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XRDUG Seminar III 

Computer Algorithms Used for XRD Data Smoothing, Background 
Correction, and Generating Peak Files: 

Some Features of Interest in X-ray Diffraction Data: 

• Position of diffraction peaks, in particular the d-spacing 
• Net intensities of the peaks 
• Integrated intensities (areas) of the peaks 
• FWHM (full width at half maximum) 

Procedure for Digital Signal Conditioning of X-ray Diffraction Data for 
DMSNT Software 
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Figure 1 Diffraction Peak Parameters of Interest – in general three 
distinct areas, parabolic top, linear inflexion points, asymptotic tails. 

Data Smoothing Methods: 

1. “Boxcar” Smooth 
• Specify the number of points (N) to use in the smooth, must be an 

odd number. 
• Average data over symmetric interval around data point of interest: 

# points to left = (N-1) / 2 

# points to right = (N-1) / 2 

N = number of points averaged in the smooth 

• Apply to all data points collected in the diffraction spectrum. 

• Example: A 3 point “boxcar” smooth on 7 diffraction data points:  
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Original Data 10 77 32 35 87 28 36 
1st smooth (on 10)  - 77 32 35 87 28 36 Can’t be done 
2nd smooth (on 77) - 40 32 35 87 28 36 
3rd smooth (on 32) - 40 36 35 87 28 36 
4th smooth (on 35) - 40 36 52 87 28 36 
5th smooth (on 87) - 40 36 52 56 28 36 
6th smooth (on 28) - 40 36 52 56 40 36 
7th smooth (on 36) - 40 36 52 56 40 - Can’t be done 

• 7th smooth shows the end result of “boxcar” smooth. 

• Lose end data points of the range smoothed: 

# data points lost = (N-1) / 2 

• If number of points smoothed (N) is large this process can distort 
and /or shift diffraction peaks. 

• Number of points needed depends on counting statistics and step 
size, typically 7 points displays dramatic results with minimal 
distortion of peaks. 

• Available in Background Correction in DMSNT software. 

2. Fast Fourier Transform (FFT) Noise Filter 

• Can describe any function as a series of cosine and sine functions. 

In General: 

f x( ) =∑An cos(2πnx) +∑Bn sin(2πnx) 
n n 

• Describe diffraction data as a Fourier series in the frequency 
domain. 

• Recognize that the statistical fluctuations (noise) in the data can be 
represented by high frequency terms of the Fourier series, whereas 
the diffraction peaks are typically low frequency in nature. 



  
 

  
 

  
 

 
 

  
 

 
 

 

 
 

 
 

 
  
 

  
 

 
 

 

• Pass data through a “low pass” frequency filter to eliminate 
“noise” by removing frequencies above some value. 

• Reconstruct function or data with high frequency component 
removed to produce smoothed data. 

• Filter size can be adjusted by the user or automatically chosen by 
computer. 

• Resolution value in software roughly correlates to size of feature 
removed and related to the frequency cutoff. 

• Available in Background Correction in DMSNT software. 

Background Correction Methods: 

To determine net peak and net integrated intensities, need to subtract the 
background. In general any function that properly describes the background 
can be used. 

1. Linear background correction: 

• Simplest correction method fit line to end points of the data range. 

• Use only on small ranges of data, typically one peak, diffraction 
background spectrum typically is not linear, but over small ranges 
this is a good approximation. 

2. Parabolic background correction: 

• One factor that has a large influence on the intensity of a 
diffraction spectrum is the Lorentz-Polarization Factor (LPF). 

2(1+ cos2 2αcos  2θ)
Ι ∝  LPF2sin θcosθ 



 
 

 
 

 

 

 
 

  
 

 

Figure 2 Debye-Scherrer Diffraction Showing Need for Lorentz 
Correction 

• LPF is parabolic in nature (See Figure 3). 

General Parabolic Equation: 

y=ax2 + bx + c 

• Can describe the whole background spectrum with a parabolic fit 
of the background. 

• Typically must define a minimum of 3 widely-separated points that 
are in the background in order to fit the equations to the data. Use a 
least-squares fit and minimize the error between the data and the 
parabolic function. 
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Figure 3 Lorentz-Polarization Factor with a Graphite Monochromator 

• Ideally, this is a good way to correct whole background spectrum; 
but other factors cause deviations from a parabolic nature and 
influence the intensity of the background spectrum, such as: 

• Amorphous scattering from the sample holder, or a powder 
binding material.  

• Intensity loss due to the incident beam being larger then the 
sample at small 2θ angles. 

• Metallurgical effects e.g.: presence of an amorphous phase, 
clustering or short range order of solute atoms, density 
gradients in packed powder samples, etc.. 

3. 3rd Order Polynomial Background Correction: 

• General form of the equation: 

y = ax3 + bx2 + cx + d 

• Can adjust to aberrations in background that affect parabolic fit. 



  
 

  
 

 
 

  
 

  
 

 
 

 
 

 

 

 

• Typically must define a minimum of 4 widely-separated points, 
that are in the background, in order to fit the equations to the data. 
Use a least-squares fit and minimize the error between the data and 
the 3rd order function. 

4. Cubic Spline Background Correction: 

• Assumes nothing about the shape of the background. 

• Excellent fit to a nonlinear background. 

• A method of cubic polynomial interpolation between intervals that 
are spliced together to fit the whole pattern. 

• Most versatile type of background fit (available in the software). 

• Available in DMSNT software, data points used must be selected; 
however, initially the end points are inserted and cannot be 
removed but position can be adjusted. 

Figure 4 Data Point Selection in Cubic Spline Background Correction 



 

  
 

 
 

  
 

 
 

  
 

  
 

 
  
 

 

• When selecting points try to keep on the low side of the average 
background, typically at the bottom of the inner noise band.  

5. Box Car Background Correction: 

• Applies a “boxcar” smooth to data point intervals specified by the 
user, called Filter Width (number of points averaged to determine 
correction data points). 

• Filter Width must be in the range of 0.2 to 10. 

• The higher the number the “flatter” the background fit will be, 
essentially more data points are used to describe the background 
(Figure 5). 

• Correction can follow a portion of the peak if Filter Width and/or 
step size is small (Figure 6). 

• Fits amorphous type artifacts in the background better with lower 
values of Filter Width (Figure 7). 

• Used by DMSNT Background Correction program. 

Figure 5 Box Car Correction Filter Width 10 



 

 

 

 
 
 
 

Figure 6 Box Car Background Correction Filter WIdth 0.2 

Figure 7 Box Car Background Correction Filter Width 1.5 



 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

  
 

  
 

  
 

 

 

 
 

6. DMSNT Background Removal, Smoothing, and Correction Program (see 
figures 1-5 in Screen Shots): 

• Background Icon in DMSNT does all three, background 
correction, smoothing, intensity corrections. 

• When using the Cubic Spline option make sure to zoom in on the 
background, maximum intensity in the range of 100 cps before 
picking background points. 

• Creates a Net Intensity file that contains the background corrected 
raw data (and other optional operations) that is used in the Peak 
Finder program to determine peak parameters. 

• Options for Data Smoothing have been discussed. 

Correction Program: 

Option for Kα2 Stripping from Diffraction Peaks: 

• To eliminate the identification of Kα2 peaks. 

• Do not use if profile fitting the data manually. 

• Uses the “Rachinger Method” of Kα2 stripping to determine 
the IKα1 and IKα2 components of each diffraction peak. 

Makes use of the known relationships between the 
Kα1 and Kα2 peaks: 

I Kα1 = 2 I Kα2 

Δλ = λ Kα2 - λ Kα1 

From Bragg Equation: 

Δλ
Δ2θ = 2  tanθ 
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Choose intervals over which the correction will be 
applied to the data: 

n intervals = Δ2θ/m   where m is an integer 
typically 1, 2, or 3 

Apply the following equation: 

I (2θ) = I Kα1(2θ) + (½) I Kα1[2θ + Δ(2θ)] 

I = intensity of experimental profile  

IKα1 = intensity due to Kα1 only 

Sum over the interval n 

• Crystal monochromators typically influence the 
intensity ratio between Kα1 and Kα2 which can leave 
artifacts on the high angle side of the peak after 
stripping. 

Figure 8 Rachinger Method Kα2 Stripping 

Can also apply intensity correction for Lorentz Polarization Factor 
and constant beam area conversion: 



 

 
 

 
 

 

 
 

 
 

  
  

  
 

  
 

  
 

  
 

  
 

• Many quantitative calculations require a Lorentz Polarization 
Factor correction so this can be accomplished while creating the 
net intensity file. 

• Constant beam area conversion for converting variable slit data to 
constant beam slit data for comparison. This does present 
quantitative problems.  

Computer Algorithms for Peak Determination Routines: 

These methods create d (d-spacing) and I (intensity) files, or “peak files” 
which can contain the following information: 2θ and d-spacing of peak 
position, peak intensity (I), integrated intensity (area), FWHM, and relative 
intensities (%). 

1. Derivative Method: 

• Typically use the 2nd order derivative method, more sensitive to 
small changes in the profile and inflection points or shoulders, 
other orders can also be used. 

• Determine the peak position from most negative value of the 2nd 

derivative function of the peak. 

• Can learn about the FWHM by the roots of the 2nd derivative 
function (where it crosses zero). 

• Very sensitive to statistical noise in the data, usually requires a 
smoothing operation which can distort the peak data. 

• Excellent at finding peak positions from peaks that overlap. 

• Peak intensity is determined from raw data using the determined 
peak position. 

• Attempts have been made to calculate the area by the negative 
region of the 2nd derivative function, but results are suspect. 



  

 
 
 
  

Figure 9 Derivative Method Peak Position 



 
 

 

  
 

 
 

  
 

 

 

 

 

 

 

 

 

 

2. Trend Oriented Peak Search: 

• Determines the start of a peak by looking for an increasing trend in 
the slope of the average background, usually specified by the user, 
and determines the end of the peak by similar trends in the 
negative slope. 

• Statistical noise can cause the algorithm to identify false peaks.  

• More reliable results if data at top of the peak is reduced to 3 
average data points. 

• Peak position determined by the 3-point Parabola Method which 
fits a parabola to the “peak” of the diffraction profile. 

3-Point Parabola Method: 

Peaks can be represented by mathematical profiles, two 
common functions are Gaussian and Cauchy functions. 
Expanding both functions as a power series, showing only the 
first two terms, we have the general case: 

I(2θi) = Io - (Io/a2)(2θi - 2θpeak)2 + ........... 

Ignoring higher order terms we have the equation of a 
parabola of the general form: 

y = ax2 + bx + c 

If 2θ1, 2θ2, and 2θ3 are 3 points that describe the peak and are 
separated by the angular interval Δ2θ then the vertex (peak 
position) is given by: 

Δ2θ ⎡3a b+ ⎤2θ = 2θ + 
⎣⎢ a b0 1 2 + ⎦⎥ 



 

 
 

  
 

  
 

  
 

  
 

  
 
  

 
  

 

  

Figure 10 Figure Showing 3-point Parabola Method 

• Peak intensity is determined from the raw data point corresponding 
to the vertex of the parabola fit. 

• Area of the peak is calculated by summing the net intensities for 
each data point (step size or chopper increment) over the region 
described by the trend search. 

• Area values are sensitive to different choices of step size or 
chopper increment. 

• FWHM determined by dividing the integrated intensity by the net 
peak intensity therefore this is an integral breadth not a true 
FWHM. 

• Program can automatically separate Kα2 component only if they 
are resolved, based on the relationships between Kα1 and Kα2. 

3. DMSNT Peak Finder Routines (see figure 6 in Screen Shots): 

a) Peak Finder using Digital Filtering: 

• Locates the starting intensity of a peak above background by 
comparing the intensity of the raw data points with a defined value 
calculated by a user defined parameter know as the Ripple 
Multiplier. 



 

 
  
 

 
  
 

 
 

  
 

 
  
 

  

 

 

     

 

• The Ripple Multiplier is a user adjustable value that is multiplied 
times the ESD (estimated standard deviation) of the background 
and added to the average background to produce the value used to 
locate the start of a peak. 

• ESD’s are produced for each data point in a raw data file based on 
the intensity of the data point and the preset count time used. This 
is determined by the square root of the total counts collected. 

• Another user defined criterion is the ESD Multiplier. This is used 
to define the minimum intensity that a peak can have to be 
accepted. The ESD Multiplier times the ESD of the average 
background added to the average background gives the minimum 
intensity in cps that a peak must have to be accepted. 

• Options available to correct for peak position errors using internal 
and/or external correction methods. 

• Finds peak position by utilizing the “top 15 percent Parabolic Fit” 
which uses the top 15 percent of the data points, in terms of 
intensity, of the peak to determine the position  

Top 15 Percent Parabolic Fit: 

In general: 
Ij = a + bδj + cδj

2 

δj = increment between data points 

Maximum intensity found by: 

∂( )Ι j = 0 
∂ δ( )j 

a, b, c can be determined from a least-squares fit to the data 
by minimizing:  



 

 

 

 

 

 

 
 

  
 

 

 
 

  
 

 

 
 

 
 

 
 

 
 

 

n 
2 2S = ∑ (a + bδ j + cδ2j − Ι j ) 

j=−n 

the apex of the parabola is defined by: 

2θpeak = 2θo - b/2c 

2θo is the working origin initially chosen by the most intense 
data point. 

This is found to be a more accurate method then the “3 Point 
Parabola Method” (provided more than 3 points). 

Parabola must be a satisfactory fit to be acceptable, step size 
could have a large affect on the fit criteria. 

• The FWHM is estimated from the parabola equation. 

• The area is estimated by the following equation: 

Area = (Ipeak * FWHM)/2 

• The only reliable quantitative data obtained by this program is the 
peak position; all other parameters should be used with caution. 

b) Peak Finder using Pearson VII Profile (see figures 7-9 in Screen 
Shots): 

• This is time consuming especially if there are a large number of 
peaks. 

• Program has difficulties with very broad peaks.  

• Background tab is not available. 

• Peakfinder tab - input peak finding information: 



  

  
 

 
 

 

 
 

 
 

 
 

 
 

  
 

  
 

  
 

  
 

 
 

o Use Existing Peakfile – use data from Peak Finder using 
Digital Filtering. 

o Number of points for Fourier smooth. 
o Peak Seaching Info: Threshold - pick minimum peak size, 

or # of Peaks – enter number of peaks to find. 
o Select general breadth of peaks. 

• Profile Fitting tab select the type of profile, only two to choose 
from, and whether weighting of intensity is employed (higher 
intensity given more weight in the least squares minimization). 

• Uses values of 2 for exponent in the Pearson VII function and finds 
the best FWHM fit for all peaks, i.e. restricts the function used. 
Note in help menu reads, “Does not calculate area best to do in 
profile fit algorithm”; however, the area appears in the peak file 
using this method. 

4. DMSNT Peak File Output – See Screen Shots Figures 10 and 11. 

Summary Comments on Peak Searching Programs: 

• Always check the results obtained graphically to see if they are 
reasonable. 

• I recommend that results other than the peak position be used with 
caution, they should be reliable with results in a given scan but 
comparisons with other scans could possibly be suspect. 

• Quantitative results for areas, etc., can be more accurately 
determined by profile fitting the diffraction peaks with known 
mathematical profiles. This procedure typically requires a lot more 
time to determine the results. 

• Peak search routines work well for phase identification analysis. 

• It is important to experiment with all of the variables available to 
determine which work best for your particular data. 


