Biomedical Engineering Faculty and Staff

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Office</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sean J. Kirkpatrick</td>
<td>Department Chair & Professor</td>
<td>Room 301</td>
<td>sjkirkpa@mtu.edu</td>
</tr>
<tr>
<td>Feng Zhao</td>
<td>Graduate Program Director & Associate Professor</td>
<td>Room 402</td>
<td>fengzhao@mtu.edu</td>
</tr>
<tr>
<td>Graduate School Committee:</td>
<td>Feng Zhao, Jingfeng Jiang, Sangyoon Han</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stacey Sedar</td>
<td>Departmental Coordinator</td>
<td>Room 309</td>
<td>slsedar@mtu.edu</td>
</tr>
<tr>
<td>Cory Dompier</td>
<td>Office Assistant</td>
<td>Room 309</td>
<td>cfdompie@mtu.edu</td>
</tr>
<tr>
<td>Keat G. Ong</td>
<td>Associate Department Chair & Professor</td>
<td>Room 302</td>
<td>kgong@mtu.edu</td>
</tr>
<tr>
<td>Sunyoung Ahn</td>
<td>Lecturer & Biostatisticist</td>
<td>Room 341</td>
<td>sahn@mtu.edu</td>
</tr>
<tr>
<td>Megan Frost</td>
<td>Associate Professor</td>
<td>Room 304</td>
<td>mcfrost@mtu.edu</td>
</tr>
<tr>
<td>Jeremy Goldman</td>
<td>Professor</td>
<td>Room 303</td>
<td>jgoldman@mtu.edu</td>
</tr>
<tr>
<td>Sangyoon Han</td>
<td>Assistant Professor</td>
<td>Room 403</td>
<td>sjhan@mtu.edu</td>
</tr>
<tr>
<td>Jingfeng Jiang</td>
<td>Associate Professor</td>
<td>Room 305</td>
<td>jjiang1@mtu.edu</td>
</tr>
<tr>
<td>Bruce P. Lee</td>
<td>Associate Professor</td>
<td>Room 401</td>
<td>bplee@mtu.edu</td>
</tr>
<tr>
<td>Rupak Rajachar</td>
<td>Principal Lecturer</td>
<td>Room 306</td>
<td>rupakr@mtu.edu</td>
</tr>
<tr>
<td>Smitha Rao</td>
<td>Assistant Professor</td>
<td>Room 410A</td>
<td>smithar@mtu.edu</td>
</tr>
<tr>
<td>Orhan Soykan</td>
<td>Professor of Practice</td>
<td>Room 406</td>
<td>osoykan@mtu.edu</td>
</tr>
<tr>
<td>Graduate Student Government Representative:</td>
<td>Ami Kling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graduate Student Government Representative:
- Ami Kling

Table of Contents
Departmental Assessment Plan

At the end of the Biomedical Engineering Master’s Research/Thesis and Coursework program, students will be able to:

<table>
<thead>
<tr>
<th>Learning Goals</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate proficiency of the subject matter.</td>
<td>Graduate course grades</td>
</tr>
<tr>
<td></td>
<td>Thesis/Report & Defense</td>
</tr>
<tr>
<td></td>
<td>Master’s Self-assessment</td>
</tr>
<tr>
<td>Demonstrate research skills, execute a research project. (thesis and report only)</td>
<td>Thesis Research Proposal</td>
</tr>
<tr>
<td>• Apply existing research methodologies and techniques.</td>
<td>Thesis/Report & Defense</td>
</tr>
<tr>
<td>• Critically analyze and evaluate one’s own findings and those of others.</td>
<td>Master’s Self-assessment</td>
</tr>
<tr>
<td></td>
<td>Publications</td>
</tr>
<tr>
<td></td>
<td>Conference Publications</td>
</tr>
<tr>
<td>Make a contribution to the discipline. (thesis only)</td>
<td>Thesis/Research Proposal</td>
</tr>
<tr>
<td></td>
<td>Publications</td>
</tr>
<tr>
<td></td>
<td>Conference presentations</td>
</tr>
<tr>
<td></td>
<td>Master’s Self-assessment</td>
</tr>
<tr>
<td>Demonstrate professional skills.</td>
<td>Thesis/Report & Defense</td>
</tr>
<tr>
<td>• Effective oral and written communication skills.</td>
<td>Teaching evaluations (if applicable)</td>
</tr>
<tr>
<td>• Follow ethical guidelines for work in the field.</td>
<td>Publications</td>
</tr>
<tr>
<td></td>
<td>Conference presentations</td>
</tr>
<tr>
<td></td>
<td>Master’s Self-assessment</td>
</tr>
<tr>
<td>Practice responsible conduct of research (field appropriate)</td>
<td>Thesis/Report & Defense</td>
</tr>
<tr>
<td></td>
<td>Teaching evaluations (if applicable)</td>
</tr>
<tr>
<td></td>
<td>Publications</td>
</tr>
<tr>
<td></td>
<td>Conference presentations</td>
</tr>
<tr>
<td></td>
<td>Master’s Self-assessment</td>
</tr>
<tr>
<td></td>
<td>RCR Training</td>
</tr>
</tbody>
</table>
Biomedical Engineering Master’s Admission Process

Applications will be accepted on a rolling basis. There is no deadline for applying to the master’s program.

BME offers an accelerated MS program for MTU undergraduate students. Undergraduate students must apply for admission to the accelerated program through the standard Graduate School application process. The GRE is waived for Michigan Tech students and the required letters of recommendation are waived for Michigan Tech Biomedical Engineering students.

Master’s students typically do not receive support from the Biomedical Engineering Department (BME) during their studies.

Admission Requirements:

- GPA of 3.0 on a scale of 4.0
 - To convert your GPA to the 4.0 scales, please use this link: GPA Calculator

- GRE: Recommended scores of:
 - 160 Quantative
 - 153 Verbal
 - 3.0 Analytical
 (Michigan Tech students are exempt)

- TOEFL: Recommended Score of 100 iBT (International Students)

- IELTS: Recommended Overall Band Score of 7.0 (International Students)

The BME graduate committee will review applications approximately biweekly and reject any applications that do not meet the basic requirements.

- All students who have a BS in an engineering discipline are eligible to apply. However, students lacking undergraduate courses in life sciences or biomedical engineering may be required to complete additional courses to correct this deficiency. The advisor and BME graduate program director will approve a plan for satisfying the deficiency.

- Exceptional students with non-engineering BS degrees are also eligible to apply. However, these students may be required to complete additional courses in engineering and/or mathematics to correct the deficiency. The advisor and BME graduate program director will approve a plan for satisfying the deficiency.

- The standard Graduate School admissions process applies.
Choosing an Advisor
We recommend that students review the website and contact us with who they would like to set up as their temporary advisor. If they are having trouble selecting an advisor by a specific date (one month prior to arrival on campus) a temporary advisor will be assigned. Coursework students who have not chosen an advisor will have the departmental graduate program director (Feng Zhao) assigned as their advisor.

Students must choose an advisor prior to the end of the first semester and submit the Advisor and Committee Recommendation Form to the department and Graduate School. Instructions for choosing a committee are found in the Biomedical Engineering Academic Timeline.

Keys, Desk, Computers, and Research Space Assignments
See office staff at front desk in M&M 309 for keys. Master’s students are generally not assigned an office. Thesis and Report MS should see their advisor for appropriate lab training and workspace.

Mail Service, Photocopyer, Supplies, and Printers
Copy machine, printers, and campus mail boxes are located in the main M&M 309 office.

International Students
Please refer to the International Programs and Services website for helpful information.

University Student Policies:
The following links from the Graduate School website explain University Student Policies

Academic Standards

- Appeals of Suspension or Dismissal
- Attendance Policy
- Exam Policies
- Good Academic Standing and Dismissal
- Scholastic Standards

Course and Credit Policies

- Adding and Dropping a Course
- Bills, Due Dates, Refunds, and Payment Plans
- Credit Hours and Expectations
- Enrollment Policies and Full-Time Status
- Full-Time Course Listing
- Medical (Voluntary and Involuntary) and University Withdrawal
- Research Mode (also see department guidelines)
- Reusing Credits
- Transfer, MIGS, and Senior Rule Credits

Continued next page.
Degree Completion Requirements

- Degree Requirements (also see department guidelines for all MS or Coursework, Thesis, Report)
- Dissertations, Theses, and Reports (also see department guidelines)
- Holds FAQ
- Graduation, Certification, and Commencement
- Tracking and Status Forms

Financial Policies

- Assistantships
- CGS Resolution Regarding Graduate Scholars, Fellows, Trainees, and Assistants
- Federal Financial Aid
- Fellowships
- Financial Aid Policies
- Minimum Stipend Rates

Professional Conduct

- Academic Integrity
- Conduct Policies
- Sexual and/or Relationships Misconduct Policy

Student Support and Health Insurance

- Disability Services and Policies
- Grievances: Dean of Students | Graduate School
- Health Insurance Policy and Information
- Medical Withdrawal: Voluntary | Involuntary
- Parental Accommodation
Accelerated MS Program Overview

- BME offers an accelerated MS program for MTU undergraduate students. Undergraduate students must apply for admission to the accelerated program through the standard Graduate School application process.

- We recommend that students apply to the accelerated master’s program during their junior year, however applications can be received during the senior year.

- During their junior year students should review the BME website and select an advisor. That selection should be emailed to biomed@mtu.edu. If an advisor cannot be selected one can be assigned. A meeting must be arranged with the advisor to complete a Plan of Study Form that will indicate which undergraduate-level courses will be applied to both their BS and MS degrees. This should be done before registering for courses for the fall semester of their senior year.

- Only students who intend to complete both a bachelor’s and a master’s degree at Michigan Tech are eligible to enroll in the accelerated program.

- Students already enrolled in a graduate program may not retroactively enroll in the BME accelerated master’s program.

- Students are allowed to count up to 6 credits of 4000 level or higher courses taken as an undergraduate towards both their BS and MS degrees.

- Qualified students under the Senior Rule may also take 5000 level courses to be applied to their MS degree.
 - These courses cannot be applied to their BS degree requirements.
 - Senior Rule credits cannot be considered for undergraduate financial aid.
 - A student so enrolled and carrying 6 credits or more in 5000 or 6000 level course may carry no more than 16 credits of coursework per semester.
 - The total number of Senior Rule credits may not exceed one-third (or 10 credits) of the required non-research course credits.

- The accelerated MS program is a coursework-only plan.

- The number of credits required for the accelerated/coursework MS degree is 30 credits.

 The following courses are required core courses, all students must take and pass with a minimum of a “B” grade. Students will be required to re-take the course with grades less than “B”.

 - MA5701 Statistical Methods 1 offered Fall and Spring
 - BE5200 Cellular & Molecular Biology II offered Spring OR KIP5500 Systems Physiology offered Fall

- No undergraduate research credits may be applied to the MS degree.

- Research credits taken by students in other plans may not be counted as coursework credits.

- Students must complete the master’s requirements for all students, as well as the below requirements for courses:
 - A minimum of 30 approved credits (including required core courses)
 - Coursework must satisfy the following:
 - 18 credit minimum 5000-6000 classes
 - 9 credit maximum 4000 classes
 - 3 credit minimum 4000 or higher level courses outside the department
 - 12 credit minimum from BME department
 - Up to 6 credits taken as Independent Study may be for research-related activities
 See Coursework Option for all other guidelines, requirements, and deadlines.
Biomedical Engineering Requirements for ALL Master’s Students

Newly accepted student responsibilities upon arrival on campus and prior to 1st day of class:

Obtain Husky Card

International students report to International Programs and Services (IPS)

Attend Graduate School Orientation

- Complete Basic Responsible Conduct of Research Training:
 - Provided during Graduate School Orientation
 - Or Basic RCR Training

- Complete on MyMichiganTech the Patent, Research, & Proprietary Rights Agreement Form
- Submit official proof of previous degrees earned to the Graduate School
- Attend BME Department Grad Student Orientation Meeting.
- Students can be enrolled in the MS program under three options: Thesis Option, Report Option, and Coursework Option. Students need to indicate their option by completing the MS Plan of Study Form before the end of the first semester in the program. Students are allowed to change their plans while enrolled in the program at any time. This plan must be approved by their BME advisor
- Students who wish to change their program option (same advisor) must submit a Degree Schedule Form to the Graduate School.
- Graduate students who wish to take 3000/4000 level courses must get special approval from their advisor.
- Students are permitted to take courses outside the BME department as determined by the student and his/her advisor.
- A cumulative GPA for courses counted toward the degree of 3.0 is required for graduation.
- Students who are accepted to the program will be placed under probation if their cumulative GPA for courses counted toward their degree falls below a 3.0. Students with 2 consecutive probation semesters will not be allowed to continue in the program.
- All graduate students are required to attend all BME graduate seminars. See separate section - Graduate Seminar Series for further information and requirements.
- All Graduate School residency and credit requirements must be met.
- All students are required to complete an annual Self-assessment Form and meet with their advisor after completion of the assessment.
 - Office staff will send students the Self-assessment forms.

Required Core Courses:

Each student must take and pass with a minimum of a “B” grade. Students will be required to re-take the course with grades less than “B”.

- MA5701 Statistical Methods I offered Fall
- BE5200 Cellular & Molecular Biology II offered Spring OR KIP5500 Systems Physiology offered Fall
Coursework Option

This plan requires the minimum of 30 credits be earned through coursework. Research credits taken by students in other plans may not be counted as coursework credits.

- Students must complete the master’s requirements for all students as listed on the Graduate School [website], as well as the below requirements for courses:
- A minimum of 30 approved credits (including required core courses)
- Coursework must satisfy the following:
 - 18 credit minimum 5000-6000 classes
 - 9 credit maximum 4000 classes
 - 3 credit minimum 4000 or higher level courses outside the department
 - 12 credit minimum from BME department
- Up to 6 credits taken as Independent Study may be for research-related activities

- The following courses are required core courses, all students must take and pass with a minimum of a “B” grade. Students will be required to re-take the course with grades less than “B”.
 - MA5701 Statistical Methods I offered Fall
 - BE5200 Cellular & Molecular Biology II offered Spring OR KIP 5500 Systems Physiology offered Fall

Graduate students who wish to take 3000 or 4000 level courses must get special approval from their advisor.

All other deadlines and requirements for completion of the master’s coursework are located on the Graduate School [website].

Coursework students are required to complete a Self-assessment and meet with their advisor annually to ensure they are taking and enrolling in the correct courses to fulfill degree requirements.
Biomedical Engineering Academic Timeline – Coursework Option

Each MS student enrolled in the Department of Biomedical Engineering (BME) MS program is required to adhere to the following deadlines.

REMEMBER THAT FORMS ARE AVAILABLE ON THE GRADUATE SCHOOL WEBSITE, MyMichiganTech AND THE BIOMEDICAL ENGINEERING’S GRADUATE WEBSITE.

STUDENTS ARE REQUIRED TO MONITOR THEIR ACCOUNTS AND SUBMIT FORMS BY THE REQUIRED DEADLINES.

Beginning of 1st semester:

• Complete Campus Clarity Training

Prior to the end of the 1st semester:

• Complete Advisor Recommendation Form and submit to the Graduate School. A copy of the document is also required for department files. This process is to choose your advisor.
• Proposed coursework and MS option: Biomedical Engineering MS Plan of Study Form. The proposed coursework will include the classes taken during the first semester. This must be signed by the advisor. This form is for department files only.

2nd or 3rd semester:

• Complete Advanced Responsible Conduct of Research Training:
 ○ Students are recommended to take these courses fall or spring semester

At the end of every year:

• Submit Master’s Coursework Student Self-assessment Form to advisor (sent to student by office staff).
• Arrange meeting with advisor to review the self-assessment.
• The purpose of the self-assessment is to keep the advisor abreast of progress and garner their feedback. The advisor may determine if more frequent meetings are required. Students will receive a copy of the self-assessment with written feedback from their advisor.

Semester before Planned Degree Completion:

• Submit Degree Schedule to the Graduate School.

SEMESTER OF PLANNED DEGREE COMPLETION:

Students need to monitor their MyMichiganTech account for required Graduate School forms and deadlines.

• Submit Degree Completion Form to the Graduate School.
• Submit Verification of Final Degree Requirements Form to Graduate School.
• Advisor complete Biomedical Engineering Evaluation of MS Graduate Student Outcomes – Coursework using the Biomedical Engineering MS Evaluation Rubric.

Continued next page.
Please refer to the Graduate School guidelines for remaining procedures or MyMichiganTech

Staff at the front desk will send you a departmental Exit Interview to complete before you leave the university.
Grad School/BME Master’s Coursework Timeline

Before you arrive on campus:
- Arrange for housing
- Consult with your assigned BME advisor for course selection
- International students must submit arrival information on MyMichiganTech to notify International Programs and Services (IPS)

Upon arrival on campus:
- Obtain Husky Card
- International students report to IPS

Prior to 1st week of class:
- Attend Graduate School Orientation
- Complete Basic Responsible Conduct of Research Training
- Complete Patent, Research, & Proprietary Rights Agreement Form on MyMichiganTech
- Submit official proof of previous degrees earned to the Graduate School
- Attend BME Grad Student Orientation

Beginning of 1st semester:
1. Complete Campus Clarity Training

Prior to the end of the 1st semester:
- Submit Advisor Recommendation Form to the Graduate School
- Complete BME Plan of Study Form

Every semester:
- Register for courses
- Pay your tuition bill
- Confirm your enrollment
- Attend required graduate seminars

Every year:
1. Provide proof of health insurance or pay University policy
2. Obtain parking permit
3. Submit Master’s Coursework Self-assessment form to advisor (Office staff will send assessment)

2nd or 3rd semester:
- Complete Advanced Responsible Conduct of Research Training

Semester before planned degree completion
- Submit Degree Schedule to the Graduate School

Semester of planned degree completion

10 weeks prior to commencement:
1. Submit Degree Completion Form to the Graduate School
2. Submit Verification of Final Degree Requirements Form to the Graduate School.
3. Advisor complete Biomedical Engineering Evaluation of MS Graduate Student Outcomes - Coursework

Before leaving Campus:
- Submit Graduate Student Workspace Cleanout Form on MyMichiganTech
- Complete Exit Survey
- Complete departmental Exit Interview

Table of Contents
Biomedical Engineering Academic Timeline – Thesis and Report Option

Each MS student enrolled in the Department of Biomedical Engineering (BME) MS program is required to adhere to the following deadlines.

REMEMBER THAT FORMS ARE AVAILABLE ON THE GRADUATE SCHOOL WEBSITE, MyMichiganTech AND THE BIOMEDICAL ENGINEERING’S GRADUATE WEBSITE.

Beginning of 1st semester:

- Complete Campus Clarity Training

- Complete Advisor & Committee Recommendation Form and submit to the Graduate School. A copy of the document is also required for department files. This process is to confirm who the advisor will be. Students may

2nd semester:

- Complete Advisor & Committee Recommendation Form and submit to the Graduate School. A copy of the document is also required for department files. This process is to choose your advisory committee. This committee will consist of the student’s advisor, and at least 2 additional full-time faculty members. One of the members must have a primary appointment in the BME department and one of the committee members can be from outside the BME department if you wish.

- Proposed coursework and MS option: Biomedical Engineering MS Plan of Study Form. The proposed coursework will include the classes taken during the first semester. This must be signed by the advisor. This form is for department files only.

2nd – 3rd semester:

- Complete Advanced Responsible Conduct of Research Training:
 - Students are recommended to take these courses fall or spring semester.

Every semester:

- Must attend a minimum of 6 BME graduate seminars each semester. Attendance of other department seminars is required if there are not enough BME seminars offered.

At the end of Spring semester:

- Submit Graduate Student Self-assessment Form to advisor. (This form will be sent to student by office staff).
- Arrange meeting with advisor to review the self-assessment.
- The purpose of the self-assessment is to keep the advisor abreast of progress and garner their feedback. The advisor may determine if more frequent meetings are required. This also provides graduate students with a review of their performance and expectations for the coming semester. Negative reviews will reflect in the graduate student’s grade.

Continued next page.
Semester before Planned Degree Completion:

- Submit [Degree Schedule](#) to the Graduate School.

SEMMESTER OF PLANNED DEGREE COMPLETION:

Students need to monitor their MyMichiganTech account for required Graduate School [forms and deadlines](#).

- Submit [Degree Completion Form](#) to the Graduate School.

Thesis/Report Defense:

The thesis/report defense is open to the public. The student will give a presentation to the audience. The general audience will first question the student on the proposal. Upon dismissal of the general audience, the thesis/report committee members will continue to question the student. The committee will evaluate the student’s ability to present and defend the thesis/report using the Biomedical Engineering MS Evaluation Rubric and record the results on the Biomedical Engineering Evaluation of MS Graduate Student Outcomes – Thesis or – Report. If the student does not pass the defense, he/she can retake the defense a second time. Failure in the second defense will result in the dismissal of the student from the thesis/report MS program. The student will have the option to complete the MS degree with the coursework option.

Students can pick up a MS Defense packet from the front desk with instructions for the defense process.

2 weeks prior to Defense:

- Provide the date, time, building/room number and title of defense to the departmental coordinator. M&M 309 staff can reserve a room for the defense.

- Submit [Pre-defense Form & Defense Draft](#) to the Graduate School and advisory committee. Committee members may request to have the defense draft turned in sooner.

On the day of your Defense:

- Bring a copy of the [Report on Final Oral Examination Form](#) and Evaluation Rubrics with you to your defense.

Please refer to the Graduate School [guidelines](#) for remaining procedures or MyMichiganTech

Staff at the front desk will send you a departmental Exit Interview to complete before you leave the university.

Table of Contents
Research Mode (Thesis/Report)

Master’s Thesis or Report Students are eligible for Research Mode at the start of the first semester following completion of all 30 required credits for their degree. They may register for research credits at a reduced tuition rate. The primary purpose of research mode is to provide assistance to faculty who are supporting graduate researchers on external funds. For more information regarding Research Mode please see the Graduate School website.

Thesis/Report Defense

Students must prepare their document using the guide found on the Graduate School website. Students can pick up a Thesis/Report Defense packet from the front desk with instructions for the defense process. The defense may be scheduled using the Pre-defense Form found on the Graduate School website. This form requires a date, time and building/room number for the defense. Students must provide this information along with the title of the defense to the departmental coordinator before or at the same time the Pre-defense Form is submitted. Staff in M&M 309 can reserve a room for the defense.

All defenses must be scheduled two weeks in advance of the desired date. Students must submit the complete defense draft of their thesis to the Graduate School and also to their advisor and committee two weeks before their defense. The deadline to submit a committee approved post-defense dissertation, thesis or report is 4:00 p.m. on the Monday of week 14.

There is a grace period from Tuesday of week 14 to Wednesday 4:00 p.m. of the week before classes begin for the next semester. Students who submit their dissertation, thesis, or report will qualify to enroll in UN5951 in the upcoming semester. These students will pay the resubmission fee (25% of one-credit of tuition) when their documents are accepted.

The thesis/report defense is open to the public. The student will give a presentation to the audience. The general audience will first question the student on the proposal. Upon dismissal of the general audience, the thesis/report committee members will continue to question the student. The committee will evaluate the student’s ability to present and defend the thesis/report using the Biomedical Engineering MS Evaluation Rubric and record the results on the Biomedical Engineering Evaluation of MS Graduate Student Outcomes – Thesis or Report. If the student does not pass the defense, he/she can retake the defense a second time. Failure in the second defense will result in the dismissal of the student from the thesis/report MS program. The student will have the option to complete the MS degree with the coursework option.

Upon completion of the defense, students should make any technical corrections requested by their advisor and committee and also any formatting corrections from the Graduate School. Print the Approval of Dissertation, Thesis or Report Form from the Graduate School website and obtain signatures from advisor and all committee members. The completed form must be submitted to the Graduate School. Within one week and prior to the deadline, submit the final dissertation to the Graduate School (see the website for submission instructions). The deadline to submit a final dissertation is Monday of week 14 of the semester.
<table>
<thead>
<tr>
<th>Grad School/BME Master’s Thesis-Report Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before you arrive on campus:</td>
</tr>
<tr>
<td>• Arrange for housing</td>
</tr>
<tr>
<td>• Consult with your assigned BME advisor for course selection</td>
</tr>
<tr>
<td>• Submit arrival information on MyMichiganTech to notify IPS (international students)</td>
</tr>
<tr>
<td>Upon arrival on campus:</td>
</tr>
<tr>
<td>• Obtain Husky Card</td>
</tr>
<tr>
<td>• Report to IPS (international students)</td>
</tr>
<tr>
<td>Prior to 1st week of class:</td>
</tr>
<tr>
<td>• Attend Graduate School Orientation</td>
</tr>
<tr>
<td>• Complete Basic Responsible Conduct of Research Training</td>
</tr>
<tr>
<td>• Complete Patent, Research, & Proprietary Rights Agreement Form on MyMichiganTech</td>
</tr>
<tr>
<td>• Submit official proof of previous degrees earned to the Graduate School</td>
</tr>
<tr>
<td>• Attend BME Grad Student Orientation</td>
</tr>
<tr>
<td>Beginning of 1st semester:</td>
</tr>
<tr>
<td>• Submit Advisor Recommendation Form to the Graduate School</td>
</tr>
<tr>
<td>• Complete Campus Clarity Training</td>
</tr>
<tr>
<td>Every year:</td>
</tr>
<tr>
<td>• Provide proof of health insurance or pay University policy</td>
</tr>
<tr>
<td>• Obtain parking permit</td>
</tr>
<tr>
<td>Every semester:</td>
</tr>
<tr>
<td>• Register for courses</td>
</tr>
<tr>
<td>• Pay your tuition bill</td>
</tr>
<tr>
<td>• Confirm your enrollment</td>
</tr>
<tr>
<td>• Attend required graduate seminars</td>
</tr>
<tr>
<td>At the end of spring semester:</td>
</tr>
<tr>
<td>• Submit Self-assessment Form to your advisor</td>
</tr>
<tr>
<td>2nd semester:</td>
</tr>
<tr>
<td>• Submit Advisory Committee Form to the Graduate School</td>
</tr>
<tr>
<td>• Complete BME Plan of Study Form</td>
</tr>
<tr>
<td>2nd or 3rd semester:</td>
</tr>
<tr>
<td>• Complete Advanced Responsible Conduct of Research Training</td>
</tr>
<tr>
<td>Semester before planned degree completion</td>
</tr>
<tr>
<td>• Submit Degree Schedule to the Graduate School</td>
</tr>
<tr>
<td>Semester of planned degree completion</td>
</tr>
<tr>
<td>10 weeks prior to commencement:</td>
</tr>
<tr>
<td>• Submit Degree Completion Form to the Graduate School</td>
</tr>
<tr>
<td>2 weeks prior defense:</td>
</tr>
<tr>
<td>• Provide date, time, building/room number and title of defense to departmental coordinator</td>
</tr>
<tr>
<td>• Submit Pre-defense Form and Defense Draft to the Graduate School and your advisory committee</td>
</tr>
<tr>
<td>Defense date:</td>
</tr>
<tr>
<td>• Defend and bring a copy of Report on Final Oral Examination Form and Evaluation Rubrics</td>
</tr>
<tr>
<td>Post – defense (refer to deadlines on Graduate School web-site)</td>
</tr>
<tr>
<td>• Submit Approval of Dissertation, Report, or Thesis Form to the Graduate School</td>
</tr>
<tr>
<td>Within 1 week of submitting Approval Form and by semester deadline MONDAY OF WEEK 14:</td>
</tr>
<tr>
<td>• Submit Thesis/Report to Digital Commons and ProQuest</td>
</tr>
<tr>
<td>Before leaving Campus:</td>
</tr>
<tr>
<td>• Submit Graduate Student Workspace Cleanout Form on MyMichiganTech</td>
</tr>
<tr>
<td>• Complete Exit Survey</td>
</tr>
<tr>
<td>• Complete departmental Exit Interview</td>
</tr>
</tbody>
</table>
Biomedical Engineering Master’s Report Option

Under this master’s option a student will select an independent project of research interest. The student will prepare a report describing the results of the project. The scope of the research topic for the report should be defined in such a way that a full-time student could complete the requirements for a master’s degree in twelve months or three semesters following the completion of course work by regularly scheduling graduate research credits. Reports must be prepared following the formatting guidelines from the Graduate School.

Upon completion of the course requirements and project, the student must present the results of their report during their defense. The defense must include the faculty advisor and the committee. The defense will be open to the public. Upon dismissal of the general audience the committee will continue to question the student. The committee will evaluate the student’s ability to present and defend the report using the Biomedical Engineering MS Evaluation Rubric and record the results on the Biomedical Engineering Evaluation of MS Graduate Student Outcomes - Report. Students must report the results of their oral examination and submit a final report to the Graduate School prior to completing their degree.

Visit the deadlines section on the Graduate School website for detailed information about required forms and due dates.

Biomedical Engineering Report Option Course Requirements

Under this plan, the student is required to produce a report describing the results of an independent study project. At least 24 of the 30 credits must be earned in coursework other than the project.

- Students must complete the Master’s requirements for all students as stated on the Graduate School website, as well as the below requirements for courses for the report option:
 - A minimum of 30 approved credits (including required core courses).
 - 24 credit minimum of course work
 - 12 credit minimum 5000-6000 level courses
 - 12 credit maximum 4000 level courses
 - 3 credit minimum 4000 or higher level courses outside the department
 - 12 credit minimum from BME department
 - 2 to 6 research credits

The following courses are required core courses, all students must take and pass with a minimum of a “B” grade. Students will be required to re-take the course with grades less than “B”.

- MA5701 Statistical Methods I offered Fall
- BE5200 Cellular & Molecular Biology II offered Spring OR KIP5500 Systems Physiology offered Fall.

Graduate students who wish to take 3000 or 4000 level courses must get special approval from their advisor.
Biomedical Engineering Master’s Thesis Option

Under this master’s option a student will select a project of research interest. The program requires a research thesis prepared under the supervision of the advisor. The thesis describes a research investigation and its results. The scope of the research topic for the thesis should be defined in such a way that a full-time student could complete the requirements for a master’s degree in twelve months or three semesters following the completion of coursework by regularly scheduling graduate research credits. The thesis must be prepared following the current Graduate School procedures.

Upon completion of the course requirements and research thesis, a master’s thesis student will present a defense of their work. The defense must include the faculty advisor and the committee. The defense will be open to the public. Upon dismissal of the general audience the committee will continue to question the student. The committee will evaluate the student’s ability to present and defend the thesis using the Biomedical Engineering MS Evaluation Rubric and record the results on the Biomedical Engineering Evaluation of MS Graduate Student Outcomes - Thesis. Students must report the results of their oral examination and submit a final thesis to the Graduate School prior to completing their degree.

Visit the deadlines section on the Graduate School website for detailed information about required forms and due dates.

Biomedical Engineering Thesis Option Course Requirements

Under this plan, the student is required to produce a research thesis with the supervision of an advisor. The minimum course requirements are as follows:

- Students must complete the master’s requirements for all students as stated on the Graduate School website, as well as the below requirements for courses:
- A minimum of 30 approved credits (including required core courses)
- 20 credit minimum of relevant coursework
 - 12 credit minimum 5000-6000 level courses
 - 9 credit maximum 4000 level courses
 - 3 credit minimum 4000 or higher level courses outside the department
 - 12 credit minimum from BME department
- 6 to 10 research credits

The following courses are required core courses, all students must take and pass with a minimum of a “B” grade. Students will be required to re-take the course with grades less than “B”.

- MA5701 Statistical Methods I offered Fall and Spring
- BES200 Cellular & Molecular Biology II offered Spring OR KIP5500 Systems Physiology offered Fall.

Graduate students who wish to take 3000 or 4000 level courses must get special approval from their advisor.

All other deadlines and requirements for completion of the master’s thesis are located on the Graduate School website.
Self-assessment Instructions

- Completed after each semester for PhD students.
- Completed annually by Master’s students.
- Both the student and advisor need to complete sections on the assessment.
- Assessments will contain written feedback and must be discussed during a meeting between the advisor and student and then signed and dated.
- A printed copy will be provided to the student and kept in the departmental files.
- In the event that serious deficiencies are identified, they must be clearly identified in the Self-assessment advisor expectations with a plan to remedy the deficiencies.

The Self-assessment forms will be sent to students as a fillable pdf by office staff.

ASSESSMENT FORMS MUST BE COMPLETED ELECTRONICALLY AND CANNOT BE FILLED OUT BY HAND.

Student:
You will receive a fillable pdf form from office staff.
Download the file.
Complete all questions pertaining to student information.
Choose “save as” and rename the file with your first and last name.
Prepare an updated Curriculum Vitae.
Send your CV and Self-assessment to your advisor to complete.
You should arrange to meet with your advisor to discuss, sign, and date the Self-assessment.

Advisor:
You will receive a fillable pdf from your grad student.
Download the file.
Complete all questions pertaining to advisor information.
Save and print the file.
The completed Self-assessment should be discussed, signed and dated at the meeting with your student.
Turn in the completed Self-assessment to office staff for department files. Students will receive a copy of their Self-assessment for their records.

Thesis/Report

Coursework
Graduate Seminar Series

Attendance of all Biomedical Engineering Graduate Seminars is required. PhD students are required to present a seminar to BME faculty and BME graduate students. Faculty attending the PhD student’s seminar will use the Biomedical Engineering PhD Evaluation Rubric and record the results on the Biomedical Engineering Evaluation of PhD Graduate Student Outcomes – Seminar. The department coordinator will email notifications about the date, time, and location for seminars that will occur (a seminar will not be held every week so please watch your email closely).

Requirements:

- All graduate students MUST attend all Biomedical Engineering seminars.
 - There will be a sign in sheet at the seminar to ensure attendance.
- Graduate students must attend 6 seminars per semester (emails are sent from the department coordinator announcing other departmental seminars as well). If the BME department does not hold 6 seminars per semester, students must attend seminars from other departments.
 - BME PhD proposal defense, dissertation defense and MS Thesis/Report defense are considered to be part of the seminar series.
- Graduate students must write up a brief summary of each seminar attended. They must have their advisor approve and sign the summary and then turn it in to staff at the front desk.
- Failure to attend the appropriate number of seminars will result negatively on student’s evaluations that occur each semester and will negatively impact their research grade.

Events that are not acceptable for seminar assessments:

- Seminars that are not a scientific or technical research topic
- Webinars
- Graduate School workshops or training sessions
- PhD proposal defense, dissertation defense and MS Thesis/Report defense outside of the BME department
- Conferences
- Tech Talk Series
Graduate Seminar Assessment Form

Student Name: _____________________________________ Date: ________________

Title of Seminar attended: __

Name of Seminar Presenter: __

Summary of Seminar:

Advisor Signature: __ Date: __________
BE5900 Biomedical Engineering Master’s Topics

Title of topic/project: __

of credits: _________ BE5900 will receive a letter grade.

Student Name: ___________________________ M# __________________

Faculty Approval:
_____________________________ __________________________ Date: __________

Printed _______________________ Signature ______________________
MS Plan of Study Form

Student Name: _____________________________ M #: __________________ Date: _____________

MS Option Selection: _____ Thesis _____ Report

_____ Coursework _____ Accelerated

Complete Part A prior to the end of the first semester of MS Program.

Complete Part B during undergrad junior year.

<table>
<thead>
<tr>
<th>PART A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis/Report/Coursework courses to be counted toward MS degree.</td>
</tr>
<tr>
<td>Title</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

PART B – For Accelerated Master’s (COURSES TO BE APPLIED TO BOTH BS & MS)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approval signatures:
Advisor: _____________________________

Table of Contents
Biomedical Engineering Fall Semester Graduate Courses

REQUIRED CORE COURSE: MA 5701 - Statistical Methods Introduction to design, conduct, and analysis of statistical studies, with an introduction to statistical computing and preparation of statistical reports. Topics include design, descriptive, and graphical methods, probability models, parameter estimation and hypothesis testing.

Credits: 3.0 Lec-Rec-Lab: (0-3-0)

Semesters Offered: Fall and Spring

BE 5000 - Biomedical Masters Research Includes the study of an acceptable biomedical engineering problem and the preparation of a report or thesis.

Credits: variable to 12.0; May be repeated; Graded Pass/Fail Only

Semesters Offered: Fall, Spring, Summer

BE 5330 - Biomimetic Materials This course introduces students to biologically inspired approaches to design functional biomaterials. Topics include the discovery and incorporation of biological designs into novel materials and their application in the biomedical field.

Credits: 3.0 Lec-Rec-Lab: (3-0-0)

Semesters Offered: Fall - Offered alternate years beginning with the 2014-2015 academic year.

BE 5335 - Smart Polymers This course introduces students to smart polymers that change their physical properties in response to various environmental stimuli. Topics include the molecular origin of the stimuli responsiveness of these materials and their application in the biomedical field.

Credits: 3.0 Lec-Rec-Lab: (3-0-0)

Semesters Offered: Fall - Offered alternate years beginning with the 2015-2016 academic year.

BE 5350 - Cell Biomechanics and Mechanical Transduction This course is designed to introduce the mechanical analysis and characterization of mammalian cells. Mechanotransduction, whereby cells detect loading and respond to the morphology and mechanical properties of the surrounding extracellular matrix, will be emphasized.

Credits: 3.0 Lec-Rec-Lab: (3-0-0)

Semesters Offered: Fall

BE 5390 - Scientific Computing Offers insight into advanced scripting, parallel computing with traditional CPUs and hardware accelerators, data analysis, and visualization. Students will get hands-on experience in designing, building, securing, managing, and using a HPC cluster in compliance with federal regulations.

Credits: 3.0 Lec-Rec-Lab: (3-0-0)

Semesters Offered: Fall, Spring

Continued next page.
BE 5510 - Cardiovascular Engineering Fundamental cardiovascular pathology and the biomedical engineering approaches being developed and used toward problems resulting in significant cardiovascular deficiency such as myocardial infarction, chronic kidney disease, atherosclerosis, and heart valve disease.

Credits: 3.0 **Lec-Rec-Lab:** (3-0-0)

Semesters Offered: Fall

BE5670 – Micro & Nano Technologies This course introduces students to micro- & nano- technologies and the processes involved in their manufacturing. Particular emphasis will be on the use in biomedical applications. Goal is to provide beneficial research and development to the industry.

Credits: 3.0

Semesters Offered: Fall

BE 5755 - Medical Devices An introduction to medical devices used for diagnosis, monitoring, and treatment in clinical medicine. Topics covered include product planning, reliability, clinical trial design, regulatory as well as technical aspects of common medical devices.

Credits: 3.0 **Lec-Rec-Lab:** (3-0-0)

Semesters Offered: Fall

BE5900 – Biomedical Engineering Master’s Topics Biomedical engineering courses will be offered as professional electives dependent upon the interest of the faculty.

Credits: variable to 6.0; May be repeated

Semesters Offered: Fall, Spring, Summer

BE6000 – Biomedical Engineering Doctoral Research Includes the study of an acceptable biomedical engineering problem and the preparation of a report or thesis.

Credits: variable to 12.0; May be repeated; Graded Pass/Fail Only

Semesters Offered: Fall, Spring, Summer

BE 6900 - Biomedical Engineering Doctoral Topics Biomedical engineering courses will be offered as professional electives dependent upon the interest of the faculty.

Credits: variable to 6.0; May be repeated

Semesters Offered: Fall, Spring, Summer

Continued next page.
REQUIRED CORE COURSE: KIP 5500 - Systems Physiology A comprehensive systemic study of the physiological functions of the adult human, including an introduction to the underlying etiologies and clinical indicators of molecular, cellular, and tissue bases for common organ system diseases in humans.

Credits: 3.0
Semesters Offered: Fall
(This course can be taken in place of BE5200 Cellular and Molecular Biology II, which is offered every spring.)
REQUIRED CORE COURSES MUST HAVE A GRADE OF “B” OR BETTER. STUDENTS WILL BE REQUIRED TO RETAKE THE COURSE WITH GRADES LESS THAN “B”.

These courses are offered fall semester by the department. If your faculty advisor has recommended you take courses that are 3000 or 4000 level, you must see the staff in M&M 309 for a waiver to take these courses.
Biomedical Engineering Spring Semester Graduate Courses

BE 5000 - Biomedical Masters Research Includes the study of an acceptable biomedical engineering problem and the preparation of a report or thesis.
Credits: variable to 12.0; May be repeated; Graded Pass/Fail Only
Semesters Offered: Fall, Spring, Summer

BE 5115 - Finite Element Modeling The course teaches both fundamentals of finite element theory and hands-on experience for bio-engineers.
Credits: 3.0 Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring

REQUIRED CORE COURSE: BE 5200 - Cellular and Molecular Biology II Covers, at an advanced level, the general principles and engineering applications of science and biology, including cell biology, physiology, molecular biology, genetics, and biotechnology.
Credits: 3.0 Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring
OR
KIP 5500 - Systems Physiology A comprehensive systemic study of the physiological functions of the adult human, including an introduction to the underlying etiologies and clinical indicators of molecular, cellular, and tissue bases for common organ system diseases in humans.
Credits: 3.0
Semesters Offered: Fall
(This course is offered every fall and can be taken in place of BE5200 Cellular and Molecular Biology II.)

BE 5230 – Stem Cell and Tissue Engineering This course will introduce (1) basic concepts of tissue engineering, (2) scaffold materials and biotechnologies for tissue engineering, (3) basic concept of stem cells, (4) review of stem cell sources and related policies, (5) current progress in stem cell research, (6) application of stem cells in tissue engineering and regenerative medicine.
Credits: 3.0 Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring

BE 5250 - Biomedical Optics Light plays a significant role in modern clinical diagnostics and in the clinical treatment of disease. Examples include non-invasive surgery, optical biopsy, and cancer therapy. This course will focus on the study of how light propagates through biological tissue.
Credits: 3.0 Lec-Rec-Lab: (3-0-0)
Semesters Offered: Spring - Offered alternate years beginning with the 2014-2015 academic year.

Continued next page.
BE 5390 - Scientific Computing Offers insight into advanced scripting, parallel computing with traditional CPUs and hardware accelerators, data analysis, and visualization. Students will get hands-on experience in designing, building, securing, managing, and using a HPC cluster in compliance with federal regulations.

Credits: 3.0
Semesters Offered: Fall, Spring

BE5410 – Medical Imaging This course covers the physical nature of the interactions between the waves and matter, especially the biological tissues, principle imaging modalities used in modern medicine and the common techniques used for the processing of the resulting images.

Credits: 3.0
Semesters Offered: Spring – Offered alternate years beginning with the 2018-2019 academic year.

BE5900 – Biomedical Engineering Master’s Topics Biomedical engineering courses will be offered as professional electives dependent upon the interest of the faculty.

Credits: variable to 6.0; May be repeated
Semesters Offered: Fall, Spring, Summer

BE6000 – Biomedical Engineering Doctoral Research Includes the study of an acceptable biomedical engineering problem and the preparation of a report or thesis.

Credits: variable to 12.0; May be repeated; Graded Pass/Fail Only
Semesters Offered: Fall, Spring, Summer

BE 6900 - Biomedical Engineering Doctoral Topics Biomedical engineering courses will be offered as professional electives dependent upon the interest of the faculty.

Credits: variable to 6.0; May be repeated
Semesters Offered: Fall, Spring, Summer

REQUIRED CORE COURSE: MA 5701 - Statistical Methods Introduction to design, conduct, and analysis of statistical studies, with an introduction to statistical computing and preparation of statistical reports. Topics include design, descriptive, and graphical methods, probability models, parameter estimation and hypothesis testing.

Credits: 3.0
Semesters Offered: Fall and Spring

REQUIRED CORE COURSES MUST HAVE A GRADE OF “B” OR BETTER. STUDENTS WILL BE REQUIRED TO RETAKE THE COURSE WITH GRADES LESS THAN “B”.$
These courses are offered spring semester by the department. If your faculty advisor has recommended you take courses that are 3000 or 4000 level, you must see the staff in M&M 309 for a waiver to take these courses.
Instructions for changing your Advisor:

Before initiating the process to change your graduate advisor, please consider all the options listed on the Graduate School’s website for how to address difficulties in the student-advisor relationship:

Once you have decided to change your graduate advisor, you must follow the steps listed below.

1. Meet with your graduate program director to initiate the process to change advisor. If meeting with the graduate program director is not feasible or appropriate, meet with the Chair or School Dean of the department or school. If you are in a non-departmental program, you may meet with the Chair or School Dean of your administrative home department or school.

2. Discuss the following with the graduate program director (or Chair/School Dean) and, if appropriate, the current advisor:
 - Whether additional resources within or outside the department (such as the Ombuds office) could help resolve the situation.
 - The impact of the change of advisor on your time to complete the degree. Coursework, qualifying exam(s), and the research proposal examination are all factors that could be impacted with a change in advisor.
 - Your current and future funding.
 - Research already conducted. Whether this will be incorporated into the dissertation, thesis, or report, and if so, how.
 - Impact on immigration status (if any). Consult International Programs and Services (IPS), if necessary.
 - Complete the BME Change of Advisor form and record the agreement from the discussions in writing, including indications of agreement from all affected faculty advisors, and provide copies to the student, the graduate program director, and all affected faculty advisors.

3. File an updated Advisor and Committee Recommendation Form for approval by the Graduate School.

4. If the student and the graduate program director are unable to reach agreement on the advisor change, contact the assistant dean of the Graduate School to determine additional steps to resolve the situation.
Change of Advisor Form

1. Student’s justification for changing Advisor:

2. Current Advisor comments:

3. Future Advisor comments:

Continued next page.
4. Grad Committee comments:

<table>
<thead>
<tr>
<th>Student Name (printed):</th>
<th>Student Signature:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>______________________</td>
<td>__________________</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current Advisor (printed):</th>
<th>Current Advisor Signature:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________________________</td>
<td>___________________________</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Future Advisor (printed):</th>
<th>Future Advisor Signature:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>_________________________</td>
<td>__________________________</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grad Committee:</th>
<th>Signatures:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feng Zhao</td>
<td>___________</td>
<td></td>
</tr>
<tr>
<td>Jingfeng Jiang</td>
<td>___________</td>
<td></td>
</tr>
<tr>
<td>Sangyoon Han</td>
<td>___________</td>
<td></td>
</tr>
</tbody>
</table>
Transferring from Master’s to PhD

At times, a student pursuing a master’s degree in biomedical engineering decides that they would like to increase their scope to pursue a PhD. A discussion should be held with the student’s advisor prior to form submission. The advisor will indicate if they feel the student is prepared for the PhD program or if they recommend further courses, research, or other, before applying to the PhD program. If it is determined that the advisor recommends the student move into the PhD program, the student need only to fill out the D-1 Acceptance Form: (This form is located on the Graduate School website, under - Forms - Current Students - Special Purpose Forms).

The form must be approved by the department chair or BME graduate program director, then submitted to the Graduate School. The Graduate School will return a signed form to the student, and graduate program assistant of the department.