesCrawl.txt. The other part is another directory

tree generated from the object list following the key word object. The two parts are

truncated at the specified root directory / with all its descendants further merged

based on directory containment. Following the file system definition, the access to

objects are defined through rules. For example, “rule: tina r,w /classes/os, /classes/se-

curity” allows user tina the read and write permissions to the directories /classes/os

105

and /classes/security. If tina can further have the same access to all objects con-

tained in these two directories, then the recursive sign “-r” could be placed before the

directories.

4.3 Policy Authoring

Composing a policy usually requires knowledge of the policy language in addition to

the underlying access control models. The traditional way of writing policy files in

text editors can be convenient for professionals and experts. But for beginners, the

process of learning the models and their policy languages can be time-consuming.

We designed the authoring component to simplify the process of writing policies for

users, particularly new learners.

The authoring component supports two types of inputs. The first type is text entry

in regular text editors using our model language. The policy file is saved with the

extension of “uoa”, which allows it to be imported into the system. This could be

convenient for users who are already familiar with the language.

The second type is a template-based policy entry. This type allows direct permission

setting through the graphical interface. It allows entry of values for the user and

object components and for access rules to be set through a combination of user,

106

object, action and the recursive sign. The user is a user account. The object is a

file or directory. The action is a set of r, w, and x, which stand for read, write,

and execute accesses. They carry the same permissions as in the UNIX permissions.

Lastly, the recursive sign is a boolean value, where false means the action to the object

only applies to the object itself while true means the action also applies to all objects

beneath the specified object. Figure 4.3 shows the template interface. In addition to

writing a policy, this component also detects redundant rules and highlights them in

grey. In this example, alan has recursive r, w, x access to /Users/Documents/interview,

thus any rule granting access to objects contained in the directory is a redundant rule

(in grey) and can be removed by users manually. Through these methods, users are

able to use the values provided to write policies without restrictions from their access

control expertise.

Figure 4.3: Policy Composer in ACvisual

107

4.4 Policy Analysis

The Policy Analyzer component takes a policy composed through the GUI or from an

input file written in the model language and generates a visual representation of the

rules in the policy. The UOA policy is then converted to an implementation of the

RBAC model. An RBAC policy has a list of users, a list of objects and some roles

that carry permissions. Each user can be assigned to one or more roles from which she

acquires the permissions to objects. As the UOA carries the same meaning of users

and objects with the RBAC model, the core conversion then becomes the introduction

of roles. Given that roles are different in permissions to objects (role inheritance forms

a Hasse Diagram), we create roles based on the distinctive set of permissions from all

users. Then the users are assigned to roles with the permissions that are originally

assigned to them in the UOA policy; users who have the same set of permissions are

assigned to the same role. Role hierarchy is built based on permission set containment;

if a role’s permission is a proper subset of a second role, then the second role (senior

role) inherits the first role (junior role). This approach takes the most straightforward

interpretation of user permissions and casts it to a role, which can be coarse in terms

of permission division. In the case of a simplified software development team, there

are a group of software engineers and a manager. The software engineers can belong to

one of the software development, software engineers in tooling, and quality assurance

teams. Each team allows their engineers to have read, write and execute permissions

108

to their own data resources. The manager only has the read and execute access.

In our system, the manager’s role will be a role that does not inherit any role as

all developer’s roles have write permission that the manager does not have. Thus,

the manager’s role has permissions to three engineering teams all together. But it

is usually a good practice to separate permissions to different team’s resources. So

there is a possibility that users would prefer creating an individual role with read

and execute permissions for each team and let the manager inherit all of them. To

encouraging careful role divisions, we allow in the tool ways to make changes to the

user, object, role and permissions for custom needs.

The visualization then illustrates user-to-role assignment and role-to-object permis-

sions through graphical entities. Users may interact with the visualization to explore

information of user’s access to objects, how a user gets the access to certain objects,

the roles associated with a certain user, and permissions assigned to different roles.

There are three views in this component: the User View, the Object View, and the

Role View, within which the User View and the Object View have a simple version

and a detail version. The simple version shows the permission query result directly.

The detail version shows the process of examination in steps. The Animation Switch

toggles the visualization between these versions. All the graphs support zooming

operations.

109

Figure 4.4: Policy Analyzer in ACvisual

Figure 4.4 shows the interface of the Policy Analyzer. The tool panel on the left has

four sections. The first section Perspective allows the activation of one of the three

views. The second section Permission Filter Setting specifies the permission the query

checks for. The third section Object Search asks for an object path, and the object

will be placed as the root of the Object Tree. This filters the unwanted objects out

to keep the Object Tree less cluttered. The last section configures the exclusive roles

for the purpose of Separation of Duties. On the right side, there are two parts: the

User List and the Visualization Canvas. The User List shows the list of all available

users. The Visualization Canvas displays Role View, User View, or Object View, which

are introduced below in order.

110

4.4.1 Role View

Our system supports the Core and Hierarchical RBAC models (Section 1.1.4). Roles

carry the user permissions through the user-to-role assignment together with the

role-to-object permissions. The relationship between roles is also hierarchical where

a senior role can acquire a junior role’s permission by inheriting the latter.

Table 4.1
Role Configuration of A File System

Role Name Direct Privileges Effective Privileges

H1 {10} {1,2,3,4,5,6,7,8,9,10}

H2 {11,12} {1,2,3,4,5,6,11,12}

H3 {12} {1,2,3,6,7,8,9,12}

M1 {4,5} {1,2,4,5}

M2 {5,6} {1,3,5,6}

M3 {6} {1,2,6}

M4 {7,8,9} {1,2,3,7,8,9}

L1 {1} {1}

L2 {2} {2}

L3 {3} {3}

Suppose that a system has role configuration as in Table 4.1. The privileges are

111

represented as numbers. Every role has distinctive direct privileges and effective priv-

ileges that define their permissions. The direct privileges are the permissions directly

assigned to that role, not permissions obtained through inheritance. The effective

privileges are the union of the direct privileges of the role itself and the effective

privileges of its junior roles. If the roles are depicted as nodes with labels of direct

privileges, and the inheritance relationship is drawn from the seniors to the juniors

as directed edges, we will be able to draw the configuration in the table as a role graph:

H1{10} H2 {11, 12} H3 {12}

M1{4, 5} M2{5, 6} M3 {6} M4 {7, 8, 9}

L1{1} L2{2} L3 {3}

Assume that we have a set of roles R = ∪iri where ri is a role with effective privileges

P (ri). Among these roles, the set of role inheritances are denoted as E = ∪i,jeij,

where eij denotes that role ri inherits role rj. Given that a role r1 is inherited by

another role r2 if P (r1) is a subset of P (r2), we can find the following properties of

inheritance relationship from the role graph:

112

Property 1: Reflexivity

For any role ri, it inherits privileges from itself.

Proof: For role ri, its effective privileges P (ri) is a subset of itself (P (ri) ⊆ P (ri)).

Based on the definition of role inheritance, ri is inherited by itself.

Property 2: Antisymmetry

For inheritance eij, it is different from eji unless ri ≡ rj.

Proof: Suppose we have two roles ri and rj that have inheritance relationship eij.

If eji is the same as eij, then ri and rj satisfy eij and eji at the same time. That is,

rj is inherited by ri (eij) and ri is inherited by rj (eji). This gives us P (ri) ⊆ P (rj)

and P (rj) ⊆ P (ri), so that we have P (ri) = P (rj). As each role has a unique set

of privileges, P (ri) = P (rj) would not be possible if ri and rj are different roles.

Therefore, either ri ≡ rj to satisfy both inheritance eij and eji, or eij and eji carry

different inheritance relationship for different roles.

Property 3: Transitivity

If rk inherits rj, which further inherits ri, then rk also inherits ri.

Proof: With role rk inheriting rj and rj inheriting ri, we have P (rj) ⊆ P (rk) and

P (ri) ⊆ P (rj). Given the transitivity property of subsets, we further have P (ri) ⊆

P (rk). This means that rk also inherits ri.

In this graph, edges that can be obtained through reflexivity (introducing self-loops)

and transitivity are removed. For example, if role H1 inherits role L1, the edge from

H1 to L1 will not be drawn as role H1 already inherits role M1, which also inherits L1

113

and has effective privileges that contain privilege 1 from L1. This generates the Hasse

diagram that effectively reduces the clutter in the graph while the same amount of

information is preserved. As it is possible to have two roles without an inheritance

relationship (e.g., roles at the same level), the inheritance relationship represents a

partially ordered set. If we construct a MaxRole that has the permission of the union

of permissions from all available roles, and a minRole that has no permissions, then

any pair of roles in the system will have a unique supremum and a unique infimum.

This makes the role hierarchy a lattice. Since a role with no permission is unnecessary

in real systems, the minRole will not be included in our system.

MaxRole 1{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

H1{10} H2 {11, 12} H3 {12}

M1{4, 5} M2{5, 6} M3 {6} M4 {7, 8, 9}

L1{1} L2{2} L3 {3}

MinRole {}

There are five aspects of fundamental importance for the role hierarchy visualization:

1) inheritance relationship between roles; 2) user-to-role assignment; 3) user privileges

from direct role assignment and role inheritance; 4) whether there are cycles in the

114

role inheritance graph; 5) whether any user’s role assignment violates the Separation

of Duties (see Section 4.4.1.2). In Role View, the User List shows all users and the

role hierarchy is displayed through a graph. Each role is depicted as a node, and the

inheritance between roles is depicted as a directed edge pointing from the senior role to

the junior role. This view allows the exploration of roles assigned to individual users

and the inheritance between roles. The roles assigned to a user can be displayed by

selecting that user. The directly assigned roles and inherited roles will be respectively

in orange and light orange while non-relevant roles being grayed out. The permissions

of each role can be examined by selecting a role node from the role hierarchy. The

associated rules will be displayed in a table at the bottom; the roles inherited by the

selected role will also be in light green. role 0 is constructed as the maxRole which

has recursive read, write and execute permissions to all objects in the system. If there

is an actual role with the permissions of the maxRole, then that role will be in the

place of role 0.

115

Table 4.2
Example Role Permissions

Role Permissions Objects Recursive

role sam r,x /tools True

r /classes/security/public True

role oscar r,x /tools True

r /classes/os/public True

role sally r,x /tools True

r,w /classes/security/public True

role tina r,x /tools True

r,w,x /classes/os, /classes/security False

r /classes/security/public, /classes/os/public True

role alan r,x /tools True

r,w,x /classes/os, /classes/security True

In Table 4.2, role alan has the same permission as role tina for /tools, and has all pos-

sible permissions to /classes/os and /classes/security and objects included in them.

The permissions role tina has to /classes/os and /classes/security and objects beneath

them is a subset of those of role tina. Therefore, role alan inherits role tina. The

inheritance relationship between other roles are based on this same permission con-

tainment. Figure 4.5 (a) shows the role inheritance hierarchy of this example. In

116

addition to building the correct role inheritance, problems such as cyclic role in-

heritance and violation of Separation of Duties can occur and produce problematic

policies in practice.

(a) (b)

Figure 4.5: Role View. (a) shows role inheritance hierarchy. (b) shows
cyclic role inheritance.

4.4.1.1 Cyclic Role Inheritance

Cyclic role inheritance happens when a junior role inherits its ancestor role or has no

less permission than one of its ancestors. It is a situation people should be made aware

of during the setup of an access control policy, as it allows junior roles to have the same

privileges as its senior roles. This can be an indication of the permission of the junior

is mistakenly set up or multiple roles sharing the same permissions which introduces

redundant roles. In the above example (Figure 4.5 (a)), suppose recursive read, write

117

and execute to “/” is accidentally added to role sam, then role sam has the same

permissions as role 0. Since role 0 already has this permission before role sam does,

then role sam will be inheriting role 0, which introduces a cycle between role sam and

role 0. All the roles in between are also affected and share the same permissions. Our

role hierarchy computes this relation and highlights the cycle in red (Figure 4.5 (b)) as

a notification of the existence of a cyclic inheritance. With this piece of information,

users will be aware of the situation and can make adjustments accordingly.

4.4.1.2 Separation of Duties

Separation of Duties is the concept of having more than one person involved to com-

plete a task. It is to avoid granting excessive privileges to one person. In the case of

distributing medicine to a patient, a prescription is needed from a doctor and taken

to a pharmacist. Here, a doctor can provide a prescription, but does not have the

right to dispense the medication to the patient by laws and regulations. Therefore,

one is only allowed to either be the doctor or the pharmacist. Otherwise, it is possible

to let the patient unknowingly abuse drugs.

118

Figure 4.6: Role Inheritance Graph in Role View

We allow users to specify exclusive roles within SOD relationship in groups; each

line in the interface indicates a group, and roles of a group, which are delimited by

commas, should not be assigned to the same user. The role hierarchy shows the roles

within different groups in different colors. In Figure 4.6, role sam and role oscar are

in an SOD relationship, indicated in the graph as brick red color. Users tina and alan

that violate this SOD setup are shown in bold font under the User List.

The detection of users who violate SOD relationships is achieved through the trace

of role inheritance. Since users obtain permissions through roles, finding the roles

that violate the SODs is the key step. For the roles within an SOD relationship,

their nearest common ancestor is the lowest level of role that have permissions from

the exclusive roles of the SOD specification and should be first located. Then all the

119

roles that inherit this ancestor role (including the ancestor itself) must have violated

the SOD relationship. Based on the user-to-role assignment matrix, the users who

violate the SODs are the users assigned to the set of ancestor roles. From the graph,

the exclusive roles in a SOD specification are role sam and role oscar. The nearest

ancestor is role tina. Both role tina and role alan inherit role tina. Therefore, users

tina and alan have permissions from role sam and role oscar at the same time, and

thus violate the SOD relationship between these two roles.

4.4.2 User View

The User View examines the privileges of a user and is composed of the Role Hierarchy

and the Object Tree. A simple version and a detail version are supported for different

levels of details in answering access queries. The simple version shows the answer of a

query directly; the detail version shows the process of access determination in steps.

The Object Tree, the Role Hierarchy, and the access query are described below.

120

Figure 4.7: User View

4.4.2.1 Object Tree

The traditional directory tree allows the exploration of objects starting from a root

directory through mouse clicks. Nodes can be expanded level by level and collapsed

all at once. The advantage of this method is that it has been widely used and is

very familiar to average users. However, it has drawbacks in three aspects: 1) The

traversal must always start from the root node; 2) It is hard to locate a node if too

many nodes are expanded; 3) It is hard to trace a node’s path from the root. To

counter these problems, we decided to use a SpaceTree [50] prototype with additional

functionalities for better navigation and reduced clutter.

121

In the Object Tree, the directory tree is depicted as a horizontally oriented tree with

nodes representing objects and edges representing directory containment. Files are

depicted as hollow nodes and directories are depicted as solid nodes. The tree is

initiated to be rooted at the specified root in the policy. Left mouse clicking a node

would highlight the path from the root node to that node. Left mouse clicking

a directory node plus Shift button would enable toggling between expanding and

collapsing that node. Instead of showing all objects at once, the level of our Object

Tree is limited to a maximum of three levels. Suppose that the root is at level one, if

a node at level three is expanded, the whole tree would move down one level and be

rooted at the ancestor of the expanded node at level two. The siblings of the new root

and the nodes originally in level one are then hidden. When collapsing a directory

node, the whole tree would make the opposite movement to that of the expansion.

That is, the parent of root becomes the new root, and the siblings of the old root are

shown. We design the Object Tree exploration in this manner as the closely related

information, such as the nodes on the path from the root to the operated node, and

the sibling of the operated node, is what carries the information that would affect

further explorations when the expanding and collapsing of a node.

When the user of interest is chosen from the User List, the object nodes are col-

ored by its accessibility of a user. The outline color of a node indicates the user’s

accessibility to the object itself; the filling color of a node indicates the user’s ac-

cessibility to the children of the clicked object. The intensity of blue color further

122

indicates the level of accessibility: blue means accessible to the node itself or to all

child nodes; light blue means that only part of the child nodes is accessible; and gray

means not accessible to the node itself or to any child node. Figure 4.8 shows an

example object tree when user tina is selected. From the Object Tree, we know that

only part of the objects beneath /User/Documents/interview is accessible. We also

know that all objects in /User/Documents/interview/notes are accessible, and all ob-

jects in /User/Documents/interview/intro to alg slides are not accessible. Even though

showing objects within these directories is allowed by the maximum level constraint,

the directories are initiated as collapsed. We collapse the nodes with all accessible

and all inaccessible children as the accessibility of children is already visible through

the filling color of their parent nodes. Through hiding the children, the clutter of the

graph is reduced and the scalability of visualization improves. If a user is interested

in the detailed permissions of those child objects, manual expansion can still help.

123

Figure 4.8: Accessibility of User tina

4.4.2.2 Role Hierarchy

For the examination of a user’s access to objects, the permissions of each role explain

why some accesses are granted. The Role Hierarchy is constructed to show user-to-role

assignment, role-to-object permissions, and roles’ inheritance relationship. It is the

same graph as in the Role View. Role View allows a detailed exploration from a role’s

perspective. The Role Hierarchy here act as the media to show detailed permissions of

a user through directly assigned roles to the inherited roles based on role hierarchy.

124

4.4.2.3 Access Query

The User View allows access queries from the perspective of a user. The Animation

Switch toggles the visualization between simple version and detail version.

The simple version starts with a selection of a user from the User List. Figure 4.8 shows

the accessibility of user tina with the related rules listed in the bottom table. Each

rule has the elements of User, Role, Resources, Permissions, Recursive, and Inheritance.

It tells which role is used to access an object, the exact permissions the user has to

the object, and whether the permission is acquired through direct role assignment or

from inherited roles.

In the Object Tree, users may click on any node for an examination of the permission

to that object. There are three possibilities to obtain access to an object. A user can

access an object through directly assigned roles, through roles inherited by the directly

assigned roles, and through roles directly assigned and roles inherited. Figure 4.9

and Figure 4.10 illustrate that tina’s permission to notes is read, write and execute

and permission to gdbibilo.pdf is read and execute. It also shows some brief role

information that the permissions are obtained through directly assigned role role tina

and inherited role role oscar, respectively. In the second case, the inheritance paths

are (role tina → role oscar) stated for user’s reference.

125

Figure 4.9: Direct Accessibility of User tina

Figure 4.10: Inherited Accessibility of User tina

The detail version is provided for a step-to-step illustration of how a user accesses

an object. Users may use the buttons of Prev and Next under Animation to move the

animation backward and forward. The animation shows the directly assigned roles of

a user, the permissions acquired from directly assigned roles, the roles inherited by

126

the directly assigned roles, the permissions acquired through inherited roles, and at

last the union of all permissions to the object as a summary. Figures 4.11, 4.12, and

4.13 illustrate some steps of animation for user tina. First, the directly assigned role

is highlighted and its permission is explained. Then the inherited roles and edge of

inheritance are highlighted to find additional permissions. The final step shows the

relevant roles and permissions altogether to the object in question.

Figure 4.11: Directly Assigned Roles of User tina

Figure 4.12: Permissions from Directly Assigned Role

127

Figure 4.13: Inherited Roles of User tina

Figure 4.14: Effective Permission of User tina

4.4.3 Object View

Another common type of query goes the opposite way to the user-to-object query.

The Object View is provided to answer questions of whether an object is accessible to

128

any user and which users have access. The view works the opposite way as the User

View. An object must be selected. Then the users in the User List that have access

to the object will be shown in bold font. The exact permissions and related rules can

be displayed at the selection of a user. The simple version and detail version work in

the same manner as those of the User View.

4.5 Policy Ratification

The Policy Ratifier provides a policy property check with the assistance of the NuSMV

model checker. NuSMV [28] is a symbolic model checker developed by FBK-IRST,

Carnegie Mellon University, and University of Trento. It allows a user to write specifi-

cations of synchronous to asynchronous finite state systems and checks in the temporal

logic CTL. The input language, similar to that of SMV, states the transition relation

of a finite Kripke structure. It provides great flexibility, but also requires great efforts

to learn and could introduce the danger of inconsistency for non-expert users. Our

ratifier exempts users from the work of learning the SMV language and writing SMV

input files for the model checker. Users will only need to add a property consisted

of a user, an object, a type of permission, and a decision (Permit/Deny) to check

against the running policy in the system.

Figure 4.15 shows the interface of the Policy Ratifier. Properties could be added in

129

the top table with an additional result column for the display of result. If the result

is false, it will be in red for visibility, and a counterexample with state value to each

variable will be given in the bottom window in texts (Figure 4.16).

Figure 4.15: Policy Ratifier

Figure 4.16: NuSMV Result

130

In our system, there are two types of property checks: the Comprehensive Property

Check and the Custom Property Check. The Comprehensive Property Check is triggered

by clicking the run button with an empty property table. Appendix A has an example

of the Comprehensive Property Check in the SMV language. It automatically generates

an SMV file from the RBAC specification output by the authoring component. The

following properties are checked:

1. Cyclic Role Inheritance Check

Cyclic role inheritance happens when a role inherits another role that has al-

ready inherited it. This will generate a cycle in the role hierarchy, and is in

need of inspection since it either indicates a problem in permission assignment

or the existence of redundant roles. The cyclic inheritance check is based on

two facts: 1) If a role inherits its ancestor role (cyclic inheritance occurs), then

this role will have the permissions its ancestor has; and 2) A role must have

some permissions that its descendants don’t have. Therefore, we find cyclic

inheritance by checking whether the permissions of any junior role is no longer

a proper subset of those of its senior roles.

2. Complete Role Permission Check

Checks if all role are specified the intended permissions. Properties that list all

permissions given to a role are written in this part. If there is a difference, a

counterexample would be given.

131

3. Complete User Permission Check

Checks if all users are assigned the intended permissions. Properties that list

all permissions given to users are written in this part. If there is a difference, a

counterexample would be given.

The Custom Property Check allows users to check properties of their interest. Prop-

erties must be added into the upper table and the check is triggered by clicking run.

The following properties are supported.

1. User Permission Check

Checks if a user has the specified permission to certain object. The values of

a user, an object, the permissions, and the permission recursiveness should be

provided.

2. User Accessibility Check

Checks if a user has the specified permission to any object. This type of property

is added by choosing Any for Object.

3. Object Accessibility Check

Checks if an object can be accessed by any user with specified permission. This

property is added by choosing Any for User.

132

4.6 Evaluation

4.6.1 Environment, Procedure and Goals

We evaluated the effectiveness of the tool in three main aspects: 1) whether our tool

makes writing access control policies easier, 2) the effectiveness of our tool in helping

analyzing access control policies, where the values and relationship between user, role

and object can be fully understood, and access queries can be correctly answered ,

and 3) the general usability.

The evaluation was conducted at the Graphics Lab in the Department of Computer

Science at Michigan Technological University. The participants are from different

majors; one participant is from Physics, one is in Chemical Engineering, three major

in Math, and 15 are in Computer Science, Computer Engineering and related majors.

All of the participants except one, who took the Computer Security course before,

did not have prior knowledge of the RBAC model.

The participants were first given a brief introduction to access control, asked to

complete tasks using the visualization system, and then complete questions about

the effectiveness of our tool and their understanding of the RBAC model.

133

The introduction covered the meaning and application of access control, the concepts

of subject, object, and permission, and how RBAC implements access control through

roles and role inheritance. Then participants were asked to write a policy based on

given access requirements, and answer questions about a second policy. Specific in-

structions were given on how to use the tool to answer each questions. After the

activity was completed, participants were given a set of RBAC technical questions,

which were answered without the help of the visualization system. Lastly, the partic-

ipants completed an evaluation form regarding the use of the tool. The whole process

was conducted near the end of a semester on a voluntary basis, and 20 valid set of

answers and evaluation forms were collected.

4.6.2 Test Problems

The question set consists of 15 questions about the policy written and policy answered

using the tool (tool questions) and eight RBAC technical questions (see Appendix B).

Each question counted as 1 point. The tool questions cover each component of the

tool and gather information of whether the tool is effective in helping policy writing

and analysis. They also allow the participants to obtain user experience of each

component for further evaluation feedback.

134

Table 4.3
The Means (µ), Standard Deviation (σ), and Confidence Intervals (CI−,

CI+) of Tool Question Groups

Role View User View Object View Ratifier

µ 0.84 0.84 0.80 1.00

σ 0.36 0.37 0.41 0.00

CI− 0.68 0.68 0.62 1.00

CI+ 0.99 1.00 0.98 1.00

Table 4.4
The Means (µ), Standard Deviation (σ), and Confidence Intervals (CI−,

CI+) of the Policy Analysis Tool Questions

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Total

µ 0.90 0.65 0.90 1.00 0.80 1.00 0.90 0.90 0.70 0.70 0.80 1.00 1.00 1.00 0.88

σ 0.31 0.49 0.31 0.00 0.41 0.00 0.31 0.31 0.47 0.47 0.41 0.00 0.00 0.00 0.33

CI− 0.77 0.44 0.77 1.00 0.62 1.00 0.77 0.77 0.49 0.49 0.62 1.00 1.00 1.00 0.73

CI+ 1.00 0.86 1.00 1.00 0.98 1.00 1.00 1.00 0.91 0.91 0.98 1.00 1.00 1.00 1.00

The tool questions consist of a policy writing tool question and 14 policy analysis tool

questions. The policy writing tool question gives a number of access requirements and

ask the participants to use the Policy Composer to convert the textual requirements

into a usable policy. Our result shows that all participants were able to write a policy

fulfilling the given access requirements without prior knowledge of access control.

As for the policy analysis, Tables 4.3 and 4.4 contain the means, the standard de-

viations and the confidence intervals at 95% significance level of mean of the policy

135

analysis question groups and individual question, respectively. We categorize the

questions into groups based on their relevant components: group of Role View has

Q1-Q5, group of User View includes Q6-Q10, group of Object View contains Q11 and

group of Ratifier includes Q12-Q14. For the tool questions, participants obtained the

answers through instructed operations on ACvisual. That is, the tool helps finding

answers to the questions without requiring the user’s knowledge of access control.

The score, hence, is an indication of whether the tool helps in analyzing policies.

The overall mean value indicates a correctness of 88%. The means within the Policy

Ratifier group (Q12-Q14) show that it was very effective. The lowest mean is for the

Object View component, but it still has a high value of 0.8. From the mean values

of individual questions in Table 4.4, we can find the factors that need improvement

within each group. Q2 and Q5 of the Role View, Q9 and Q10 of the User View re-

ceived the lowest rates of correctness. This means that finding the roles that inherit

a particular role and the permissions to objects at deeper levels of the file system

can still be difficult for users. More explanation or better illustration may be needed

to help provide the answers. But overall the correctness of 88% shows that the tool

provided significant help in analyzing policies.

136

Table 4.5
The Means (µ), Standard Deviations (σ), and Confidence Intervals (CI−,

CI+) of RBAC Questions

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Total

µ 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.70 0.91

σ 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.47 0.28

CI− 1.00 1.00 1.00 1.00 1.00 1.00 0.38 0.49 0.79

CI+ 1.00 1.00 1.00 1.00 1.00 1.00 0.82 0.91 1.00

Table 4.5 shows the means, standard deviations and confidence intervals of RBAC

technical questions. The questions were designed in a way that could not be incorpo-

rated into and solved through ACvisual. As a result, participants had to answer the

questions solely based on their understanding of RBAC after using the tool. Their

answers to the question then can be used as a measurement of the effectiveness of

ACvisual in improving the understanding of RBAC. Based on a user-role-assignment

matrix and a role-object-permission matrix, the questions included roles a certain

user can occupy (Q1), the permissions a user can have to different objects (Q2-Q6),

and inheritance between roles (Q7 and Q8). From Table 4.5, the overall mean shows

a 91% of correctness. The first six questions were answered correctly by all partic-

ipants, while Q7 and Q8 received a mean value of 0.6 and 0.7, respectively. This

means that participants could understand the permissions through user, role, and ob-

ject specification clearly. But the role inheritance still remains the most challenging

137

aspect of RBAC. The reason why mistakes occurred in this part can be twofold. Par-

ticipants who are not clear about how the inheritance relation is formed can answer

the questions incorrectly. Also, participants who understand the topic can still make

careless mistakes as the topic is error-prone by nature. Even though our tool builds

the relationship between roles for users without asking their understanding of the

topic, it would be better if there is a functionality to help, for instance a step-by-step

demonstration of role inheritance construction could be added.

4.6.3 Evaluation Form

Our evaluation form contains a set of rating and usage questions (Table 4.6) and write-

in questions to collect information on participants’ perception of the effectiveness of

ACvisual. The time spent on understanding RBAC and using the tool were also

recorded. The first 12 rating questions study the effectiveness of ACvisual. Q1 The

choices are: 1:strongly disagree, 2:disagree, 3:neutral, 4:agree, and 5:strongly agree.

Q13 and Q14 study the time participants spent on understanding the RBAC model

and using the tool. The choices for Q13 are 1: less than 5 mins, 2: 5-10 mins, 3:

11-15 mins, 4: 16-30 mins, and 5: more than 30 mins. The choices for Q14 are 1: less

than 5 mins, 2: 5-15 mins, 3: 16-30 mins, 4: 31-60 mins, and 5: more than 60 mins.

138

Table 4.6
ACvisual Rating and Usage Questions

Rating Questions

Q1 User-Object-Action policy is easy to write for defined requirements

Q2 Policy Composer made it easy to create and edit a policy

Q3 Policy Ratifier made it easy to check access properties of a policy

Q4 Policy Analyzer was helpful for studying a policy

Q5 User View made accessible objects and roles of a user clear

Q6 Object View makes users and roles that have access to an object clear

Q7 Role View makes it easy to look up permissions and inheritance of roles

Q8 Use of colors in the visualization can easily distinguish different items

Q9 Fonts in the visualization is clear and in proper size

Q10 I feel more comfortable writing access control policies after using ACvisual

Q11 I understood RBAC model after using ACvisual

Q12 The software was easy to use

Usage Questions

Q13 How long did it take to understand RBAC using ACvisual

Q14 How long did you use ACvisual

139

4.6.3.1 General Discussion

Table 4.7 and Figure 4.17 have the means, the standard deviations, and the confidence

intervals at 95% significance level of rating and usage questions. Rating questions

(Q1-Q12) received a positive feedback with an average score of 4.08 and a standard

deviation of 0.64. Q6 and Q7 received the highest ratings of 4.40. This means that the

Object View showed the users and roles that have access to an object clearly and that

the Role View made it easy to look up permissions and inheritance of roles. Q8 and

Q9 on the choice of color and font size for visualization received the lowest ratings of

3.67 and 3.30, respectively. Some participants later indicated in the write-in questions

that the colors are similar for directly assigned and inherited roles of a user in the

Role View. This could be solved by using more distinguishable colors. As for the

font size, the problem may lie in the initial display of Object Tree in the User View

and Object View. For large scaled file systems, the Object Tree can have many nodes,

and the initial display intends to present an overview of the object hierarchy along

with access information. Thus, the fonts can be small in the beginning. But with

the provided zooming and scrolling, users can make adjustment to the font size. For

a better picture of the rating of each aspect mentioned at the beginning, questions

were divided into four groups: 1) Policy Writing of Q1, Q2 and Q10 (G1), 2) Policy

Analysis of Q3-Q7 (G2), 3) General Usability of Q8 and Q9 (G3), and 4) RBAC

Understanding of Q11 (G4). From the group means in the last four columns of

140

Table 4.7, G1, G2 and G4 received positive feedback with mean values greater than

4.10 while the interface’s lowest mean indicating a need of improvement.

Table 4.7
The Means (µ), Standard Deviations (σ), and Confidence Intervals (CI−,

CI+) of ACvisual Rating Questions and Question Groups

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 G1 G2 G3 G4

µ 4.30 4.20 4.05 4.20 4.25 4.40 4.40 3.67 3.30 4.00 4.00 3.90 2.71 3.62 4.15 4.24 3.65 4.10

σ 0.48 0.42 0.63 0.63 0.63 0.52 0.48 0.79 0.67 0.67 0.74 0.32 1.14 0.79 0.48 0.57 0.70 0.72

CI− 4.09 4.02 3.77 3.92 3.97 4.17 4.19 3.32 3.00 3.71 3.68 3.76 2.21 3.27 3.94 3.99 3.34 3.79

CI+ 4.51 4.38 4.33 4.48 4.53 4.63 4.61 4.01 3.60 4.29 4.32 4.04 3.20 3.96 4.36 4.49 3.96 4.41

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Question

M
e
a
n

Figure 4.17: The Means with Confidence Intervals of ACvisual Rating and
Usage Questions

The last two questions Q13 and Q14 are about the usage of the tool. The means of

Q13 and Q14 are 2.71 and 3.62 with standard deviations of 1.14 and 0.79, respectively.

Table 4.8 has the distribution of answers. On Q13, 70% of participants selected Choice

1, 2 and 3. This indicates that the majority of the participants understood the RBAC

141

model within 15 minutes. As for Q14, 90% of the participants selected Choice 2 and

3, meaning that their use of our tool is between 30 to 60 minutes. The participants

who chose Choice 3 were able to finish the tool questions in less than half of the

intended time (60 minutes), which shows that the tool was easy to use. But still,

there are a small number of participants who used the tool for more than an hour.

Table 4.8
Usage Distribution

Choice1 Choice2 Choice3 Choice4 Choice5

Q13 10% 25% 35% 25% 5%

Q14 0 0 35% 55% 10%

4.6.3.2 Statistical Analysis

Spearman rank correlation test was applied to further investigate the rating correla-

tion of each question pair. Out of the 91 pairs of correlations (excluding correlations

to oneself) in Figure 4.18, only 6 pairs had a p-value less than the level of significance

α = 0.05. This means that nearly 94% of the question pairs did not have a significant

monotonic correlation. Out of the six correlated pairs, Q5, Q6, Q10, and Q11 have

ρ(Q5, Q6) = 0.87, ρ(Q5, Q10) = 0.79, ρ(Q5, Q11) = 0.86, ρ(Q6, Q11) = 0.85, and

ρ(Q10, Q11) = 0.82. This means that participants who rated high in the clear repre-

sentation of User View (Q5) and Object View (Q6), would be very likely to rate high

142

in questions of “feel more comfortable writing policies after using ACvisual” (Q10)

and “understood RBAC after using ACvisual” (Q11). Moreover, Q1 and Q2 have a

correlation of 0.76 with a p-value less than 0.05. This shows that participants who

found “the User-Object-Action policy easy to write” (Q1) would also provide a high

rating to “Policy Composer made it easy to create and edit a specification” (Q2). This

is because the Policy Composer uses an interface with key elements from the User-

Object Action language. So participants who already know one of them could pick

up the other form of presentation easily.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Question

Q
u

e
s
ti
o

n

−1.0

−0.5

0.0

0.5

1.0

Pearson

Correlation

Figure 4.18: Correlation Heatmap of Rating Questions

We also looked into the differences among ratings using the Student’s t-test. Pairwise

t-test shows that only Q9 with all questions except Q8 had p-values less than 0.05.

This suggests that for all the rest of question pairs, the null hypothesis that the

143

questions were rated equally cannot be rejected. Combined with the mean values, it

also shows that the rating of font size is significantly lower than all other questions.

4.6.4 Evaluation Form - Student Comments

The four write-in questions were used to collect information of the participants’ major,

their thoughts on the most and least useful features of the tool, parts to improve, and

problems during installation and using the tool.

Five out of the nine participants considered User View as the most useful feature.

They wrote that “the permission of a user is clear and easy to locate” and “the

animation is easy to understand of the relationship between users, roles and objects”.

Two other participants preferred the Role View. They stated that “the role hierarchy

made the relation between roles clear” and that “the graph is easy to interpret and

adding/deleting permissions is easy”.

Some suggestions were also given for further improvement. Many participants men-

tioned that the font used in the Object Tree could be bigger, and that an introduction

tutorial could be added to the package. There was no installation problem reported,

and one participant encountered an out-of-bound problem when importing a policy.

144

4.6.5 Conclusion

We measure our goals through three types of feedback: the tool questions, the RBAC

technical questions, and the evaluation questions. The first goal, easing policy writing,

can only be measured through the subjective evaluation feedback. All participants’

being able to write correct policies given textual access requirements and G1’s mean

of 4.15 shows that users found writing policies through the tool is effective and easy.

Q1 and Q2’s high ratings also show positive feedback on both User-Object-Action

language and the policy template in Policy Composer. Participants also mentioned

that they felt more comfortable writing a policy after using the tool, particularly after

being able to analyze policies through User View and the Object View.

The second goal, helping in analyzing policies, is measured through the correctness

of tool questions and the feedback of evaluation questions. The tool questions were

answered through using the tool and did not require prior knowledge of access control.

Participants on average were able to answer 88% of the questions correctly. Also, in

the evaluation feedbacks, G2 received the highest rating of 4.24 out of 5 points.

The third goal about the intuitiveness of user interface is also measured through

evaluation questions. G3 received the lowest mean of 3.65. It shows a positive

feedback but also indicates room for improvement.

145

Lastly, we were interested in knowing whether the tool helped in understanding RBAC

model. The RBAC technical questions and evaluation questions were used to measure

the effectiveness. Participants were able to answer 91% of the questions correctly with

no help. The evaluation feedback also shows that they could understand RBAC model

after using the tool for 15 minutes.

In summary, We received positive feedback on the effectiveness of ACvisual in making

writing access control policies easier, in helping policy analysis, in the user interface,

and in helping the understanding of RBAC model. In addition to being components

of policy analysis, User View and Object View also helped in making policy writing

as well as understanding RBAC easier. However, the user interface still needs some

rework: the colors designated to directly assigned and inherited roles should be more

distinguishable, and the font size in Object Tree should be improved.

146

Chapter 5

Flow Visualization Systems

This chapter summarizes the research I had been involved in the field of fluid dynamics

education. We start by briefly introduce the background of fluid dynamics and the

current state of teaching in this field, and the need of developing FlowVisual.

Fluid mechanics and computational fluid dynamics (CFD) are among the core courses

in many engineering majors such as mechanical engineering, aerospace engineering,

biomedical engineering, chemical engineering, and civil engineering. In these courses,

it is important for students to acquire knowledge of fundamental flow field concepts.

Many of those concepts are not straightforward to learn. For instance, it is not easy

for beginning-level students to fully understand the differences between various kinds

of field-lines and critical points. Commonly, these materials are taught by instructors

147

through explaining concepts and definitions, drawing diagrams and illustrations, and

occasionally, playing custom-made animations or video clips. Using intuitive and real

flow examples proves to be an excellent way of learning. However, most examples

available today are only designed for lecture or demonstration but not for student

interaction or self-learning. Developing a pedagogical visualization tool holds the

potential to help students better learn these essential flow field concepts through

interactive exploration.

FlowVisual is a tool we developed to facilitate the teaching of flow field concepts. It

consists of two individual tools, a desktop version for 2D flow field data and a mobile

version for 3D flow field data. Both of the tools have been evaluated through a formal

user study involving students from mechanical engineering, electrical engineering, and

computer science at Michigan Technological University. The desktop version has been

used in classroom teaching of CFD course for multiple times and has received positive

feedback from students. We also found that the app version helped students with no

previous 2D flow field knowledge understand concepts to the similar degree of students

who had studied those concepts before.

We have released FlowVisual desktop online and FlowViusal mobile in App Store along

with the tutorial so that other instructors and students who are interested in our work

can benefit as well, making it truly useful for teaching and learning fluid dynamics

and flow visualization. In the following sections, we first introduce the concepts in

148

flow field. Then we will focus on the functionality to the tools, and the evaluations

are skipped.

5.1 Terms

This section gives a brief introduction to some important concepts of flow fields that

are incorporated into our FlowVisual.

Flow Field A flow field (or vector field) is an assignment of a velocity vector to

each point in the domain to represent the movement of the flow. Essentially, it is a

mapping

F (p; t) = v (5.1)

that assigns a vector v to each point p at time t. Mathematically, a flow field could

be expressed as a differential equation

dp

dt
= v(p; t). (5.2)

Steady and Unsteady Flow When all the time derivatives of a flow field vanish,

the flow is considered to be a steady flow. In other words, steady flow refers to the

condition where the fluid properties at each point in the system do not change over

149

time. When time does affect the behavior of the flow, we consider the flow as an

unsteady flow.

Streamline A streamline is the trajectory that a massless particle follows if released

in a steady flow field. It is also known as the curve that is everywhere tangent

to the vectors it passes through. Mathematically, a streamline is the solution from

pc = ((xc, yc, zc); tc) constrained in an instantaneous vector field of v(pc; tc) at time

tc, and it can be represented by

p(b) = pc +

∫ b

0

v(p(σ); tc)dσ. (5.3)

Pathline A pathline is the trajectory that an individual particle follows in an un-

steady flow field. Given a flow field dp
dt

= v(p; t), the solution with initial state

p0 = ((x0, y0, z0); t0) is

p(t = b) = p0 +

∫ b

0

v(p(σ); t0 + σ)dσ, (5.4)

which is referred to as a pathline starting at position p0.

Streakline A streakline is the locus of points of all the fluid particles that have

passed continuously through a particular spatial point in the past. Given a set of

pathlines traced from the same position at different time steps, connecting all points

150

at the same time step forms a streakline.

Timeline A timeline is a line formed by a set of fluid particles that were marked at a

previous instant in time, creating a curve that is displaced over time as the particles

evolve. Given a set of pathlines traced from the same time step at different positions,

connecting all the points at the same time step forms a timeline.

Line Integral Convolution (LIC) A LIC image uses a dense texture to depict a

complete overview of a 2D flow field or a slice of a 3D flow field. It works by integrating

a random static pattern of black-and-white paint sources with the flow field data to

visualize specific part of the flow field. As the flow passes by the sources, each fluid

particle picks up some of the source intensity. The result is a random striped texture

where points along the same streamline tends to have similar intensities.

Stream Surface A stream surface is a continuous surface that is tangent to the vector

at every point it passes through, which can be obtained from streamlines traced from

a densely seeded curve.

Critical Point A point p is called a critical point of v(p; tc) if v(p; tc) = 0. Critical

points are crucial because they are enclosed by their compact neighborhood with

distinct patterns determined by their types.

151

5.2 FlowVisual for 2D Flow Field

FlowVisual1 desktop to facilitate the teaching and learning of fundamental concepts

in fluid dynamics. Given a 2D flow field, our tool allows users to drop seeds into the

field. We depict the paths that the seeds will follow at any point in time so that

the users can observe the integral lines. Besides point seeding for single field-lines,

we also enable rake seeding so that a group of field-lines can be traced simultane-

ously for efficiency. Our tool includes streamline visualization for steady flow fields

and pathline, timeline, and streakline visualization for unsteady flow fields. Visually

comparing streamlines with streaklines, pathlines with timelines, and pathlines with

streaklines allow students to easily understand the similarities and differences among

these integral lines, which may be difficult to comprehend without visual explana-

tion and interrogation. Besides various field-lines, we also compute and display the

line integral convolution texture so that users can intuitively grasp an overview of

the underlying flow data. To enable effective feature identification, we detect and

analyze critical points of various kinds and highlight them in the visualization via

template-based seeding.

Our visualization interface is implemented using QT 4.0 and OpenGL. Figure 5.1

shows a screenshot of the user interface. It includes a rendering window on the left

1The material contained in this section was previously published in proceedings of the 2013 American
Society for Engineering Education Conference [78]

152

and control panels on the right. The operation hint is displayed right below the

rendering window. The program also supports hover hints for each option in the

panels.

Figure 5.1: The User Interface of FlowVisual Desktop. (© 2013 American
Society for Engineering Education. Reprinted by permission.)

5.2.1 Field-line Visualization and Comparison

Field-line Tracing. Users can click on the rendering window to drop seeds for field-

line tracing. Computing a series of points following the direction of the vector field

captures the entire field-line. More precisely, the tangent line to the path at each

point is required to be parallel to the vector at that point. In practice, the points

are calculated by bilinearly interpolating vectors using the Runge-Kutta fourth order

method.

153

Line Drawing. Figure 5.2 shows an example streamline with all three forms of visual

representation we provide for field-lines: line, tube, and animated arrow. The first two

forms show the entire streamline statically, while the last one dynamically conveys a

vector direction as well as its magnitude along the streamline in an animated fashion.

OpenGL functions were utilized for all the drawing.

(a) (b) (c)

Figure 5.2: Visual Forms of Field-line Representation. (a) line. (b) tube.
(c) animated arrow. (© 2013 American Society for Engineering Education.
Reprinted by permission.)

LIC Texture. We generate the line integral convolution (LIC) texture to provide

users with a background image showing an overview of the entire vector field. The

LIC algorithm was introduced by Cabral and Leedom [19], and has been widely

used in flow visualization. Figure 5.3 shows two versions of the LIC textures with

different contrasts. LIC textures are used for both steady and unsteady flow fields. For

unsteady flow fields, LIC images will be updated synchronously along with pathline,

timeline, and streakline visualization and animation.

154

(a) (b)

Figure 5.3: LIC Texture Showing Underlying Flow Data. (a) original
LIC. (b) LIC after histogram equalization. (© 2013 American Society for
Engineering Education. Reprinted by permission.)

Field-lines. FlowVisual includes the visualization of four different types of field-lines:

streamline, pathline, streakline, and timeline (see Figure 5.4). To distinguish different

field-lines, each type of line is encoded with distinctive colors: red for streamlines,

yellow for pathlines, green for streaklines, and magenta for timelines. Streamlines

are traced in one single time slice, while all other field-lines are traced throughout

multiple time slices.

155

(a) (b) (c) (d)

Figure 5.4: Single Field-lines. (a) streamlines. (b) pathlines. (c) streak-
line. (d) timeline. (© 2013 American Society for Engineering Education.
Reprinted by permission.)

Multiple Field-line Comparison. To demonstrate the concepts of field-lines and

the relationship among them, we also provide multiple field-line comparison in con-

junction with animation. Since timeline and streakline are defined based on pathline,

both timeline and pathline comparison and streakline and pathline comparison play

a crucial role in helping users understand the formation of timeline and streakline.

Example comparisons of pathline with timeline (a)-(c) and pathline with streakline

(d)-(f) are drawn over time in Figure 5.5. In addition to the animation of field-lines,

we update LIC textures synchronously showing the underlying unsteady flow field for

reference. Users can adjust the animation speed or pause/resume the animation for

detailed examination.

156

(a) (b) (c)

(d) (e) (f)

Figure 5.5: Multiple Field-line comparison with LIC texture overlay. (a)-
(c) pathline and timeline. (d)-(f) pathline and streakline. (© 2013 American
Society for Engineering Education. Reprinted by permission.)

5.2.2 Critical Points

Extracting features from vector fields has been a central research focus for decades.

A great deal of work has been conducted to tackle this problem. In FlowVisual, we

need to achieve the following two goals: (1) figuring out locations and types of critical

points for a given vector field, and (2) designing templates for automatically placing

streamlines to effectively highlight different types of critical points.

157

Figure 5.6: Interpolating a critical point. (© 2013 American Society for
Engineering Education. Reprinted by permission.)

Critical Point Detection. As mentioned in the work of Helman and Hesselink [36],

the vectors at critical points have to be zero. For discrete vector data, we detect

critical points through sign checking and vector interpolation based on vectors defined

on grid points. Specifically, for each 2D grid cell, we check whether there is at least

one change of sign of the vectors at its four corners. If both the x and y vector

components have sign change, then we interpolate the position of a critical point

within the cell. Otherwise, there is no critical point in the cell. To compute the exact

location of a critical point as shown in Figure 5.6, we have the following formula

(1− x)(1− y)P1 + x(1− y)P2 + xyP3 + (1− x)yP4 (5.5)

Setting the above formula to zero, we have

(1− x)(1− y)P1 + x(1− y)P2 + xyP3 + (1− x)yP4 = 0 (5.6)

Therefore,

y =
−P1 + (P1 − P2)x

(−P1 + P4) + (P1 − P2 + P3 − P4)x
(5.7)

158

Let −P1 = C1, P1 − P2 = C2, −P1 + P4 = C3, and P1 − P2 + P3 − P4 = C4, then

y =
C1 + C2x

C3 + C4x
=
C2

C4

+
C1 − C2C3

C4

C3 + C4x
(5.8)

Thus, all the points with vector of (0, y) are on a hyperbola. Symmetrically, all the

points with vector of (x, 0) are also on a hyperbola. By definition, the critical points

in the cell are at the intersection of these two hyperbolas.

(a) (b) (c)

(d) (e) (f)

Figure 5.7: Six Types of Critical Points and their Seeding Templates. (a)
saddle. (b) attracting node. (c) repelling node. (d) center. (e) attract-
ing focus. (f) repelling focus. (© 2013 American Society for Engineering
Education. Reprinted by permission.)

159

Critical Point Classification and Visualization. As shown in Figure 5.7, for

2D flow fields, we can classify critical points into six different types. This can be

determined by distinguishing different types on the real and imaginary parts of the

eigenvalues of the Jacobian matrix in the neighborhood of a critical point [36]. Since

imaginary parts demonstrate the circulating flow pattern while real parts represent

the repelling or attracting behavior of the flow, a straightforward analysis on both

parts would determine the type of critical points. To effectively display critical points,

we draw sphere-shape textures at the locations of critical points and add halos of

different colors to indicate their types: magenta for saddle, blue for attracting node,

cyan for repelling node, green for center, yellow for attracting focus, and red for

repelling focus. Figure 5.8 (a) shows such an example.

(a) (b) (c)

Figure 5.8: Visualization of Critical Points. (a) critical point highlighting.
(b) static streamlines around critical points via template-based seeding. (c)
dynamic streamlines with animated arrows. (© 2013 American Society for
Engineering Education. Reprinted by permission.)

160

Since streamline patterns around distinct types of critical points are quite different

from one another, streamline placement becomes important in order to effectively

highlight the characteristics of critical points. We adopt a similar strategy proposed

by Verma et al. [70] that applies a different seeding template for each type of critical

point, as shown in Figure 5.7. For a saddle point, the template has the seeds dis-

tributed along the bisector of the hyperbola. But for an attracting/repelling focus or

a center, the pattern forms a circular or spiral shape. Therefore, seeding on circles

with an increasing radius is a good strategy. As for an attracting/repelling node, the

streamlines are either toward/away from the critical point. The corresponding strat-

egy is to place seeds evenly on a circle in a good distance from the critical point. The

visualization of critical points with template-based seeding is shown in Figure 5.8.

5.3 FlowVisual for 3D Flow Field

FlowVisual2 mobile is an educational app running on iOS devices to illustrate basic

flow field concepts in 3D. This app is an extension of the desktop version of FlowVisual

for 2D flow fields [78]. It is developed to illustrate the concepts in 3D space as cases

in 3D are more common yet more challenging to understand in practice. Besides dif-

ferent kinds of field-lines, we also implemented stream surfaces in this app to enrich

the perception of the flow field characteristics in a more continuous fashion. Our key

2The material contained in this section was previously published in the proceedings of 2016 Visual-
ization and Data Analysis Conference [77]

161

deliverable is an app for classroom demonstration and for self-study by students and

professionals. Its implementation on iPad makes it highly portable and accessible by

anyone who is interested in learning and exploring key flow field concepts. Figure 5.9

Figure 5.9: The user interface of the FlowVisual app. (© 2016 IS&T.
Reprinted by permission.)

shows the user interface of the FlowVisual app. There are two major parts: a drawing

canvas and a function panel. The drawing canvas is where users place seeds and

where flow field concepts are visualized. The panel has three sections: field-line sec-

tion, stream surface section, and critical point section. The field-line section supports

visualization of different field-lines to help students understand the definitions and

their similarities and differences. It includes the visualization of streamline, pathline,

streakline, and timeline, as well as the comparisons of pathline and streakline, pathline

and timeline, and streamline and streakline. We support two types of seeding: point

seeding and rake seeding. LIC texture is also incorporated to provides an overview

of the underlying flow to guide seed placement. The stream surface section supports

162

multiple surface overview and single surface inspection with streamlines and stream-

line animation. The multiple surface overview provides an overall impression of the

flow field by displaying multiple stream surfaces at the same time. The single surface

inspection allows one surface to be examined along with streamlines and streamline

animation, without occlusion from other surfaces. The critical point section supports

the detection and classification of critical points and template-based seeding, which

helps reveal the flow pattern around each critical point.

5.3.1 Field-line Visualization and Comparison

Seeding. To trace field-lines, users may specify any point in the domain as the seed.

To ease the placement of seeds in the 3D space, we use seeding planes to fix the

coordinate of one dimension and allow users to place seeds on the seeding planes.

Users can use up to two seeding planes simultaneously. Either of the two planes

can be switched between xy, yz or xz planes with adjustable z, x or y coordinates,

respectively. Our app supports both point seeding and rake seeding. Point seeding

allows only one seed at a time. Rake seeding, on the other hand, allows multiple

seeds to be placed. Users are asked to click two end points. Based on the number of

seeds (between 2 and 20) specified on the user interface, seeds will be placed evenly

in between the chosen two end points.

163

Line Drawing. To trace the trajectory of a particle within a flow field, we need

to solve for positions that the particle passes through using the differential equation

representing the flow field. We employ the fourth-order Runge-Kutta method and

depict the field-lines in two forms: solid tubes (see Figure 5.9) and animated arrows

(see Figure 5.12). The tube form is depicted by simply connecting the points that

we trace along the field-line. It shows the entire field-line with different colors rep-

resenting different types of field-lines. As an extension of the static tube, animated

arrows show the formation of filed-lines. In addition to drawing the entire line as

the background using a transparent gray color, the animation uses dashed lines with

arrowheads to indicate flow directions.

Visualization and Comparison. Our app includes the visualization of four differ-

ent types of field-lines: streamline, pathline, streakline, and timeline. To distinguish

different field-lines, we employ distinct colors: red for streamlines, orange for path-

lines, green for streaklines, and purple for timelines. Streamlines are traced in one

single time step (i.e., steady field), while all other field-lines are traced over multiple

time steps (i.e., unsteady field). Figure 5.10 shows different field-lines depicted by

our app.

164

(a) (b) (c) (d)

Figure 5.10: Field-lines. (a) streamlines. (b) pathlines. (c) pathline-
streakline with LIC. (d) pathline-timeline with LIC. (© 2016 IS&T.
Reprinted by permission.)

To demonstrate the concepts of field-lines and their relationships, we also provide

multiple field-lines comparisons with animation. Timeline and streakline are both de-

fined upon pathlines. Therefore, including pathline-timeline comparison and pathline-

streakline comparison by showing the formation of timeline and streakline step by step

would help users better understand the relationships between these flow lines.

Additionally, we use the LIC texture as the background to provide an overview of

the flow within a plane in the flow field. The algorithm of generating LIC texture

adds a random static pattern of black-and-white paint sources to visualize a flow

field. As the flow passes by the sources each fluid particle picks up some of the source

intensity. The result is a striped texture where points along the same streamline tends

to have similar intensities. If the LIC texture is turned on when tracing pathline,

streakline, or timeline, the texture will be updated synchronously over time showing

165

the underlying unsteady flow field. Users can adjust the animation speed as desired.

imgs/FlowVisual3D 5.10 (c) and (d) show pathline-streakline and pathline-timeline

comparisons at selected time steps with LIC textures.

5.3.2 Stream Surfaces

A stream surface is a continuous surface that is everywhere tangent to the vector it

passes in a steady flow field. It can be obtained by connecting the set of streamlines

traced through every sample point on a seeding curve. In contrast to having numerous

discrete streamlines in an area, a surface presents the flow pattern in a more coherent

manner.

Seeding and Surface Construction. Selecting the seeding curve for a surface

is crucial for surface generation. It influences the resulting surface in two aspects:

the effectiveness of surface in characterizing flow features, and the smoothness of the

surface.

We choose the seeding curves whose corresponding stream surfaces are able to cap-

ture the pattern of critical points. The types and locations of critical points reveal

important patterns of a flow field, which are difficult to predict if no surfaces pass

through those regions. Once the starting seed is placed, the following seeds on the

166

curve are generated along the binormal vector of the previous seed so that the result-

ing stream surface can demonstrate the flow direction. For a point p on a streamline

with velocity vector v and normal vector n, its binormal vector is the vector at p

that is orthogonal to the plane containing v and n.

To generate smooth surfaces, we use a threshold value σ as the largest distance be-

tween two consecutive sample points to ensure the seeding curve is densely sampled.

Then, we employ the easy integral surface algorithm [46] for surface construction

where the maximum distance between two consecutive sample points on the propaga-

tion front is within σ. The front propagation is performed by tracing streamlines one

step at a time and connecting the neighboring points into quads. Special cases such as

divergence and convergence are taken care of to fill the gaps and avoid oversampling.

The surfaces are manually selected for the given five critical points data set. We first

randomly generate 3000 lines that follow the binormal direction, and then manually

specify segments of these lines as the seeding curves. To capture the flow features,

we select those surfaces that pass through the critical regions. On the other hand,

to avoid the surface being overly complicated, we do not select those surfaces that

diverge and end at more than two critical points.

Surface Coloration. To show the correspondence between stream surfaces and

critical points, we color stream surfaces that relate to the same critical points with

similar colors (see Figure 5.11 (b) and (c)). As mentioned before, a single surface

167

(a) (b) (c)

(d) (e)

Figure 5.11: Stream Surfaces. (a) multiple surface overview with unique
color for each surface. (b)-(c) multiple surface overview with coloring based
on the types of related critical points. (d) single surface with streamlines.
(e) single surface with streamline animation. (© 2016 IS&T. Reprinted by
permission.)

passes no more than two critical points. Given zero velocity at critical points, the

tracing of a surface either terminates at a critical point or on the boundaries of the

flow field. This indicates that each of our surfaces connects two critical points or

is constructed between a critical point and the volume’s boundary. In the former

case, the color of a surface vertex is linearly interpolated between the colors of the

two critical points. In the later case, the color will gradually fade out as the surface

moves far away from the critical point.

168

Surface Drawing. We precompute a total of fourteen surfaces from the five critical

points data set and store them as files to reduce runtime workload and ensure prompt

response during interaction. There are two options to examine the surfaces: multi-

ple surface overview, and single surface inspection with streamlines and streamline

animation. The first option displays all 14 surfaces to present an overview of the

flow field. The second option enables closer inspection of a particular surface with

streamlines or streamline animation.

Streamline Drawing. In the single surface inspection mode, we provide two options:

streamlines and streamline animation, to help detailed inspection. An example is

shown in Figure 5.11 (d) and (e). The displayed surface will have three streamlines

evenly distributed on the surface to show the exact pattern of the flow. Streamline

animation is also available for showing the speed and direction of the flow.

5.3.3 Critical Points

Extracting features from flow fields has been a topic of active research for decades.

A great deal of work has been done to tackle this problem. Given a flow field, we

achieve the following two goals in this work: figuring out locations and types of critical

points for a given flow field, and designing seeding templates that effectively capture

streamline patterns around different types of critical points.

169

(a) (b) (c)

(d) (e)

Figure 5.12: Critical points and their seeding templates. (a) saddle. (b)
sink. (c) source. (d) spiral. and (e) spiral saddle. (© 2016 IS&T. Reprinted
by permission.)

Critical Point Detection. A critical point is a position in a flow field domain where

the velocity vanishes. For discrete vector data, we detect critical points through sign

checking and vector interpolation. Specifically, for each voxel, we check whether there

is at least one change of sign of the vectors at its corners. If the x, y and z vector

components all have a sign change, it means that a critical point may exist within the

voxel and a further step is taken to obtain the precise location of the critical point.

For a 3D flow field, the detection of critical points is achieved by utilizing the Greene’s

bisection method [33]. This method divides the flow field into equally-sized cubes and

computes their Poincaré index to check the existence of any critical point within the

170

cube. If a cube has a non-zero Poincaré index, the cube will be bisected into subcubes

iteratively to find the precise locations of the critical points.

Critical Point Classification. Critical points are classified according to the flow

patterns in their neighborhood. Mathematically, the type of critical point is deter-

mined by the real and imaginary parts of the eigenvalues of the Jacobian matrix in the

neighborhood of the critical point. Since imaginary parts demonstrate the circulating

flow pattern while real parts represent the repelling or attracting behavior of the flow,

an analysis on both parts would determine the types of critical points [35, 79].

A first-order critical point p0 where v(p0 : t) = 0 can be classified based on its

eigenvalues of the Jacobian matrix Jv(p0) when det(Jv(p0)) 6= 0.

Consider a 3D flow field

v(x, y, z) =

u(x, y, z)

v(x, y, z)

w(x, y, z)

,

we have its Jacobian matrix as follows

Jv(x, y, z) =

∂u(x, y, z)

∂x

∂u(x, y, z)

∂y

∂u(x, y, z)

∂z
∂v(x, y, z)

∂x

∂v(x, y, z)

∂y

∂v(x, y, z)

∂z
∂w(x, y, z)

∂x

∂w(x, y, z)

∂y

∂w(x, y, z)

∂z

.

171

Let λ1, λ2, λ3 be the eigenvalues of Jv(p0). R1, R2, R3 are their real parts, and I1, I2,

I3 are their imaginary parts. We order λ1, λ2, λ3 according to the values of their real

parts so that R1 ≤ R2 ≤ R3. Based on the sign of their real parts and the presence

of imaginary parts, critical points can be grouped into the following types:

Repelling node: R1,2,3 > 0 I1,2,3 = 0

Attracting node: R1,2,3 < 0 I1,2,3 = 0

Repelling focus: R1,2,3 > 0 I1 = 0, I2,3 6= 0

Attracting focus: R1,2,3 < 0 I1 = 0, I2,3 6= 0

Repelling node saddle: R1 < 0 < R2 ≤ R3 I1,2,3 = 0

Attracting node saddle: R1 ≤ R2 < 0 < R3 I1,2,3 = 0

Repelling focus saddle: R1 < 0 < R2 ≤ R3 I1 = 0, I2,3 6= 0

Attracting focus saddle: R1 < 0 < R2 ≤ R3 I1 = 0, I2,3 6= 0

Center: R1,2,3 = 0 I1 = 0, I2,3 6= 0

For simplicity, we merge all types of critical points into five types in our app as shown

in Figure 5.12. Below is our merging strategy:

Source: Repelling node

Sink: Attracting node

Spiral: Repelling focus Attracting focus

Spiral saddle: Repelling node saddle Attracting node saddle

Repelling focus saddle Attracting focus saddle

172

This strategy preserves the distinction of sink and source. It also categorizes the types

whose patterns present a combination of spiral and saddle shapes. In this way, we

avoid using too many different colors to differentiate different types of critical points

on the screen. As a result, users will not have to constantly refer back and forth to

check the color and the type of a critical point.

Seeding Template. Since streamline patterns around distinct types of critical points

are quite different from one another, streamline placement becomes important in order

to effectively reveal the characteristics of critical points. We adopt a similar strategy

proposed by Ye et al. [83] that applies a different seeding template for each type of

critical point. For a saddle, the template has the seeds distributed along the bisector

of the hyperbola. But for an attracting/repelling focus or a center, the pattern forms a

circular or spiral shape. Therefore, seeding on concentric circles with increasing radii

is an appropriate strategy. As for an attracting/repelling node, the flow directions

are either toward or away from the critical point. The corresponding strategy is to

place seeds evenly on a circle centered at the critical point.

Critical Point Visualization. Our app allows users to turn on/off a type of critical

point. Critical points are drawn in the color of their types as indicated on the interface.

By clicking on a critical point, its template seeds are placed to trace the corresponding

streamlines so that the flow field around the critical point could be perceived. By

applying a different template for each type of critical point, we avoid the overwhelming

173

occlusion brought by drawing all streamlines around critical points while maintaining

interactive performance. In addition, users may edit the templates through changing

the size of the template, the number of layers along the z direction, and the distance

between the layers. Figure 5.13 shows examples of visualizing critical points and their

corresponding streamlines.

(a) (b)

Figure 5.13: Streamlines around critical points via template-based seeding.
(a) static streamlines. (b) dynamic streamlines with animated arrows. (©
2016 IS&T. Reprinted by permission.)

174

Chapter 6

Results and Discussion

6.1 Conclusion

Access control, as an important aspect of Computer Security, has been taught and

used in many institutions, organizations, and companies. It remains a challenging

topic partly due to its abstract nature and partly because of the lack of practice

environment during the study of the topic. We developed a set of tools that cover

the widely-used access control models to help the learning and management. The

pedagogical tools are model specific but under a unified design framework. Each tool

consists of the same four components: a specification language, a visualization system,

a query system, and a quiz system. The specification languages use similar syntax

175

that shows the key components of individual models, but still keeps the specification

in the simplest form. The visualization system provides interactive feedback to user’s

exploration. The query and quiz subsystems then allow users to obtain answers to

frequently asked questions and provides a platform to conduct self-quiz on the mate-

rials. Instructors can also use the tools for teaching and quizzes, and provide example

policies that allow students to interact with real examples before, during and after

classes. Once a user is familiar to one of the tools, she may find the other tools easy

to pick up. In addition to the pedagogical tools, we also developed a system ACvisual

aiming to be a useful tool for both new learners and professional administrators in

policy writing and analysis. It provides another more generic language that can be

easily mapped from the common access requirement statements. The ratifier and the

analyzer components together provide both graphical and textual analysis to policies.

Selective as well as comprehensive testing of accesses are supported for quick check

of the policies before deployment. All these tools had been evaluated by students at

Michigan Tech and received positive feedback on the coverage of functionality and

effectiveness in helping learning the materials. Most of the suggested improvements

were on the user interface about the font size and use of color. The suggestions from

participants were considered and had been incorporated.

For the flow field tools, we have developed PC and portable versions for 2D and

3D flow fields, respectively. The tools provide illustrations of streamline, pathline,

streakline, and timeline. They also support critical point detection and classification

176

to help to find the key features that define a flow field. Due to the computation power

and storage limitation of mobile devices, we down sampled the 3D flow field data and

incorporated an efficient stream surface drawing algorithm that significantly reduced

the number of control points. The tools were evaluated by students from different

majors and received positive feedback on the coverage and visual depiction of the flow

field concepts, the usability, and its enhancement to the courses.

Throughout the development of pedagogical tools, we gathered some experience that

we hope could be helpful for researcher in this field, and we include them in this

paragraph: 1) It is always a good idea to do a little survey before designing a tool.

Teaching/Sitting in a relevant class and making use of past homework or exams can

provide important insight on when and which aspect of the topic become challenging

for students. In our experience of developing UNIXvisual, the Permission Calculator that

shows the conversion between letter and octal notations was added at last. We did

not have it until we found many students made mistakes in this aspect in homework.

2) Provide the functionality that grow from one simplest aspect to a comprehensive

form. In order to illustrate how access decision is made to an object in UNIX per-

missions, UNIXvisual started with showing the decision process to an object without

considering its ancestor directories. From this step, users can understand how user,

group and other bits work. Then the counter part with the directory traversal become

easy when illustrated in another view. 3) Use visualizations for dynamic illustration.

Visualization is quite expressive in showing dynamics of changes or transitions. Our

177

user study shows that students enjoyed the guided walk-through by visualization. 4)

An addition of self-evaluation component is always good. Problems can never be

found until we start to use the knowledge to solve problems. Many students found

they did not understand the materials thoroughly until exams. This is because re-

membering concepts and understanding small examples are different from being able

to use the knowledge in a flexible way. Hence, providing self-evaluation component

can expose users to problems at a practical scale and deepen their understanding.

6.2 Future Work

Our pedagogical tools currently facilitate learning through importing/create a policy

file, providing interactive visualization to user operations, and offering a query/quiz

system for enhancement. Most of the operations are user initiated. Thus, one di-

rection for future work is to add more guided instructions. For first-time starters,

canned examples could be shown for the mechanism of the access control model as

well as the workflow including policy creation, policy modification, and queries. For

previous users, they can opt to skip or review the demonstration of canned examples,

and can easily find tutorials when using new features. As for the policy authoring and

analysis tool ACvisual, more access control model besides RBAC could be incorpo-

rated to broaden users’ selection of implementation model. The design of ACvisual has

left space to include discretionary access control models such as UNIX permissions.

178

The concept of group can be implemented using the role concept; group containment

be built through role inheritance. The SpaceTree layout is also efficient in showing

access along a path from the root to the object of interest. This could make the

access query with directory traversal, the most challenging aspect of the model, to be

straightforward. Furthermore, attribute-based access control (ABAC) could be used

in the place of RBAC. ABAC is an evolved form of RBAC; it allows adding attributes

to all elements in RBAC. With this addition, users, objects, access and environment

could be defined in a way that is closer to realistic cases.

As for the flow filed tools, future work could be in two directions. One is to improve

in depth. That is, more key flow field concepts could be added to cover broader

topics. The other one is to improve at the current level but with more quantitative

information. Mathematical formulas could be incorporated to show the process of

how different field-lines are generated, helping build a quantitative sense of flow field

math at the very beginning of the course.

179

References

[1] A. Arora. A foundation of fault-tolerant computing. PhD thesis, University of

Texas at Austin, 1992.

[2] U. S. S. at Arms. Report on the investigation into improper access to the sen-

ate judiciary committees computer system. http://judiciary.senate.gov/

testimony.cfm?id=1085&witid=2514.

[3] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghighat. A

domain and type enforcement UNIX prototype. In Proceedings of the 5th Confer-

ence on USENIX UNIX Security Symposium, SSYM’95, pages 12–12, Berkeley,

CA, USA, 1995. USENIX Association.

[4] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghighat.

Practical domain and type enforcement for unix. In Proceedings of the 1995 IEEE

Symposium on Security and Privacy, SP ’95, Washington, DC, USA, 1995. IEEE

Computer Society.

181

http://judiciary.senate.gov/testimony.cfm?id=1085&wit id=2514
http://judiciary.senate.gov/testimony.cfm?id=1085&wit id=2514

[5] C. I. Baker. Visual Processing in the Primate Brain, chapter 4. American Cancer

Society, 2012.

[6] J. Barkley and A. Cincotta. Managing role/permission relationships using object

access types. In Proceedings of the 3rd ACM Workshop on Role-based Access

Control, RBAC ’98, pages 73–80, New York, NY, USA, 1998. ACM.

[7] J. F. Barkley, A. V. Cincotta, D. F. Ferraiolo, S. Gavrilla, and D. R. Kuhn. Role

based access control for the world wide web. In Proceedings of the 20th National

Information System Security Conference. NIST/NSA, 1997.

[8] R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber, L. A. Takayama, and

M. Prabaker. Field studies of computer system administrators: Analysis of

system management tools and practices. In Proceedings of the 2004 ACM Con-

ference on Computer Supported Cooperative Work, CSCW ’04, pages 388–395,

New York, NY, USA, 2004. ACM.

[9] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical founda-

tions. Technical Report MTR-2547, Vol. 1, MITRE Corp., Bedford, MA, 1973.

[10] R. Berger. The Undecidability of the Domino Problem. Memoirs ; No 1/66.

American Mathematical Society, 1966.

[11] K. Beznosov, P. Inglesant, J. Lobo, R. Reeder, and M. E. Zurko. Usability meets

access control: Challenges and research opportunities. In Proceedings of the 14th

182

ACM Symposium on Access Control Models and Technologies, SACMAT ’09,

pages 73–74, New York, NY, USA, 2009. ACM.

[12] K. J. Biba. Integrity considerations for secure computer systems. Technical

report, MITRE Corp., 1977.

[13] S. J. Bigelow. Implement access control systems successfully in your organiza-

tion. http://searchitchannel.techtarget.com/feature/The-importance-

of-access-control.

[14] M. Bishop. Computer Security: Art and Science. Addison-Wesley Professional,

Arlington Street, Boston, MA, USA, 1st edition, 2002.

[15] P. Bonamy. Maia and Mandos: Tools for Integrity Protection on Arbitrary Files.

PhD thesis, Michigan Technological University, 2016.

[16] D. Botta, R. Werlinger, A. Gagné, K. Beznosov, L. Iverson, S. Fels, and B. Fisher.

Towards understanding it security professionals and their tools. In Proceedings of

the 3rd Symposium on Usable Privacy and Security, SOUPS ’07, pages 100–111,

New York, NY, USA, 2007. ACM.

[17] C. Brodie, C.-M. Karat, J. Karat, and J. Feng. Usable security and privacy: A

case study of developing privacy management tools. In Proceedings of the 2005

Symposium on Usable Privacy and Security, SOUPS ’05, pages 35–43, New York,

NY, USA, 2005. ACM.

183

http://searchitchannel.techtarget.com/feature/The-importance-of-access-control
http://searchitchannel.techtarget.com/feature/The-importance-of-access-control

[18] S. Brostoff, M. A. Sasse, D. Chadwick, J. Cunningham, U. Mbanaso, and

S. Otenko. ‘R-What’: Development of a role-based access control policy-writing

tool for e-scientists. Software Practice and Experience, 35(9):835–856, 2005.

[19] B. Cabral and L. C. Leedom. Imaging vector fields using line integral convolu-

tion. In Proceedings of the 20th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’93, pages 263–270, New York, NY, USA,

1993. ACM.

[20] X. Cao and L. Iverson. Intentional access management: Making access control

usable for end-users. In Proceedings of the Second Symposium on Usable Privacy

and Security, SOUPS ’06, pages 20–31, New York, NY, USA, 2006. ACM.

[21] X. Cao and L. Iverson. Intentional access management: Making access control

usable for end-users. In Proceedings of the Second Symposium on Usable Privacy

and Security, SOUPS ’06, pages 20–31, New York, NY, USA, 2006. ACM.

[22] J. R. Crandall, S. L. Gerhart, and J. G. Hogle. Driving Home the Buffer Overflow

Problem: A Training Module for Programmers and Managers. In Proceedings of

National Colloquium for Information Systems Security Education, 2002.

[23] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy specifi-

cation language. In Proceedings of the International Workshop on Policies for

Distributed Systems and Networks, POLICY ’01, pages 18–38, London, UK, UK,

2001. Springer-Verlag.

184

[24] G. Dantzig. Linear programming and extensions. Rand Corporation Research

Study. Princeton University Press, Princeton, NJ, 1963.

[25] J. C. F. de Winter. Using the student’s t-test with extremely small sample sizes.

Practical Assessment, Research & Evaluation, 18(10):1–12, 2013.

[26] D. Ebeling and R. Santos. Public Key Infrastructure Visualization. The Journal

of Computing Sciences in Colleges, 23(1):247–254, 2007.

[27] A. Fabret and A. Petit. On the undecidability of deadlock detection in families

of nets. In E. Mayr and C. Puech, editors, STACS 95, volume 900 of Lecture

Notes in Computer Science, pages 479–490. Springer Berlin Heidelberg, 1995.

[28] FBK-IRST, C. M. University, and U. of Trento. Nusmv: a new symbolic model

checker. http://nusmv.fbk.eu/.

[29] P. Felber and V. K. Garg, editors. Stabilization, Safety, and Security of Dis-

tributed Systems - 16th International Symposium, SSS 2014, Paderborn, Ger-

many, September 28 - October 1, 2014. Proceedings, volume 8756 of Lecture

Notes in Computer Science. Springer, 2014.

[30] D. Ferraiolo and R. Kuhn. Role-based access control. In Proceedings of the 15th

NIST-NCSC National Computer Security Conference, pages 554–563, 1992.

[31] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli.

185

http://nusmv.fbk.eu/

Proposed NIST Standard for Role-based Access Control. ACM Transactions on

Information and System Security, 4(3):224–274, 2001.

[32] N. S. Good and A. Krekelberg. Usability and privacy: A study of KaZaA P2P

file-sharing. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’03, pages 137–144, New York, NY, USA, 2003. ACM.

[33] J. M. Greene. Locating three-dimensional roots by a bisection method. Compu-

tational Physics, 98(5):194–198, 1992.

[34] S. Hallyn and P. Kearns. Tools to administer domain and type enforcement. In

Proceedings of the 15th USENIX Conference on System Administration, LISA

’01, pages 151–156, Berkeley, CA, USA, 2001. USENIX Association.

[35] J. Helman and L. Hesselink. Representation and display of vector field topology

in fluid flow data sets. IEEE Computer, 22(8):27–36, 1989.

[36] J. L. Helman and L. Hesselink. Representation and display of vector field topol-

ogy in fluid flow data sets. Computer, 22(8):27–36, Aug. 1989.

[37] L. Hu. A firewall model of file system security. PhD thesis, Michigan Techno-

logical University, 2014.

[38] J. Hwang, T. Xie, V. Hu, and M. Altunay. ACPT: A tool for modeling and ver-

ifying access control policies. In Proceedings of Policies for Distributed Systems

and Networks (POLICY), pages 40–43. IEEE, 2010.

186

[39] P. Inglesant, M. A. Sasse, D. Chadwick, and L. L. Shi. Expressions of expertness:

The virtuous circle of natural language for access control policy specification. In

Proceedings of the 4th Symposium on Usable Privacy and Security, SOUPS ’08,

pages 77–88, New York, NY, USA, 2008. ACM.

[40] C.-M. Karat, J. Karat, C. Brodie, and J. Feng. Evaluating interfaces for privacy

policy rule authoring. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’06, pages 83–92, New York, NY, USA,

2006. ACM.

[41] M. Kunz, L. Fuchs, M. Netter, and G. Pernul. How to Discover High-Quality

Roles? A Survey and Dependency Analysis of Quality Criteria in Role Mining,

pages 49–67. Springer International Publishing, Cham, 2015.

[42] J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on hyper-

bolic geometry for visualizing large hierarchies. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’95, pages 401–408,

New York, NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[43] B. W. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8(1):18–24, Jan. 1974.

[44] Y. Li, S. Carr, J. Mayo, C.-K. Shene, and C. Wang. DTEvisual: A visualization

system for teaching access control using domain type enforcement. Journal of

Computing Sciences in Colleges, 28(1):125–132, Oct. 2012.

187

[45] R. A. Maxion and R. W. Reeder. Improving user-interface dependability through

mitigation of human error. International Journal of Human-Computer Studies,

63(1-2):25–50, July 2005.

[46] T. McLoughlin, R. S. Laramee, and E. Zhang. Easy integral surfaces: A fast,

quad-based stream and path surface algorithm. In Proceedings of Computer

Graphics International, pages 73–82, 2009.

[47] N. I. of Standards and Technology. Combinatorial and pairwise testing. http:

//csrc.nist.gov/groups/sns/acts/.

[48] N. I. of Standards and Technology. Eiciel:gnome file acl editor. https://rofi.

roger-ferrer.org/eiciel/.

[49] C. on National Security Systems. National Information Assurance (IA) Glossary.

Committee on National Security Systems, 1996.

[50] C. Plaisant, J. Grosjean, and B. B. Bederson. SpaceTree: Supporting exploration

in large node link tree, design evolution and empirical evaluation. In P. C. Wong

and K. Andrews, editors, INFOVIS, pages 57–64. IEEE Computer Society, 2002.

[51] A. C. PRQC. ATIS Telecom Glossary. ATIS Committee PRQC, 2012.

[52] R. W. Reeder, L. Bauer, L. F. Cranor, M. K. Reiter, K. Bacon, K. How, and

H. Strong. Expandable grids for visualizing and authoring computer security

188

http://csrc.nist.gov/groups/sns/acts/
http://csrc.nist.gov/groups/sns/acts/
https://rofi.roger-ferrer.org/eiciel/
https://rofi.roger-ferrer.org/eiciel/

policies. In Proceedings of the SIGCHI Conference on Human Factors in Com-

puting Systems, CHI ’08, pages 1473–1482, New York, NY, USA, 2008. ACM.

[53] R. W. Reeder, L. Bauer, L. F. Cranor, M. K. Reiter, and K. Vaniea. More

than skin deep: Measuring effects of the underlying model on access-control

system usability. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’11, pages 2065–2074, New York, NY, USA, 2011.

ACM.

[54] J. Rode, C. Johansson, P. DiGioia, R. S. Filho, K. Nies, D. H. Nguyen, J. Ren,

P. Dourish, and D. Redmiles. Seeing further: Extending visualization as a basis

for usable security. In Proceedings of the Second Symposium on Usable Privacy

and Security, SOUPS ’06, pages 145–155, New York, NY, USA, 2006. ACM.

[55] J. Rode, C. Johansson, P. DiGioia, R. S. Filho, K. Nies, D. H. Nguyen, J. Ren,

P. Dourish, and D. Redmiles. Seeing further: Extending visualization as a basis

for usable security. In Proceedings of the Second Symposium on Usable Privacy

and Security, SOUPS ’06, pages 145–155, New York, NY, USA, 2006. ACM.

[56] R. Sandhu. Roles versus groups. In Proceedings of the First ACM Workshop on

Role-based Access Control, RBAC ’95, New York, NY, USA, 1996. ACM.

[57] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access

control models. Computer, 29(2):38–47, Feb. 1996.

189

[58] D. Schweitzer and L. Baird. The design and use of interactive visualization

applets for teaching ciphers. In Proceedings of IEEE Workshop on Information

Assurance, pages 69–75, 2006.

[59] D. Schweitzer, L. Baird, M. Collins, W. Brown, and M. Sherman. Grasp: A

visualization tool for teaching security protocols. In Proceedings of National

Colloquium for Information Systems Security Education, pages 75–81, 2006.

[60] D. Schweitzer and W. Brown. Using Visualization To Teach Security. The

Journal of Computing Sciences in Colleges, 24(5):143–150, 2009.

[61] D. Schweitzer, M. Collins, and L. Baird. A Visual Approach To Teaching Formal

Access Models In Security. In Proceedings of National Colloquium for Informa-

tion Systems Security Education, pages 69–75, 2007.

[62] D. Schweitzer, M. Collins, L. Baird, U. States, and A. F. Academy. A visual

approach to teaching formal access models in security, 2007.

[63] S. Smalley. Configuring the SELinux Policy. Technical report, NSA/NAI, Jan.

2003.

[64] P. Software. Permission analyzer. http://www.permissionanalyzer.com/

?gclid=EAIaIQobChMIhc-J3NzQ1gIVDJFpCh16gQaJEAAYAyAAEgITJPD_BwE.

[65] R. W. Software. Klocwork. https://www.roguewave.com/products-

services/klocwork. Accessed: 2019-02-14.

190

http://www.permissionanalyzer.com/?gclid=EAIaIQobChMIhc-J3NzQ1gIVDJFpCh16gQaJEAAYAyAAEgITJPD_BwE
http://www.permissionanalyzer.com/?gclid=EAIaIQobChMIhc-J3NzQ1gIVDJFpCh16gQaJEAAYAyAAEgITJPD_BwE
https://www.roguewave.com/products-services/klocwork
https://www.roguewave.com/products-services/klocwork

[66] W. Stallings and L. Brown. Computer Security: Principles and Practice. Prentice

Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2014.

[67] D. Sternadt Alexandre and J. Tavares. Introduction of human perception in

visualization. International Journal of Imaging, 4, 01 2010.

[68] J. Tao, J. Ma, M. Keranen, J. Mayo, and C.-K. Shene. ECvisual: A Visualiza-

tion Tool for Elliptic Curve Based Ciphers. In Proceedings of ACM Technical

Symposium on Computer Science Education, pages 571–576, 2012.

[69] R. L. Trey Guerin. How role-based access control can provide security

and business benefits. http://www.computerworld.com/article/2573892/

security0/how-role-based-access-control-can-provide-security-and-

business-benefits.html.

[70] V. Verma, D. Kao, and A. Pang. A flow-guided streamline seeding strategy. In

Proceedings of the Conference on Visualization ’00, VIS ’00, pages 163–170, Los

Alamitos, CA, USA, 2000. IEEE Computer Society Press.

[71] V. Verma, D. Kao, and A. Pang. A flow-guided streamline seeding strategy. In

Proceedings of IEEE Visualization Conference, pages 163–170, 2000.

[72] H. Wang. Proving theorems by pattern recognition II. Bell System Technical

Journal, 40:1–42, 1961.

191

http://www.computerworld.com/article/2573892/security0/how-role-based-access-control-can-provide-security-and-business-benefits.html
http://www.computerworld.com/article/2573892/security0/how-role-based-access-control-can-provide-security-and-business-benefits.html
http://www.computerworld.com/article/2573892/security0/how-role-based-access-control-can-provide-security-and-business-benefits.html

[73] M. Wang, S. Carr, J. Mayo, C.-K. Shene, and C. Wang. MLSvisual: A visual-

ization tool for teaching access control using multi-level security. In Proceedings

of the 2014 Conference on Innovation and Technology in Computer Science Ed-

ucation, ITiCSE ’14, pages 93–98, New York, NY, USA, 2014. ACM.

[74] M. Wang, J. Mayo, C.-K. Shene, S. Carr, and C. Wang. UNIXvisual: A visual-

ization tool for teaching the unix permission model. In Proceedings of the 2016

ACM Conference on Innovation and Technology in Computer Science Education,

ITiCSE ’16, pages 356–356, New York, NY, USA, 2016. ACM.

[75] M. Wang, J. Mayo, C.-K. Shene, S. Carr, and C. Wang. UNIXvisual: A visual-

ization tool for teaching unix permissions. In Proceedings of the 2017 ACM Con-

ference on Innovation and Technology in Computer Science Education, ITiCSE

’17, pages 194–199, New York, NY, USA, 2017. ACM.

[76] M. Wang, J. Mayo, C.-K. Shene, T. Lake, S. Carr, and C. Wang. RBACvisual:

A visualization tool for teaching access control using role-based access control.

In Proceedings of the 2015 ACM Conference on Innovation and Technology in

Computer Science Education, ITiCSE ’15, pages 141–146, New York, NY, USA,

2015. ACM.

[77] M. Wang, J. Tao, J. Ma, Y. Shen, and C. Wang. FlowVisual: A visualization

app for teaching and understanding 3D flow field concepts. In Visualization

192

and Data Analysis 2016, San Francisco, California, USA, February 14-18, 2016,

pages 1–10, 2016.

[78] M. Wang, J. Tao, C. Wang, C.-K. Shene, and S. H. Kim. FlowVisual: Design

and evaluation of a visualization tool for teaching 2D flow field concepts. In

Proceedings of American Society for Engineering Education Annual Conference,

2013.

[79] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Boundary switch connec-

tors for topological visualization of complex 3D vector fields. In Proceedings of

Joint Eurographics - IEEE TCVG Symposium on Visualization, pages 183–192,

2004.

[80] T. Whalen, D. Smetters, and E. F. Churchill. User experiences with sharing and

access control. In CHI ’06 Extended Abstracts on Human Factors in Computing

Systems, CHI EA ’06, pages 1517–1522, New York, NY, USA, 2006. ACM.

[81] A. Whitten and J. D. Tygar. Why Johnny Can’T Encrypt: A usability evaluation

of pgp 5.0. In Proceedings of the 8th Conference on USENIX Security Sympo-

sium - Volume 8, SSYM’99, pages 14–14, Berkeley, CA, USA, 1999. USENIX

Association.

[82] Y. Wu, W. Shi, H. Liang, Q. Shang, C. Yuan, and L. Bin. Security on-demand

193

architecture with multiple modules support. In Proceedings of the First Interna-

tional Conference on Information Security Practice and Experience, ISPEC’05,

pages 121–131, Berlin, Heidelberg, 2005. Springer-Verlag.

[83] X. Ye, D. Kao, and A. Pang. Strategy for seeding 3D streamlines. In Proceedings

of IEEE Visualization Conference, pages 471–478, 2005.

[84] W. Zimmermann and S. Cunningham, editors. Visualization in teaching and

learning mathematics. Mathematical Association of America, Washington, DC,

USA, 1991.

[85] M. E. Zurko, R. Simon, and T. Sanfilippo. A user-centered, modular authoriza-

tion service built on an rbac foundation. 2012 IEEE Symposium on Security and

Privacy, 00(undefined):0057, 1999.

[86] M. E. Zurko and R. T. Simon. User-centered security. In Proceedings of the 1996

Workshop on New Security Paradigms, NSPW ’96, pages 27–33, New York, NY,

USA, 1996. ACM.

[87] M. E. Zurko, R. T. Simon, and T. Sanfilippo. A user-centered, modular autho-

rization service built on an rbac foundation. In IEEE Symposium on Security

and Privacy, pages 57–71. IEEE Computer Society, 1999.

194

Appendix A

Example SMV File

MODULE main

VAR

USERS: {dummy, oscar, sally, sam, tina, alan};

ROLES: {dummy, role_tina, role_sally, role_sam, role0, role_oscar};

OBJECTS: {dummy, _classes_os, _home, _, _classes_security, _tools, ←↩

_classes_os_public, _classes_security_public};

OPERATIONS: {dummy, read, write, execute};

RECURSIVE: {true, false};

RBAC_RolePerms: RBAC_RolePerms(ROLES, OBJECTS, OPERATIONS, RECURSIVE);

RBAC_UserPerms: RBAC_UserPerms(USERS, OBJECTS, OPERATIONS, RECURSIVE);

ASSIGN

195

next(USERS) := USERS;

next(ROLES) := ROLES;

next(OBJECTS) := OBJECTS;

next(OPERATIONS):= OPERATIONS;

next(RECURSIVE):= RECURSIVE;

MODULE RBAC_RolePerms(ROLES, OBJECTS, OPERATIONS, RECURSIVE)

VAR

decision: {Permit, Deny};

ASSIGN

init(decision) := Deny;

next(decision) := case

ROLES = role_tina & OBJECTS = _classes_security & OPERATIONS = execute ←↩

& RECURSIVE = true : Permit;

ROLES = role_tina & OBJECTS = _classes_security & OPERATIONS = read & ←↩

RECURSIVE = true : Permit;

ROLES = role_tina & OBJECTS = _classes_security & OPERATIONS = write & ←↩

RECURSIVE = true : Permit;

ROLES = role_tina & OBJECTS = _classes_os & OPERATIONS = execute & ←↩

RECURSIVE = true : Permit;

ROLES = role_tina & OBJECTS = _classes_os & OPERATIONS = read & ←↩

RECURSIVE = true : Permit;

196

ROLES = role_tina & OBJECTS = _classes_os & OPERATIONS = write & ←↩

RECURSIVE = true : Permit;

ROLES = role_tina & OBJECTS = _classes_security_public & OPERATIONS = ←↩

write & RECURSIVE = true : Permit;

ROLES = role_tina & OBJECTS = _classes_security_public & OPERATIONS = ←↩

read & RECURSIVE = true : Permit;

ROLES = role_tina & OBJECTS = _tools & OPERATIONS = execute & RECURSIVE←↩

= true : Permit;

ROLES = role_tina & OBJECTS = _tools & OPERATIONS = read & RECURSIVE = ←↩

true : Permit;

ROLES = role_tina & OBJECTS = _classes_os_public & OPERATIONS = read & ←↩

RECURSIVE = true : Permit;

ROLES = role_sally & OBJECTS = _classes_security_public & OPERATIONS = ←↩

write & RECURSIVE = true : Permit;

ROLES = role_sally & OBJECTS = _classes_security_public & OPERATIONS = ←↩

read & RECURSIVE = true : Permit;

ROLES = role_sally & OBJECTS = _tools & OPERATIONS = execute & ←↩

RECURSIVE = true : Permit;

ROLES = role_sally & OBJECTS = _tools & OPERATIONS = read & RECURSIVE =←↩

true : Permit;

ROLES = role_sam & OBJECTS = _classes_security_public & OPERATIONS = ←↩

read & RECURSIVE = true : Permit;

197

ROLES = role_sam & OBJECTS = _tools & OPERATIONS = execute & RECURSIVE ←↩

= true : Permit;

ROLES = role_sam & OBJECTS = _tools & OPERATIONS = read & RECURSIVE = ←↩

true : Permit;

ROLES = role0 & OBJECTS = _ & OPERATIONS = execute & RECURSIVE = true :←↩

Permit;

ROLES = role0 & OBJECTS = _ & OPERATIONS = read & RECURSIVE = true : ←↩

Permit;

ROLES = role0 & OBJECTS = _ & OPERATIONS = write & RECURSIVE = true : ←↩

Permit;

ROLES = role0 & OBJECTS = _classes_security & OPERATIONS = execute & ←↩

RECURSIVE = true : Permit;

ROLES = role0 & OBJECTS = _classes_security & OPERATIONS = read & ←↩

RECURSIVE = true : Permit;

ROLES = role0 & OBJECTS = _classes_security & OPERATIONS = write & ←↩

RECURSIVE = true : Permit;

ROLES = role0 & OBJECTS = _classes_os & OPERATIONS = execute & ←↩

RECURSIVE = true : Permit;

ROLES = role0 & OBJECTS = _classes_os & OPERATIONS = read & RECURSIVE =←↩

true : Permit;

ROLES = role0 & OBJECTS = _classes_os & OPERATIONS = write & RECURSIVE ←↩

= true : Permit;

198

ROLES = role0 & OBJECTS = _classes_security_public & OPERATIONS = write←↩

& RECURSIVE = true : Permit;

ROLES = role0 & OBJECTS = _classes_security_public & OPERATIONS = read ←↩

& RECURSIVE = true : Permit;

ROLES = role0 & OBJECTS = _tools & OPERATIONS = execute & RECURSIVE = ←↩

true : Permit;

ROLES = role0 & OBJECTS = _tools & OPERATIONS = read & RECURSIVE = true←↩

: Permit;

ROLES = role0 & OBJECTS = _classes_os_public & OPERATIONS = read & ←↩

RECURSIVE = true : Permit;

ROLES = role_oscar & OBJECTS = _tools & OPERATIONS = execute & ←↩

RECURSIVE = true : Permit;

ROLES = role_oscar & OBJECTS = _tools & OPERATIONS = read & RECURSIVE =←↩

true : Permit;

ROLES = role_oscar & OBJECTS = _classes_os_public & OPERATIONS = read &←↩

RECURSIVE = true : Permit;

TRUE: Deny;

esac;

-- Cyclic inheritance property

SPEC AG ((ROLES = role_sally) & (OBJECTS = _classes_security) & (←↩

OPERATIONS = execute) & (RECURSIVE = true) -> AF decision = Deny)

199

SPEC AG ((ROLES = role_oscar) & (OBJECTS = _classes_security) & (←↩

OPERATIONS = execute) & (RECURSIVE = true) -> AF decision = Deny)

SPEC AG ((ROLES = role_sam) & (OBJECTS = _classes_security_public) & (←↩

OPERATIONS = write) & (RECURSIVE = true) -> AF decision = Deny)

SPEC AG ((ROLES = role_tina) & (OBJECTS = _) & (OPERATIONS = execute) & (←↩

RECURSIVE = true) -> AF decision = Deny)

MODULE RBAC_UserPerms(USERS, OBJECTS, OPERATIONS, RECURSIVE)

VAR

decision: {Permit, Deny};

ASSIGN

init(decision) := Deny;

next(decision) := case

USERS = oscar & OBJECTS = _tools & OPERATIONS = execute : Permit;

USERS = oscar & OBJECTS = _tools & OPERATIONS = read : Permit;

USERS = oscar & OBJECTS = _classes_os_public & OPERATIONS = read : ←↩

Permit;

USERS = sally & OBJECTS = _classes_security_public & OPERATIONS = write←↩

: Permit;

USERS = sally & OBJECTS = _classes_security_public & OPERATIONS = read ←↩

: Permit;

USERS = sally & OBJECTS = _tools & OPERATIONS = execute : Permit;

USERS = sally & OBJECTS = _tools & OPERATIONS = read : Permit;

200

USERS = sam & OBJECTS = _classes_security_public & OPERATIONS = read : ←↩

Permit;

USERS = sam & OBJECTS = _tools & OPERATIONS = execute : Permit;

USERS = sam & OBJECTS = _tools & OPERATIONS = read : Permit;

USERS = tina & OBJECTS = _classes_security & OPERATIONS = execute : ←↩

Permit;

USERS = tina & OBJECTS = _classes_security & OPERATIONS = read : Permit←↩

;

USERS = tina & OBJECTS = _classes_security & OPERATIONS = write : ←↩

Permit;

USERS = tina & OBJECTS = _classes_os & OPERATIONS = execute : Permit;

USERS = tina & OBJECTS = _classes_os & OPERATIONS = read : Permit;

USERS = tina & OBJECTS = _classes_os & OPERATIONS = write : Permit;

USERS = tina & OBJECTS = _classes_security_public & OPERATIONS = write ←↩

: Permit;

USERS = tina & OBJECTS = _classes_security_public & OPERATIONS = read :←↩

Permit;

USERS = tina & OBJECTS = _tools & OPERATIONS = execute : Permit;

USERS = tina & OBJECTS = _tools & OPERATIONS = read : Permit;

USERS = tina & OBJECTS = _classes_os_public & OPERATIONS = read : ←↩

Permit;

201

USERS = alan & OBJECTS = _classes_security & OPERATIONS = execute : ←↩

Permit;

USERS = alan & OBJECTS = _classes_security & OPERATIONS = read : Permit←↩

;

USERS = alan & OBJECTS = _classes_security & OPERATIONS = write : ←↩

Permit;

USERS = alan & OBJECTS = _classes_os & OPERATIONS = execute : Permit;

USERS = alan & OBJECTS = _classes_os & OPERATIONS = read : Permit;

USERS = alan & OBJECTS = _classes_os & OPERATIONS = write : Permit;

USERS = alan & OBJECTS = _classes_security_public & OPERATIONS = write ←↩

: Permit;

USERS = alan & OBJECTS = _classes_security_public & OPERATIONS = read :←↩

Permit;

USERS = alan & OBJECTS = _tools & OPERATIONS = execute : Permit;

USERS = alan & OBJECTS = _tools & OPERATIONS = read : Permit;

USERS = alan & OBJECTS = _classes_os_public & OPERATIONS = read : ←↩

Permit;

USERS = dummy & OBJECTS = _tools & OPERATIONS = read : Permit;

USERS = dummy & OBJECTS = _tools & OPERATIONS = execute : Permit;

USERS = dummy & OBJECTS = _classes_security & OPERATIONS = read : ←↩

Permit;

202

USERS = dummy & OBJECTS = _classes_security & OPERATIONS = write : ←↩

Permit;

USERS = dummy & OBJECTS = _classes_security & OPERATIONS = execute : ←↩

Permit;

USERS = dummy & OBJECTS = _classes_os_public & OPERATIONS = read : ←↩

Permit;

USERS = dummy & OBJECTS = _classes_security_public & OPERATIONS = write←↩

: Permit;

USERS = dummy & OBJECTS = _classes_security_public & OPERATIONS = read ←↩

: Permit;

USERS = dummy & OBJECTS = _classes_os & OPERATIONS = read : Permit;

USERS = dummy & OBJECTS = _classes_os & OPERATIONS = write : Permit;

USERS = dummy & OBJECTS = _classes_os & OPERATIONS = execute : Permit;

USERS = oscar & OBJECTS = dummy & OPERATIONS = read : Permit;

USERS = oscar & OBJECTS = dummy & OPERATIONS = execute : Permit;

USERS = sally & OBJECTS = dummy & OPERATIONS = write : Permit;

USERS = sally & OBJECTS = dummy & OPERATIONS = read : Permit;

USERS = sally & OBJECTS = dummy & OPERATIONS = execute : Permit;

USERS = tina & OBJECTS = dummy & OPERATIONS = read : Permit;

USERS = tina & OBJECTS = dummy & OPERATIONS = write : Permit;

USERS = tina & OBJECTS = dummy & OPERATIONS = execute : Permit;

USERS = sam & OBJECTS = dummy & OPERATIONS = read : Permit;

203

USERS = sam & OBJECTS = dummy & OPERATIONS = execute : Permit;

USERS = alan & OBJECTS = dummy & OPERATIONS = read : Permit;

USERS = alan & OBJECTS = dummy & OPERATIONS = write : Permit;

USERS = alan & OBJECTS = dummy & OPERATIONS = execute : Permit;

TRUE: Deny;

esac;

-- User permission check

SPEC AG ((USERS = oscar) & (OBJECTS = _tools) & (OPERATIONS = execute) ->←↩

AF decision = Permit)

SPEC AG ((USERS = oscar) & (OBJECTS = _tools) & (OPERATIONS = read) -> AF←↩

decision = Permit)

SPEC AG ((USERS = oscar) & (OBJECTS = _classes_os_public) & (OPERATIONS =←↩

read) -> AF decision = Permit)

SPEC AG ((USERS = sally) & (OBJECTS = _classes_security_public) & (←↩

OPERATIONS = write) -> AF decision = Permit)

SPEC AG ((USERS = sally) & (OBJECTS = _classes_security_public) & (←↩

OPERATIONS = read) -> AF decision = Permit)

SPEC AG ((USERS = sally) & (OBJECTS = _tools) & (OPERATIONS = execute) ->←↩

AF decision = Permit)

SPEC AG ((USERS = sally) & (OBJECTS = _tools) & (OPERATIONS = read) -> AF←↩

decision = Permit)

204

SPEC AG ((USERS = sam) & (OBJECTS = _classes_security_public) & (←↩

OPERATIONS = read) -> AF decision = Permit)

SPEC AG ((USERS = sam) & (OBJECTS = _tools) & (OPERATIONS = execute) -> ←↩

AF decision = Permit)

SPEC AG ((USERS = sam) & (OBJECTS = _tools) & (OPERATIONS = read) -> AF ←↩

decision = Permit)

SPEC AG ((USERS = tina) & (OBJECTS = _classes_security) & (OPERATIONS = ←↩

execute) -> AF decision = Permit)

SPEC AG ((USERS = tina) & (OBJECTS = _classes_security) & (OPERATIONS = ←↩

read) -> AF decision = Permit)

SPEC AG ((USERS = tina) & (OBJECTS = _classes_security) & (OPERATIONS = ←↩

write) -> AF decision = Permit)

SPEC AG ((USERS = tina) & (OBJECTS = _classes_os) & (OPERATIONS = execute←↩

) -> AF decision = Permit)

SPEC AG ((USERS = tina) & (OBJECTS = _classes_os) & (OPERATIONS = read) ←↩

-> AF decision = Permit)

SPEC AG ((USERS = tina) & (OBJECTS = _classes_os) & (OPERATIONS = write) ←↩

-> AF decision = Permit)

SPEC AG ((USERS = tina) & (OBJECTS = _classes_security_public) & (←↩

OPERATIONS = write) -> AF decision = Permit)

SPEC AG ((USERS = tina) & (OBJECTS = _classes_security_public) & (←↩

OPERATIONS = read) -> AF decision = Permit)

205

SPEC AG ((USERS = tina) & (OBJECTS = _tools) & (OPERATIONS = execute) -> ←↩

AF decision = Permit)

SPEC AG ((USERS = tina) & (OBJECTS = _tools) & (OPERATIONS = read) -> AF ←↩

decision = Permit)

SPEC AG ((USERS = tina) & (OBJECTS = _classes_os_public) & (OPERATIONS = ←↩

read) -> AF decision = Permit)

SPEC AG ((USERS = alan) & (OBJECTS = _classes_security) & (OPERATIONS = ←↩

execute) -> AF decision = Permit)

SPEC AG ((USERS = alan) & (OBJECTS = _classes_security) & (OPERATIONS = ←↩

read) -> AF decision = Permit)

SPEC AG ((USERS = alan) & (OBJECTS = _classes_security) & (OPERATIONS = ←↩

write) -> AF decision = Permit)

SPEC AG ((USERS = alan) & (OBJECTS = _classes_os) & (OPERATIONS = execute←↩

) -> AF decision = Permit)

SPEC AG ((USERS = alan) & (OBJECTS = _classes_os) & (OPERATIONS = read) ←↩

-> AF decision = Permit)

SPEC AG ((USERS = alan) & (OBJECTS = _classes_os) & (OPERATIONS = write) ←↩

-> AF decision = Permit)

SPEC AG ((USERS = alan) & (OBJECTS = _classes_security_public) & (←↩

OPERATIONS = write) -> AF decision = Permit)

SPEC AG ((USERS = alan) & (OBJECTS = _classes_security_public) & (←↩

OPERATIONS = read) -> AF decision = Permit)

206

SPEC AG ((USERS = alan) & (OBJECTS = _tools) & (OPERATIONS = execute) -> ←↩

AF decision = Permit)

SPEC AG ((USERS = alan) & (OBJECTS = _tools) & (OPERATIONS = read) -> AF ←↩

decision = Permit)

SPEC AG ((USERS = alan) & (OBJECTS = _classes_os_public) & (OPERATIONS = ←↩

read) -> AF decision = Permit)

207

Appendix B

RBAC Technical Questions

Answer the following questions about the RBAC system defined on the last page.

You should not use ACvisual in this part.

1. Indicate all the roles that Ringo can occupy.

� Programmer

� Antivirus Programmer

� Firewall Programmer

� Tester

� None

209

2. List the type of access (read,write,exec) that Ringo can acquire for each of the

following objects. If he cannot access an object, write no access.

(a) A:

(b) B:

(c) C:

(d) D:

(e) E:

3. Indicate all the roles that inherit the Programmer role. (There may be more

than one.)

� Programmer

� Antivirus Programmer

� Firewall Programmer

� Tester

� None

210

4. Indicate all the roles inherited by the Tester role. (There may be more than

one.)

� Programmer

� Antivirus Programmer

� Firewall Programmer

� Tester

� None

RBAC EXAMPLE

A site plans to use RBAC (under the NIST model) to implement its security require-

ments. The site has identified the following set of users U and roles R.

U = {John, Paul, Ringo,George}

R = {Programmer,AntivirusProgrammer, F irewallProgrammer, Tester}

211

The permissions assignment PA is given by the following access control matrix.

OBJECTS

ROLE A B C D E

Programmer read, exec

Antivirus Programmer read, exec read, write, exec

Firewall Programmer read read, exec

Tester read, exec read, exec read, exec read, write

The role assignment RA is given by the following access control matrix.

ROLE

USER Programmer Antivirus Programmer Firewall Programmer Tester

John X

Paul X

Ringo X X

George X X X

212

Appendix C

Letters of Permission

This dissertation reuses materials from five of my previous publications. At the beginning of

each chapter, in which the published materials are reused, a footnote is presented to indicate

the reused materials and cite the original paper(s). The copyright of respective publisher

is also indicated in the caption of each figure with reusing materials. The permissions to

reuse the published materials are listed as follows:

213

[73] M. Wang, J. Mayo, C.-K. Shene, S. Carr, and C. Wang. UNIXvisual: A visualization

tool for teaching the UNIX permission model. In Proceedings of the 2016 ACM Conference

on Innovation and Technology in Computer Science Education, ITiCSE ’16, pages 356–356,

New York, NY, USA, 2016. ACM.

214

215

[74] M. Wang, J. Mayo, C.-K. Shene, T. Lake, S. Carr, and C. Wang. RBACvisual: A visu-

alization tool for teaching access control using Role-based Access Control. In Proceedings of

the 2015 ACM Conference on Innovation and Technology in Computer Science Education,

ITiCSE ’15, pages 141–146, New York, NY, USA, 2015. ACM.

216

217

[72] M. Wang, S. Carr, J. Mayo, C.-K. Shene, and C. Wang. MLSvisual: A visualization tool

for teaching access control using Multi-level Security. In Proceedings of the 2014 Conference

on Innovation and Technology in Computer Science Education, ITiCSE ’14, pages 93–98,

New York, NY, USA, 2014. ACM.

218

219

[75] M. Wang, J. Tao, J. Ma, Y. Shen, and C. Wang. FlowVisual: A visualization app

for teaching and understanding 3D flow field concepts. In Visualization and Data Analysis

2016, San Francisco, California, USA, February 14-18, 2016, pages 1-10, 2016.

220

[76] M. Wang, J. Tao, C. Wang, C.-K. Shene, and S. H. Kim. FlowVisual: Design and

evaluation of a visualization tool for teaching 2D flow field concepts. In Proceedings of

American Society for Engineering Education Annual Conference, 2013.

221

	ACCESSIBLE ACCESS CONTROL: A VISUALIZATION SYSTEM FOR ACCESS CONTROL POLICY MANAGEMENT
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Background
	Access Control
	Domain Type Enforcement
	Multilevel Security
	Role-based Access Control
	Core RBAC
	Hierarchical RBAC
	Statically Constrained RBAC
	Dynamically Constrained RBAC

	UNIX Permissions
	Letter and Octal Notations
	Access to Objects

	Challenges
	Methodology
	Organization

	Related Work
	Access Control Languages
	Our Approach

	Tools for Security Education Using Visualization
	Our Approaches

	Tools for Security Policy Management
	Our Approaches

	Model-Specific Pedagogical Systems
	DTEvisual
	Language
	Visualization System

	MLSvisual
	Language
	Visualization System
	Evaluation
	General Discussion
	Statistical Analysis
	Student Comments

	RBACvisual
	Language
	Visualization System
	Evaluation
	General Discussion
	Statistical Analysis
	Student Comments

	UNIXvisual
	Language
	Visualization System
	Decision Mode
	Object View
	User and Group View
	Program Trace View
	Permission Calculator
	Query and Quiz

	Evaluation
	Test Problems
	Test Problems Analysis
	Evaluation Form
	Evaluation Form – Student Comments

	Design Framework of the Visualization Systems
	Design Framework
	Implementation

	Access Control Policy Authoring and Analysis System
	Overview
	Model Language
	Policy Authoring
	Policy Analysis
	Role View
	Cyclic Role Inheritance
	Separation of Duties

	User View
	Object Tree
	Role Hierarchy
	Access Query

	Object View

	Policy Ratification
	Evaluation
	Environment, Procedure and Goals
	Test Problems
	Evaluation Form
	General Discussion
	Statistical Analysis

	Evaluation Form - Student Comments
	Conclusion

	Flow Visualization Systems
	Terms
	FlowVisual for 2D Flow Field
	Field-line Visualization and Comparison
	Critical Points

	FlowVisual for 3D Flow Field
	Field-line Visualization and Comparison
	Stream Surfaces
	Critical Points

	Results and Discussion
	Conclusion
	Future Work

	References
	Example SMV File
	RBAC Technical Questions
	Letters of Permission

