EE - 3140
Electromagnetics

Curricular Designation: EE: required CpE: elective

Catalog Description:
EE 3140 - Electromagnetics Covers basic principles of engineering electromagnetics with an emphasis on Maxwell's equations. Credits: 3.0 Lec-Rec-Lab: (3-0-0) Semesters Offered: Fall, Spring
Pre-Requisite(s): PH 2200 and MA 3160 and (EE 2110 or EE 2112)

Textbooks(s) and/or Other Required Materials:
1. Applied Electromagnetism, Third Edition, Liang Shen, and Jin Au Kong, PWS,

Prerequisites by Topic:
1. Familiarity with Euler’s identity and complex numbers, vectors and vector operators grad, divergence and curl.

2. Introduction to electromagnetic field concepts relating to current and voltage.

Course Objectives:
1. Mastery of:
 a. Characteristics of plane waves, their direction of propagation, wavelength, frequency, vector direction including polarization.
 b. Boundary conditions of electric and magnetic fields at interfaces

2. Familiarity with:
 a. Application of Maxwell's equation to reflection at dielectric and metallic interfaces.
 b. Dispersion and loss in complex media.
 c. Transmission lines and properties of VSWR and matching.

3. Introduction to:
 a. Antenna principles such as polarization of the radiated electromagnetic field.
 b. Properties of the electric dipole and resonance at one-half wavelength.
 c. Identification of modes in waveguides.
 d. Principles of Rayleigh scattering and Doppler shift.

Topics Covered:
1. Complex Vectors
2. Maxwell's Equations
3. Uniform Plane Waves
4. Reflection and Transmission of Waves
5. Waveguides and Resonators
6. Transmission Lines
7. Antennas
8. Topics in Waves

Relationship of the Course Content to Program Outcomes:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Topics and Level of Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Important</td>
</tr>
<tr>
<td>a an ability to apply knowledge of mathematics, science and engineering</td>
<td>Important</td>
</tr>
<tr>
<td>b an ability to design and conduct experiments, as well as to analyze and interpret data</td>
<td>Moderate</td>
</tr>
<tr>
<td>c an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, health and safety, manufacturability and sustainability</td>
<td>Minimally</td>
</tr>
<tr>
<td>d an ability to function on multi-disciplinary teams</td>
<td>Important</td>
</tr>
<tr>
<td>e an ability to identify, formulate and solve engineering problems</td>
<td>Important</td>
</tr>
<tr>
<td>f an understanding of professional and ethical responsibility</td>
<td>Important</td>
</tr>
<tr>
<td>g an ability to communicate effectively</td>
<td>Important</td>
</tr>
<tr>
<td>h the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context</td>
<td>Important</td>
</tr>
<tr>
<td>i a recognition of the need for, and an ability to engage in life-long learning</td>
<td>Important</td>
</tr>
<tr>
<td>j a knowledge of contemporary issues</td>
<td>Important</td>
</tr>
<tr>
<td>k the ability to use the techniques, skills, and modern engineering tools necessary for the practice of electrical engineering</td>
<td>Important</td>
</tr>
</tbody>
</table>

Contribution of Course to Meeting Degree Requirements:

1 Credit Hour – Math/Basic Science 2 Credit Hours - Engineering Topics

Class/Laboratory Schedule (note: 1 hour = 50 minutes):
Lecture: 42 hours = 3 hours/week for 14 weeks

Prepared by:
Durdu Guney, Associate Professor, January 14, 2017