

 1

The Performance of Scalar Replacement on the HP 715/50

Steve Carr
Qunyan Wu

Department of Computer Science
Michigan Technological University

Houghton MI 49931-1295

1 Introduction

It has been shown that the allocation of array values to registers can significantly improve the memory perfor-
mance of scientific programs [3][5]. However, in many product compilers array references are left as references to
main memory rather than promoted to references to registers because the data-flow analysis used by the compiler is
not powerful enough to recognize most opportunities for reuse in subscripted variables. Arrays are often treated in
a particularly naive fashion, if at all, making it impossible to determine when a specific element might be reused.
This, however, need not be the case. In the code shown below,

 DO 1 I = 2, N
1 A(I) = A(I-1) + B(I)

the value accessed by

A(I-1)

 is defined on the previous iteration of the

I-

loop. Using this knowledge, obtained
via dependence analysis, the flow of values between the definition of

A(I)

 and the use of

A(I-1)

 can be
expressed with temporaries as follows.

 T = A(I)
 DO 1 I = 2, N
 T = T + B(I)
 1 A(I) = T

Since global register allocation will most likely put scalar quantities in registers, we have removed the load of

A(I-1)

. This transformation is called

scalar replacement

 and can be applied to the reuse of array values across
and within iterations of an innermost loop [2][3][5].

This report discusses an experiment with the effectiveness of scalar replacement on a number of scientific
benchmarks run on the Hewlett-Packard 715/50. For a more detailed description of the scalar replacement algo-
rithm, see Carr and Kennedy [5].

2 Experiment

A source-to-source translator, called Memoria, that replaces subscripted variables with scalars using the algo-
rithm described in Carr and Kennedy has been developed in the ParaScope programming environment [1][4]. In
this particular experiment, Memoria serves as a preprocessor to the HP product compiler, rewriting Fortran pro-
grams to improve register allocation of array values.

The target architecture for the experiment is the Hewlett-Packard 715/50. Each benchmark is compiled with ver-
sion 9.16 of the HP Fortran compiler using optimization level 2 (-O). Experimentation with this compiler reveals
that portions of the scalar replacement algorithm have already been implemented in the HP product compiler.
Essentially any invariant reuse in the innermost loop that does not require sophisticated dependence analysis to
detect and any reuse within an iteration of the innermost loop (loop-independent reuse) is detected by the HP com-
piler. Therefore, this study attempts to reveal what can be gained by including loop-carried reuse (not invariant),

 2

invariant reuse that requires sophisticated dependence analysis and reuse that exists only on some paths through the
loop (partially available values).

The test suite for this experiment consists of the Livermore Loops, a number of linear algebra kernels and pro-
grams from the SPEC, Perfect and NAS benchmark suites. The rest of this reports details our examination of scalar
replacement on this suite of programs and kernels.

2.1 Livermore Loops

The first benchmark set that we examine is the 24 Livermore Loops. The performance of the loops is detailed in
Figure 1. Performance is shown in normalized execution time where the base time of 100 is not labeled. Any loop
not detailed in Figure 1 does not improve or degrade in performance due to scalar replacement.

All loops in Figure 1 that show improvement have loop-carried dependences that are amenable to scalar replace-
ment. The loops with larger run-time improvements have a larger reduction in the ratio of memory reference to
floating-point operations than do the loops with smaller improvements. Loop 7 improves by such a large degree
because 5 of 10 array references are removed from the loop, leaving the loop no longer bound by memory accesses.

Two of the Livermore Loops show a degradation in performance after scalar replacement. In each case, the soft-
ware pipelining algorithm used by the HP compiler is inhibited by scalar replacement. Thus, the original loop is
software pipelined, but the scalar-replaced loop is not software pipelined. Software pipelining fails on loop 18 after
scalar replacement due to register pressure. On loop 23, software pipelining fails to find a schedule.

2.2 Linear Algebra and Miscellaneous Kernels

The next benchmark set that we examine is a collection of kernels commonly used in linear algebra and other
scientific applications. Table 1 gives a description of the kernels used in this study.

Linear Algebra Kernel Description

VM Vector-Matrix Multiply

MMk Matrix Multiply reduction order

MMi Matrix Multiply cache order

LU LU Decomposition

LUP LU Decomposition w/pivoting

TABLE 1. Linear Algebra Kernel Descriptions

Livermore Loop Kernel

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

81
72

35

84

57 60

96 92
102 98

108

91

1 4 5 7 11 12 13 15 18 20 23 Mean
0

20

40

60

80

100

120
Original

Optimized

FIGURE 1. Performance of Livermore Loops

 3

A common property of the linear algebra kernels is that they compute reductions that contain array references
that are invariant with respect to the innermost loop. As mentioned previously, these types of references are scalar
replaced by the current version of the HP optimizer unless sophisticated dependence analysis is needed to detect
the invariant reuse. Figure 2 details the performance of the kernels in normalized execution time.

Each of the kernels that show no improvement contains only invariant references that are amenable to scalar
replacement and those references are caught by the HP compiler. LU decomposition (with and without pivoting),
block LU decomposition (with and without pivoting) and Cholesky decomposition all require some form of trian-
gular loop dependence testing to detect the invariant array references. Although, in general, this can be a reason-
ably complex dependence test for the back end of a compiler, we believe many common cases can be detected with
simple pattern matching.

Of the kernels that show improvement, the performance of the block LU decomposition algorithms improves
more than other kernels because the block algorithms contain an innermost-loop reduction that allows scalar
replacement to remove both a load and a store. The point versions of LU decomposition (with and without pivot-
ing) only have an invariant load removed from their main loop. Cholesky decomposition contains an inner loop
reduction just at the block LU algorithms, but the kernel contains other loops that do not contain opportunities for
scalar replacement. Thus, Cholesky’s improvement is less. Seval and Sor are two kernels that contain variant loop-
carried reuse. Sor improves more because it has a higher percentage of references removed.

BLU Block LU

BLUP Block LUP

Chol Cholesky Decomposition

Afold Adjoint Convolution

Fold Convolution

Seval Spline Evaluation

Sor Successive Over Relaxation

Linear Algebra Kernel Description

TABLE 1. Linear Algebra Kernel Descriptions

Linear Algebra Kernel

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

92 93

61
69

90
95

85
90

VM MMk MMi LU LUP BLU BLUP Chol Afold Fold Seval Sor Mean
0

20

40

60

80

100
Original

Optimized

FIGURE 2. Performance of Linear Algebra Kernels

 4

2.3 Benchmark Suites

This section details the performance of scalar replacement on a number of benchmark suites. The experiment
reveals that the effects of scalar replacement are disappointing on whole programs. The lack of improvement
occurs for three major reasons:

1.The loops on which scalar replacement is performed may not contribute a significant amount of execution
time to the whole program.

2.A benchmark may not have many loop-carried dependences that Memoria’s algorithm handles and HP’s com-
piler does not handle.

3.The scalar replacement performed by Memoria may disable the software pipelining algorithm in the HP com-
piler on some loops and not others, causing a net improvement at or below zero. Software pipelining can be
inhibited in the HP product compiler by high register pressure, long loop bodies or failure to find a schedule.
Each of these effects occurs in our test suite.

In the following section, we present the performance of the programs in SPEC, Perfect, NAS and a group of mis-
cellaneous benchmarks. We also discuss the reasons for performance gains, degradations or unvarying related to
the previous observations. The third of the above observations turns out to be the most significant one in this exper-
iment.

2.3.1 SPEC Benchmarks

The first benchmark suite that we examine is SPEC. Our experiment uses programs from both the SPEC89 and
SPEC92 Fortran suites. Table 2 gives the list of Fortran programs and their corresponding key used in Figure 3.

Dnasa7, fpppp, matrix300, mdljdp2, mdljsp2, ora and su2cor do not have a sufficient number of loop carried
dependences to result in run-time improvements after scalar replacement. Of those loop carried dependence that do
exist in these programs, 90-100% are loop invariant. Swm256 has loop-carried dependences, but there are also
loop independent dependences between most of the references and only a small percentage of references are
removed by going across the loop iterations. In tomcatv, although there are loop-carried dependences, the register
pressure is too high to allocate registers across loop iterations. Finally, wave5 shows improvement only in those
routines that do not contribute significantly to the running time of the program.

Key Benchmark Name

d7 dnasa7

dd doduc

fp fpppp

h2d hydro2d

m300 matrix300

md2 mdljdp2

ms2 mdljsp2

ora ora

s2r su2cor

tv tomcatv

w5 wave5

TABLE 2. Spec Benchmark Name Key

 5

2.3.2 Perfect Benchmarks

The next benchmark suite that we examine is the Perfect Club. Unfortunately, we cannot get all of the programs
in the suite to run on the HP 715/50. We do not have results for bdna, mdg, mg3d, ocean and spec77. Table 3 gives
the names of the benchmarks from the Perfect Club that we are able to test.

Dyfesm, qcd, track and trfd have only one combined reference between them that our scalar replacement algo-
rithm is able to handle and the HP optimizer is not able to handle (this reference appears in dyfesm). Therefore, no
improvement is possible with Memoria. Of those programs that we cannot successfully run on the 715/50, only

Key Benchmark Name

adm adm

a2d arc2d

dyf dyfesm

f52 flo52

qcd qcd

track track

trfd trfd

TABLE 3. Perfect Club Name Key

Spec Benchmarks

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

96 99 97 99

d7 dd fp h2d m300 md2 ms2 ora s2r tv w5 Mean
0

20

40

60

80

100
Original

Optimized

FIGURE 3. Performance of Spec Benchmarks

Perfect Benchmarks

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

106
101

adm a2d dyf f52 qcd track trfd Mean
0

20

40

60

80

100

120
Original

Optimized

FIGURE 4. Performance of the Perfect Club

 6

bdna and spec77 have any opportunities for Memoria. Due to the unpredictability of the interaction between scalar
replacement and software pipelining (since we do not account for software pipelining in Memoria), the results of
bdna and spec77 cannot be conjectured.

For the benchmark adm, many loops improve in execution time while others degrade. One of most serious deg-
radation (6%) occurs on the third most computationally expensive loop in the program and is caused by an inhibi-
tion of software pipelining. In adm, more loops improve in performance after scalar replacement than degrade in
performance. However, performance degradation occurs in the more computationally expensive loops and overall,
the effect is to nullify any improvements gained by scalar replacement. Arc2d has only 8 additional references that
Memoria can replace and, therefore, no improvement results. Finally, we cannot determine exactly why Flo52
degrades in performance. The degradation occurs in one loop nest where we suspect that our estimation of register
pressure is too low and scalar replacement causes additional spill code. Our algorithm only looks at register pres-
sure on a per loop basis rather than on a global basis. Thus, any values live across a loop body are not taken into
account.

2.3.3 NAS Benchmarks

The next benchmark suite that we examine is the NAS benchmarks. The programs in this suite are listed in
Table 4.

Three programs from this suite (cgm, fftpde, mgrid) are not listed because we could not get them to run on the 715/
50. None of these three programs have scalar replacement opportunities for Memoria, so no improvement can be
expected.

Of the remaining programs, appbt, applu and appsp have opportunities for Memoria. Buk and embar have no
opportunities for Memoria. Figure 5 gives the performance of these programs. Of the programs that have opportu-
nities for scalar replacement, only appbt shows any improvement. Each of appbt, applu and appsp suffers from the
inhibition of software pipelining to counteract any gains made.

Key Benchmark Name

abt appbt

alu applu

asp appsp

buk buk

emb embar

TABLE 4. NAS Benchmark Key

NAS Benchmarks

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

99

abt alu asp buk emb Mean
0

20

40

60

80

100
Original

Optimized

FIGURE 5. Performance of NAS Benchmarks

 7

2.3.4 Miscellaneous Benchmarks

To conclude our study, we look at the performance of three benchmarks that do not fall into any of the standard
benchmark suites. Table 5 gives the names and descriptions of those benchmarks.

Figure 6 details the performance of the three benchmarks. Both Erlebacher and Linpackd show no improvement
over the HP compiler because all or nearly all of the loop-carried dependences in each benchmark are invariant
with respect to the innermost loop. Simple shows a significant performance degradation. Simple has one computa-
tional loop that encompasses 50% of the execution time of the entire program. This loop consists of a single outer
loop containing four inner loops. When scalar replacement is performed on the inner loops, software pipelining is
inhibited in three of those four loops. This causes a significant performance degradation that is actually more than
that seen over the entire benchmark. In other loops in the program, scalar replacement improves performance
enough to counteract some of the effects in the main computational loop.

2.4 Scalar Replacement Statistics

As part of this study, we collected a number of statistics on the loops in our benchmark suites. There were 2707
loops in our suite of which 2586 were scalar replaced. The loops that were not replaced did not contain array refer-
ences. Of the 2586 replaced loops 1731 did not have any opportunities for scalar replacement. It is highly probable
that forward expression propagation and auxiliary induction variable recognition would increase the number of
loops that have opportunities for scalar replacement. In the loops that had opportunities for scalar replacement
4725 array references were removed. Of the replaced references, 70% had their value generated on the same loop
iteration, 13% of the references were invariant with respect to the inner loop and the remaining 17% had their value
generated on a previous loop iteration. Less than 1% of the reference replaced required partial redundancy elimina-
tion to ensure a value was generated on all paths through the loop [5].

Benchmark Description

Simple 2D Hydrodynamics

Erlebacher 3D ADI Integration

Linpackd Linear Algebra Package

TABLE 5. Miscellaneous Benchmark Descriptions

Miscellaneous Benchmarks

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

105 102

erle linpackd simple Mean
0

20

40

60

80

100

120
Original

Optimized

FIGURE 6. Performance of Miscellaneous Benchmarks

 8

3 Conclusions

In this paper, we have reported on an experiment with scalar replacement on the HP 715/50. Our results have
been mixed. While there is room for improvement over the current HP optimizer, we believe that intimate knowl-
edge of the back end of the compiler is necessary to ensure that scheduling and register allocation are not adversely
affected by scalar replacement. Since we are unable to determine adequately how beneficial more aggressive scalar
replacement techniques might be to the HP compiler, we suggest the following study to provide that information.

• Modify Memoria to allow different levels of aggressiveness with scalar replacement. This will allow us to
look at the effect of replacing different reference subsets.

• Modify Memoria to perform different sets of dependence tests. This will allow us to determine the effects of
more sophisticated dependence analysis.

• Gather static statistics from the scalar replacement algorithm on the number of references replaced based on
the aggressiveness of scalar replacement and dependence analysis.

• Gather dynamic statistics on the number of loads and stores removed based on the aggressiveness of scalar
replacement and dependence analysis. This will reveal the potential for scalar replacement to improve perfor-
mance.

We believe that this study will help HP determine whether a more aggressive scalar replacement algorithm in com-
bination with better knowledge of the instruction scheduler will be beneficial to its product compiler.

References

1.D. Callahan, K. Cooper, R. Hood, K. Kennedy and L. Torczon. ParaScope: a parallel programming environ-
ment. In

Proceedings of the First International Conference on Supercomputing,

 Athens, Greece, June 1987.

2.D. Callahan, J. Cocke, K. Kennedy. Estimating interlock and improving balance for pipelined machines.

Journal of Parallel and Distributed Computing

, 5:334-358, 1988.

3. D. Callahan, S. Carr and K. Kennedy. Improving register allocation for subscripted variables.

SIGPLAN
Notices

25(6):53-65, 1990.

Proceedings of the 1990 ACM SIGPLAN Conference on Programming Language
Design and Implementation.

4.S. Carr.

Memory-Hierarchy Management.

 Ph.D. Thesis, Rice University, Department of Computer Science,
1993.

5.S. Carr and K. Kennedy. Scalar Replacement in the Presence of Conditional Control Flow.

Software - Prac-
tice & Experience,

volume 24, number 1, pp. 55-71, January 1994.

