Sample questions

1.

Groups

(a) Isomorphism Theorems. Let M and N be normal subgroups of G such that $G = MN$. Prove that $G/(M \cap N)$ is isomorphic to $(G/M) \times (G/N)$.

(b) Sylow theorem. Prove that if $|G| = 132$ then G is not simple.

(c) Groups actions. Suppose $|G| = p^a$, where p is a prime. Prove that every subgroup of index p is normal in G.

(d) Cauchy-Frobenious-Burnside lemma. If there are q colors available, prove that there are $(q^n + 2q^{(n^2 + 3)/4}) + q^{(n^2 + 1)/2}/4$ distinct $n \times n$ colored chessboards.

(e) Linear groups. Let K be a field. Prove that $GL(n,K)$ is a semidirect product of $SL(n,K)$ by $K^\times = K - \{0\}$.

(f) Split extension. Construct a non-abelian group of order 75.

(g) Solvable groups. Suppose $|G| = pq$, where p and q are primes. Prove that G is solvable.

(h) Finitely generated abelian groups. Let $G = \mathbb{Z}_{60} \times \mathbb{Z}_{45} \times \mathbb{Z}_{12}$ \times \mathbb{Z}_{36}. Find the number of elements of order 2 in G.

2.

Rings.

(a) Polynomial rings. Let $f(x)$ be a polynomial in $F[x]$, where F is a field. Prove that $F[x]/(f(x))$ is a field if and only if $f(x)$ is irreducible.

(b) Euclidean domains. Prove that the quotient ring $\mathbb{Z}[i]/I$ is finite for any nonzero ideal I of $\mathbb{Z}[i]$. ($\mathbb{Z}[i]$ is the ring of Gaussian integers).
Principal ideal domains. Let \(I = (2, 1 + \sqrt{-5}) \) be an ideal of \(\mathbb{Z}[\sqrt{-5}] \). Prove that \(I \) is not a principal ideal of \(\mathbb{Z}[\sqrt{-5}] \).

Unique factorization domains. Determine all the representations of the integer \(2130797 = 17^2 \cdot 73 \cdot 101 \) as a sum of two squares.

3. Fields.

(a) Galois Theory and construction of Galois groups. Determine the Galois group of \(x^4 + 4x - 1 \).

(b) Finite fields. Write out the multiplication table for \(\mathbb{F}_4 \) (the field of 4 elements).

(c) Algebraic extensions. Prove that \([Q(\sqrt{2} + \sqrt{3}) : Q] = 4 \), where \(Q \) is the field of rational numbers.