Course Specification

EE - 4220
Introduction to Electric Machinery and Drives

Curricular Designation: EE: elective CpE: elective

Catalog Description:
EE 4220 – Introduction to Electric Machinery and Drives Laboratory Provides a hands on understanding of how electric machines can be used to drive loads with control of speed, torque, and position. Topics include basic electro-mechanics, rotating machinery, dc machines, ac machines, power electronics, and load modeling. Credits: 1.0 Lec-Rec-Lab: (0-0-2) Semesters Offered: Spring Prerequisites: EE 2110 or EE2112 or EE 3010

Textbooks(s) and/or Other Required Materials:

Prerequisites by Topic:
1. Students need to have mastered the ability to write the equations for, and solve, a linear sinusoidal steady state circuit using phasor algebra.
2. Students need to have mastered the ability use based laboratory equipment and measurement devices such as dc power supply, multimeter, oscilloscope, …

Course Objectives:
1. Students shall have mastered the understanding of basic electromechanical energy conversion and basic power electronic switching circuits.
2. Students shall be familiar with the operating principles of dc motors (PMDC) and introduction of basic control schemes using a dc motor drive system.
3. Students shall be familiar with the operating principles of ac motors (PMAC and Induction) and introduction of basic control schemes using a dc motor drive system.

Topics Covered:
1. Introduction to Electric Drives
2. Magnetic Circuits
3. Power Electronic Circuits
4. Basic Structure and Operating Principles in Electrical Machines
5. Mechanical System Modeling
6. DC Motor Drives
7. Control of DC Motor Drives
8. Induction Motor Drives
9. Synchronous Motor Drives
Relationship of the Course Content to Program Outcomes:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Topics and Level of Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>an ability to apply knowledge of mathematics, science and engineering</td>
</tr>
<tr>
<td>b</td>
<td>an ability to design and conduct experiments, as well as to analyze and interpret data</td>
</tr>
<tr>
<td>c</td>
<td>the ability to design a system, component, or process to meet desired needs within realistic constraints such as...</td>
</tr>
<tr>
<td>d</td>
<td>an ability to function on multi-disciplinary teams</td>
</tr>
<tr>
<td>e</td>
<td>an ability to identify, formulate and solve engineering problems</td>
</tr>
<tr>
<td>f</td>
<td>an understanding of professional and ethical responsibility</td>
</tr>
<tr>
<td>g</td>
<td>an ability to communicate effectively</td>
</tr>
<tr>
<td>h</td>
<td>the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context</td>
</tr>
<tr>
<td>i</td>
<td>a recognition of the need for, and an ability to engage in life-long learning</td>
</tr>
<tr>
<td>j</td>
<td>a knowledge of contemporary issues</td>
</tr>
<tr>
<td>k</td>
<td>the ability to use the techniques, skills, and modern engineering tools necessary for the practice of electrical engineering</td>
</tr>
</tbody>
</table>

Contribution of Course to Meeting Degree Requirements:
1 Credit Hours – Engineering Topics

Class/Laboratory Schedule (note: 1 hour = 50 minutes):
Lecture: 28 hours = 2 hours/week for 14 weeks

Prepared by:
Trever Hassell, Academic Advisor/Instructor, Dec 1, 2016