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Abstract

The following document provides an overview of how to use the Flexible Architecture Simulation Tool, and an in-
depth look at the Architecture Description Language. The system has been developed by Dr. Soner Onder and Dr.
Rajiv Gupta. After many revisions, it has become a powerful simulation tool. The documentation that you are reading
is a result of the collaboration between University of Alberta and Michigan Technological University. Aaron Dittrich
under the direction of Dr. Mike MacGregor has put together pieces of documentation Dr. Onder had written into the
form of a technical report (TR03-18, Department of Computing Science, University of Alberta, Edmonton, Alberta,
Canada) in a nicely organized way which has later became the basis for this document.

The examples presented are centered around the MIPS RISC architecture. At first a single-stage MIPS architecture
is presented, and then the remainder of the examples are centered around a simplified MIPS R2000/R3000 architecture.



Chapter 1

Overview

1.1 Purpose

The purpose of the Flexible Architecture Simulation Tool is to enable rapid prototyping of new processor architectures.
Rather than coding a simulation environment manually in a general purpose programming language such as C, FAST
provides a much more abstract and higher-level Architecture Description Language (ADL) that is used to describe
both the processor and instruction set architecture (ISA). A description written in ADL is then used by FAST to
automatically generate a microarchitecture simulator, assembler, and disassembler. This reduces the development
time from the 18 to 24 man months required to write a simulator in C, to around 3 months to describe the same
architecture in ADL. In addition to the time savings gained from using a domain-specific language such as ADL,
architectural changes are much more easily made at the architecture specification level, allowing the simulator to be
automatically regenerated.

1.2 The FAST toolchain

The FAST toolchain consists of a number of stages that transform a machine description and benchmark program into
a usable architecture simulator.

In the first stage, the ADL compiler is used to transform an architecture description written in ADL into C++
source code. The generated Makefile is then used to compile this source code into the FAST simulation suite. A 6000
to 8000 line ADL architecture description is transformed into about 35000 lines of C++ code.

Once the three FAST programs are available, benchmark programs can be written, compiled, and executed on the
simulated target architecture.

The first step is to take an HLL program written in C and cross-compile it with the MIPS-Ultrix cross compiler
provided with the FAST distribution. The result of this is an assembly language program using MIPS-Ultrix system
call conventions. Although the FAST system can be targeted to any calling convention, the examples presented here
are all centred around MIPS-Ultrix. The FAST assembler is then used to transform the assembly file into a binary file
executable on the target architecture via the FAST simulator. The simulator is then responsible for producing all of
the performance results necessary to gauge the viability of the target architecture.
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Chapter 2

| nstallation

The FAST distribution is available for download at http://www.cs.mtu.edu/~soner/fast/. The tarball will ex-
tract to a directory named FAST. In this directory you will find an INSTALL script. Run this script to create the following
directories in your home directory:

~/object
~/trace

The next step requires you to edit your login scripts. If you are using bash, for example, add the following lines
to your _bash_profile file:

FAST_LOCAT ION=$HOME/FAST/
export FAST_LOCATION

so that the FAST_LOCATION environment variable points to the location of the FAST directory. If you extracted the
distribution to a location different than your home directory, edit the above. Setting this variable allows the special
MIPS-Ultrix cross-compiler to find the libraries required to properly compile high level code.

The next step is to build the ADL compiler. Go to $FAST_LOCATION/adl-compiler and execute the following
two commands:

make
make dep

This takes very little time and places the ADL compiler, called adl, in your “/object directory.
The next step is to build the MIPS-Ultrix cross-compiler. Go to $FAST_LOCATION/mips-cross-compiler direc-
tory and execute:

make
This will create an xgcc executable in $FAST_LOCATION/adl-compi ler. You are free to copy this file to wherever is

most convenient for you, provided that you create a link to the ccl executable in $FAST_LOCATION/adl-compiler.
Failure to do so will prevent xgcc from running.



Chapter 3

Compiling and running an example

Having successfully built both the ADL compiler and the MIPS-Ultrix cross-compiler, you are now ready to build
some examples and run FAST. In $FAST_LOCATION/Descriptions you will find two example architectures, one a
simple MIPS architecture, and the other a standard MIPS pipelined architecture. Let’s assume that we’ll choose the
simple example.

The first step is to build the simulator from the architecture description given in the ADL program files. Go to the
simple directory and execute the following command:

~“/object/adl simple.adl

This will run the ADL compiler on the ADL description, creating a “/machine-architecture directory if it doesn’t
exist, and placing various source files and a Makefile in “/machine-architecture/simple. Compile the source
files by executing make in the “/machine-architecture/simple directory. The result of this will be three new
executable files in “/object. These will be:

simple.asm
simple.dasm
simple.sim

The first program, simple._asm, is the assembler for the target architecture. This program takes as input a DEC
Ultrix assembly file (produced by the cross-compiler xgcc and produces an object file executable by the target (i.e.
simulated) architecture.

The second program, simple.dasm, is a disassembler used for debugging. It is called automatically by the FAST
debugger, although it can be called separately as well.

The third program, simple._sim, is the simulator for the target architecture. This program simulates the target
architecture executing the object file created by the cross assembler.

A more in-depth description of how each of these programs work will be provided later. First we need to write a
program to run on the target architecture. Using your favorite editor, write a small C program. Try something short
like the following:

int main() {
inti=0, j=0;
for (i; 1 < 10; i++)
J=3+1i;

Suppose you called this program prog.c. The first step is to translate this program into Ultrix assembly code.



Here is where you make use of the xgcc cross-compiler. Execute the following command:
Xgcc -S -0 prog.s prog.c

Here the -S option tells the compiler that you do not wish to execute the program, but rather want it left in assembly
language. Go ahead and take a look at the resulting Ultrix assembler prog.s file. The top of it should look something
like this:

.Ffile 1 "prog.c"
# GNU C 2.7.2 [AL 1.1, MM 40] DECstation running ultrix compiled by GNU C
# Ccl defaults:

# Ccl arguments (-G value = 8, Cpu = 3000, ISA = 1):
# -quiet -dumpbase -o

If the top of your file looks like this, then xgcc should be working correctly.

Once you have the Ultrix assembly file for your test program, you can proceed to assemble it using the assembler
for the target architecture. In this case, the assembler is simple.asm. Since FAST implements system services us-
ing the MIPS-Ultrix system call format, the standard C libraries cannot be used when assembling a FAST program.
Instead, the equivalent MIPS-Ultrix libraries must be used. These libraries are provided in the distribution. Unfor-
tunately, running the assembler while providing the locations of these libraries as options produces a very lengthy
command! You may wish to place this in a script:

~“/object/simple.asm --new new/prog.s
--lib ${FAST_LOCATION}/libraries/libc/libgcc2
--lib ${FAST_LOCATION}/libraries/libc/time
--lib ${FAST_LOCATION}/libraries/libc/posix
--lib ${FAST_LOCATION}/libraries/libc/termios
--lib ${FAST_LOCATION}/libraries/libc/stdio
--lib ${FAST_LOCATION}/libraries/libc/stdlib
--lib ${FAST_LOCATION}/libraries/libc/ctype
--lib ${FAST_LOCATION}/libraries/libc/string
--lib ${FAST_LOCATION}/libraries/libc/locale
--lib ${FAST_LOCATION}/libraries/libc/signal
--lib ${FAST_LOCATION}/libraries/libc/io
--lib ${FAST_LOCATION}/libraries/libc/misc
--lib ${FAST_LOCATION}/libraries/libc/math
--lib ${FAST_LOCATION}/libraries/libc/global
--lib ${FAST_LOCATION}/libraries/libc/malloc
--lib ${FAST_LOCATION}/libraries/libc/dirent
--lib ${FAST_LOCATION}/libraries/libc/resource
--lib ${FAST_LOCATION}/libraries/libc/pwd
--lib ${FAST_LOCATION}/libraries/libc/socket
--object “/object/prog prog.s

P A A i G P Gl O G A A P G g

Here the --new option produces an assembly file in the new directory that can be used to single-step through the code
or for debugging the target in the visual debugger. The —lib arguments provide the paths to the various libraries that are
required when linking the program. The --object argument tells the assembler where you wish to place the object
file executable by the target architecture.



Once the object file has been successfully created, it can be executed on the target architecture. To run your pro-
gram on the simulator, issue the following command:

~/object/simple.sim --bench prog new/prog.s

The --bench option specifies the name of our benchmark file, in this case prog. The second argument is the name of
the assembly file that was generated by the assembler for single-stepping and debugging. The --bench option assumes
that the object file is located in the “/object directory. If you wish to store your object files elsewhere, substitute the
--bench option with the --object option.

The first time that you execute a particular simulator, a file will appear in your home directory. The name of this
file will be benchmark.summary.<machine_name>, where <machine_name> is the name of the host system, not the
simulator itself. Each time you execute a FAST simulator, a line will get added to this file summarizing the execution
of a particular simulation. This line is divided into a number of fields. An example file is shown below.

simple.sim:testfile.s CP1=1.000000 IPC=1.000000 00:00:00 Retired=4181 Cycles=4181
simple.sim:fsimple.s CPI1=1.000000 IPC=1.000000 00:00:00 Retired=771733 Cycles=771733
mips_l.sim:testfile.s CPI1=1.626644 1PC=0.614763 00:00:00 Retired=4181 Cycles=6801\
float_cc=0 Id_d_dep=2019 fl_d_dep=0 mem_dc=0 mem_ic=0 fpmulfull=0 fpaddful =0\
latency m=0 latency d=0 latency f=0 ext_ref=0

In this example, three separate programs were run on the simulator simple.sim. The first six fields are common to
all three cases. The first field gives the name of the target architecture followed by the name of the benchmark. In the
case of the simulation we just executed, it should look like simple.sim:prog.s. The next field specifies the average
number of cycles per instruction (CPI) needed for the target to execute the benchmark. The third field specifies the
average number of instructions the target was able to execute per simulator cycle. The fourth field gives the execution
time, the fifth field the number of instruction contexts retired, and the sixth the total number of cycles that occurred in
the simulation. Depending on the simulation, other fields may appear after these. Some extra data is printed from the
third test program. This is program dependent and is up to the programmer to decide.

You should notice that in some cases the number of instruction contexts retired is the same as the number of
cycles, while in other cases they differ. This is architecture dependent and will be discussed in more detail later. If
the processor is capable of retiring one instruction per cycle, these numbers should be the same. For more complex
architectures, however, the number of cycles is typically greater.

The other output file of interest at this point can be found in the “/trace/statistics directory. Having run the
simple simulator on the prog benchmark, the statistics file will be called simple.sim.prog. If you view the file you
will see that there is much more information to be found than in the benchmark summary file.

For example, the output in this file provides data on each instruction in the simulated architecture. The first two
columns of data are of the most interest. The first column specifies how many times the given instruction was executed,
while the second column gives the percentage of the total instruction count used by that particular instruction. Since
the instructions are divided into categories, FAST is able to output the number of instructions executed from each
category and the corresponding percentage.

3.1 Other options for the assembler, disassembler, and simulator

The assembler, disassembler and simulator have options in addition to those mentioned above. A brief description of
each of these is given below.

Assembler options
--debug: Used for debugging the assembler itself.



--new <filename>: Specify the name of a new assembly file to create to be used for single-stepping and debug-
ging.

--object: Specify the name of the object file to create.

--version: Display the version of FAST.

Disassembler options
--debug: Used for debugging the assembler itself.

--version: Display the version of FAST.

Simulator options

--asm <filename>: Specify the name of the assembly source file. This option is useful when debugging and you
should therefore specify the path to the file created with the --new option on the assembler. Failure to specify the
assembly source file when running the simulator will cause the simulator to issue a warning.

--bench <filename>: Specify the name of the benchmark. This differs slightly from --object in that the ar-
gument cannot be a path, but only a single filename. If this argument is used without --object then the simu-
lator will look in “/object for an object file of name filename. The corresponding output will then be named
<simulator>.sim.<filename>. If the name of the object file is specified explicitly with --object, then the name
of the benchmark can be arbitrary.

--continuous: Causes the simulator to ignore any pause statements in the ADL code.

--debug: Used for debugging the FAST system itself.

--monitor: Run the simulation with the visual debugger.

--object <filename>: Specify the name of the object file. The argument to this option can be a path to any object
file created by the assembler.

--params <Ffilename>: Specify input data for the benchmark program itself. The filename can be a path to any
file.

--stop: Used in conjunction with --until. When this option is specified the debugging window is opened after
the number of cycles specified.

--trace <directory>: Specify a different directory in which to place the trace data output from the simulator.
--until <num_cycles>: Execute the simulation until num_cycles cycles.

--version: Display the version of FAST.



Chapter 4

A smple ADL program

An ADL program consists of a number of different components, each of which must be in place for the program to
produce something meaningful. Unlike other languages such as C, it isn’t possible to write a 2 line program in ADL
that compiles and runs. In fact, while it is possible to write a relatively “empty” ADL program that is acceptable to the
ADL compiler, the resulting C++ code that is generated will still be lacking in some elements. As a result, a minimum
useful ADL program will have a somewhat higher complexity.

This chapter introduces a simple ADL program based on the MIPS RISC architecture and describes the different
elements of the program and how they fit together to form a complete description of a micro-architecture. In the
following chapters, each of these elements will be discussed in much greater detail.

4.1 Components of an ADL program

An ADL architecture description consists of three main components. These are the artifact declarations, the pipeline
description, and the ISA description. In addition to these elements, you will normally require some other pieces in
your program. The artifact declarations describe the memory visible to the processor. This can be external memory as
well as registers and cache memory. The pipeline description is where you describe the architecture itself and how the
architecture handles various instructions. The purpose of the ISA description is to specify the formats of the processor
instruction set and what data each instruction expects.

The example presented in this chapter is a simplified version of the simple.adl program you have worked with
already.

4.2 Overview of an ADL program

A typical ADL program has a certain general structure. Often times the program is divided into more than one file,
however the functionality is identical. In general, the structure of the program is:

Initial declarations

Artifact declarations

Instruction set declaration

Calling convention specification
Pipeline description

Simulator and assembler supplements

Since the sum of all this code amounts to a fairly long program, it is often good practice to separate it into sev-



eral different files. Typically the ISA and calling convention are included from different files. In particular, the ISA,
normally being the lengthiest component of an ADL program, is best placed in its own file.

4.3 Initial declarations

The first few lines of an ADL program are reserved for some required initial declarations. Among these are the
processor name, the endianness of the processor, and any external functions that may be used. Typically, they look
like the following.

HHHHHHHH
# Initial stuff #
BHH R
processor processor 0 highbit 31
begin

lilliput big_endian;
Machineid "simple_mips";

external

begin
int sprintf(char *,const char *,...);
int printf(const char *,...);

end external;

Comments in ADL begin with a # character. Everything following this character up to the end of the line is ignored
by the compiler.

The processor keyword signals the beginning of the processor description. The processor _0 identifier is arbi-
trary and can be replaced with whatever you wish. The highbit keyword tells the compiler how large the instructions
are. In this case the program uses 32 bit instructions. The length of all fields that make up each instruction must sum
to 32 bits. Following this declaration is the begin statement, which signals the beginning of the processor description
block.

The lilliput keyword decides the endianness of the processor. The two options are little_endian and
big_endian.

The Machineid keyword is used to specify the name of the target machine. The argument to it is simply your
choice of name in quotes. If you choose ““my_sim”” as the name, then the compiler will produce my _sim.sim,
my_sim.asm, and my_sim.dasm.

The remaining items are external declarations. These are optional and serve to tell the ADL compiler of any C
library functions you intend to call from within the ADL code. For example, you may wish to insert printf statements
at points within your pipeline in order to assist in debugging. For each function you intend to use, you must provide its
prototype in the external section. Prototypes are the only things accepted here. You can not define an entire function
body, nor can you specify the prototypes of functions that you have written elsewhere.

4.4 Memory, register, and cache declarations: artifacts

Typically, the next part of an ADL program is where you describe the memory visible to the processor. This consists
of external memory, registers, and caches, as well as special registers such as the program counter and instruction
register. This section could look something like the following:



HAHH R R

# Memory, register, and cache declarations

#

B R R R R R R R

3,
1,
1,
2,
2,
1,

shadow register
code_start 32,
_lo 3
check_ex
ex_has it
target 3
dummy 3
less

latch
exception

branch_input

ex_trace 32,
linebreak 32,
check_mem 1,
mem_has it 1,
data_tmp 32,
which 2,
debug_me 1,
1, new_pc

_hi
dest r

check _whb
wb_has_it

ptemp
equal

unordered

32,

1, branch_target 32;

shadow register file dtemp[2,32];
shadow register file scratch[2,32];

32,
32,

11
11

32,

11
1;

register file gpr [34,32] # [34 regs,32 bits each].

$0

$3

$6

$9

$12
$15
$18
$21
$24
$27
$30
$at
$al
$a3
$t2
$t5
$s0
$s3
$s6
$t9

$gp
$ra

shadow

0,
3,
6,
9,
12,
15,
18,
21,
24,
27,
30,
1,
4,
7,
10,
13,
16,
19,
22,
25,
28,
31;

register
hi_val
lo val

$1

$4

$7

$10
$13
$16
$19
$22
$25
$28
$31
$v0
$al
$t0
$t3
$t6
$s1
$s4
$s7
$k0
$sp

1,

4,

7,
10,
13,
16,
19,
22,
25,
28,
31,

2,

S5,

8,
11,
14,
17,
20,
23,
26,
29,

instruction register ir 32;

$2

$5

$8

$11
$14
$17
$20
$23
$26
$29
$ze
$vl
$a2
$tl
$t4
$t7
$s2
$s5
$t8
$k1
$fp

ro

32,
32;

2,
S5,
8,
11,
14,
17,
20,
23,
26,
29,
0,
3,
6,
9,
12,
15,
18,
21,
24,
217,
30,

10



instruction pointer pc 32;

memory mem_0 latency 0 width 32;
memory ncache latency 0 width 32;

controldata register

my_pc 32;

shadow register
Is_bypass 1, mem_stat 1, access_type 32,
byte 2, lop_r 6, rop_r 6,
simm 32, zimm 32, smdr 32,
store v 32, Imar 32, smar 32,
dest 32, dest2 32, lop 32,
lop2 32, rop 32, rop2 32;

bitconstant
_BYTE 0 0, _HALFWORD 01,
_TRIPLEBYTE 1 0, _WORD 11;

constant generate_trace 0;

constant machine_drained 1;

constant cpc_register_number  32;
constant lo_hi_register_number 32;

For the sake of brevity the floating point register file has been omitted. In this section you see a number of different
constructs. Each of these will be discussed in greater detail in Chapter 6. Of particular importance are instruction
register and instruction pointer, as well as the controldata register declaration. Every ADL program
must contain these three declarations. The remainder are left up to the programmer.

4.5 The pipeline description

The pipeline, being the major component of any processor, also makes up a key component of an ADL program.
ADL allows the programmer to specify more than one pipeline, such as an integer pipe, floating point pipe, etc. In
addition, pipelines can contain an arbitrary number of stages. In order to introduce the pipeline declaration, a single
stage pipeline is presented. In Chapter 7 we will discuss more complex pipelines.

The single stage pipeline from the example that you’ve seen so far is presented below. First the pipeline has to be
declared, and then each stage is implemented as a set of procedures.

pipeline IPIPE (s_ID);
source s_ID;

The pipeline keyword is used to declare the pipeline, which can be given a name of your choosing. Following the
name is a comma-separated list of stage names in parenthesis. In this case our single stage is named s_ID. The source
keyword allows the programmer to specify which stages of the pipeline can be source stages. Since this example only
has a single stage, that stage must act as the source. Failure to specify at least one source is a compile-time error.

Once the pipeline has been declared, its stages can then be implemented. Processor major cycles are divided into
minor cycles, a prologue, intermissions, and an epilogue. Each stage much implement at least a prologue and epilogue.
This will be discussed in more detail in Chapter 7.

Let’s first look at the prologue.

11



procedure s_ID prologue
begin
my_pc = pc; #- Required by jal.
ir = mem_O[pc];
if debug_me then
printf("PC is %08x\n",my pc);

if (branch_input) then
begin
branch_input=0;
pc=branch_target;
end
else
pc=pc + 4;

### Fetch input registers. Sign extend the immediate portion ###
decode;

The first couple of lines determine the next instruction based on the program counter. The program counter indexes
into the main memory and the result is stored in the instruction register. Following this is an illustration of the use of
external functions. The C printf function is called if the debug_me variable has a non-zero value. Unlike in C/C++
where blocks are contained within braces, in ADL the beginning of a block is denoted by the begin keyword while
the end of the block is denoted with end. If a block contains only one statement, the begin and end keywords are not
necessary. The next if statement checks whether the previous instruction was a branch instruction. If that turns out
to be the case, the branch_input flag is reset and the program counter is changed to the branch target. Otherwise the
program counter is incremented by one word.

The decode keyword decodes the attributes of the current instruction, which causes them to become read-only
variables accessible by the pipeline stages.

dest_r = ordinal(dest_reg);

### Read operands ###
case lop_type of

begin
cpc_register:
lop r = cpc_register_number;
lop = fpr[lop_r];

integer_register:
lop_r=rs;
lop=gpr[lop_r];

float_register
lop_r=fs;
lop =fpr[lop_r];

double_register :
lop_r=fs;
lop =fpr[lop_r];
lop2=fpr[lop_r+1];

12



special_input
lop_r
lop

2;
gpr[2];

lo_hi_register:
lop_r = lo_hi_register_number;
lop=gpr[lop_r];
lop2=gpr[lop_r+1];
end;

case rop_type of
begin
cpc_register:
rop = tf;

integer_register:
rop_r=rt;
rop=gpr[rop_r];

float_register :
rop_r=ft;
rop =fpr[rop_r];

double_register:
rop_r=ft;
rop =fpr[rop_r];
rop2=fpr[rop_r+1];
end;

if (i_class == branch_class) then
condition_code(lop,rop);
end s_ID;

The next series of statements determine the types of left and right operands. The case statement is analogous to
a C switch statement. lop_type and rop_type are attributes. These can be thought of as enumerated data types.
Their declaration will be discussed in Chapter 8. In the case of rop_type, for example, it can take on the values
float_register, integer_register,double_register, special_input, cpc_register, lo_hi_register. De-
pending on what types the operands are, different actions are taken.

procedure s_ID epilogue
begin
case dest_type of
begin
lo_hi_register:
gpr[dest_r]=dest;
gpr[dest_r+1]=dest2;

integer_register :
gpr[dest_r]=dest;

13



cpc_register
float_register
fpr[dest_r]=dest;

double_register
fpr[dest_r]=dest;
fpr[dest_r+1]=dest2;

else : if ordinal(dest_type) then
printf("'skip skip %d\n™);
end;

### Output trace data ###
sprintf(pointer(scratch),"%6d\n",my_pc - code_start);
if generate_trace then
if builtin fast write_file(ex_trace, 7, scratch) "= 7 then
begin
builtin perror(“'Store ex trace™);
builtin simulation_exit(-1);
end;

retire stat;
newcontext;
end s_ID;

Since the operand types were already determined in the prologue of the stage, what’s left to be determined now
is the type of the destination register. This occurs in the epilogue above. The retire keyword is responsible for
deallocating the instruction context and is always found in the last pipeline stage. The newcontext keyword creates a
new instruction context. Instruction contexts will be discussed in more detail later.

4.6 Simulator and assembler supplements

Each ADL micro-architecture description requires both a simulator and an assembler supplement. These two sections
of code are not written in ADL but rather in C++. The ADL compiler leaves these two sections alone and includes
them in the C++ code that it generates.

The purpose of the simulator supplement is to set up the initial program image for the target-specific machine
code you will be executing. Essentially this amounts to passing parameters to the simulated *process’. In reality there
is no separate process since execution of the code is simulated. In MIPS parameters are passed in $4, $5 etc. For a
different architecture/calling convention, you need to map the remainder of the simulator parameters to the appropriate
registers/stack locations so that the simulated program can find them in the proper place. Similarly, the return address
register is mapped to a call to the O/S routine exit which is implemented by the simulator so that the simulated program
will perform a return from sub’ and the exit function will perform syscall-exit which in turn will call simulation-exit.

Let’s look at the simulator supplement for the MIPS architecture.

simulator begin
Y%%

int pseudo_procedure_call;
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int pseudo_pipeline flush;
int nop_line[4];
int nop_flush[4];

void initialize machine(code_file_header &H, int arg _count, char **args, int stack top) {

while (stack top & 0x7) stack top--;
$sp = (stack_top - 8);

pseudo_procedure_call = (int)&nop_line;
nop_line[0]=0;
nop_line[1]=0;
nop_line[2]=0;
nop_line[3]=0;

pseudo_pipeline_flush = (int)&nop_flush;
nop_flush[0]=0;
nop_flush[1]=0;
nop_flush[2]=0;
nop_flush[3]=0;

for (int i=0; i < fast_ext_count; i++) {
if (strcmp(externals[i].name,"exit") == 0) {
$31 = e_ref_table_start + ((int)&externals[i] - (int)&externals);

break;
}
}
$4 = arg_count;
$5 = (int)args;
$28 = H.sbss_segment_start;

%%
end simulator;

The simulator supplement begins after the simulator begin %% keywords and ends before the %% end simulator
keywords. The first two int variables and the two int arrays must always be declared with the same names. The sim-
ulator will expect these to be in place. The initial ize_machine function is the function the simulator calls whenever
it loads a new codefile to execute. This function takes four arguments: a code file header, the number of arguments
to the program, the array of arguments, and a pointer to the top of the simulated machine’s stack. The purpose of the
for loop is to find the location of the external call exit. The appropriate registers are then loaded with the program’s
parameters.

The purpose of the assembler supplement is to implement the addressing modes for the simulated ISA. In MIPS
there is only one addressing mode implemented in the hardware but the assembler needs to synthesize different ad-
dressing modes. The current version of the ADL language lacks the capability to describe the addressing modes of the
architecture. Hence these routines need to be written manually.
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4.7 Instruction set declaration

Not unlike an ADL program in general, the instruction set specification is made up of a number of different segments.
As this is typically the longest part of an ADL program, it is good practice to place it in a separate file. We will be
looking at the MIPS ISA, which is found in the mips-instruction-set-simple.adl file.

In general, the instruction set specification consists of the following components.

Field type declarations
Attribute declarations
Assertions

Opcode constants
Instruction declarations

The field type declarations tell the compiler which fields can make up a given instruction. Fields can have a num-
ber of different types as you’ll see in Chapter 8. A very simplified version of this section is presented below.

type
opcode constant field 31 6,
rs register fixedfield 25 5,
rt register fixedfield 20 5,
rd register field 15 5,
shamt integer field 10 5,
funct constant field 5 6,
code integer field 25 20;

These fields correspond to the standard fields for the MIPS instruction set. For example, the shamt field, or shift
amount, is an integer field and starts at bit 10 and is 5 bits wide.
Next comes the attribute declarations. An example attribute section is shown below.

attributes
i_class : float class,
integer_class,
branch_class,
long_integer _class;
i_cycles - single_cycle,
multiple_cycles;
end;

An attribute declaration consists of an attribute type, a colon, and then a comma separated list of possible values. The
end keyword always follows the last attribute.
Assertions perform the same function as assertions in a C program.

assertion

1 : i_cycles == single _cycle o (exu == integer_unit) |
(exu == call_unit) ;

2 : (lop_type == integer_register) |

(rop_type == integer_register) : (exu == integer_unit) |
(exu == call_unit) |
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(exu == divide_unit) |
(exu == load_unit) |
(exu == store_unit);

end;

In this example, the first assertion checks to make sure that all single cycle operations are executed by the integer
unit or call unit. The program will check whether the condition i_cycles == single_cycle is true. If this is the
case, it will then evaluate the second expression. If the second expression is found to be false, then an exception is
raised.

Preceding the actual instruction set declarations you must declare the opcode bit constants for your instruction set.
In the case of the two instructions you’ll see below, the only opcodes required are the following.

bitconstant
#
# 31..29 28..26
#  mmmem oo
_special 000 00O
_sll 000 o000,
_syscall 001 100
Declaring bit constants is just a matter of specifying a comma-separated list of names followed by bit strings.
The instruction declarations begin with the keyword instruction. Following this keyword is a comma-separated
list of instructions. The two instructions presented here are the syscall instruction and sl1 instruction.

instruction

syscall code
emit opcode=_special code funct=_syscall

attributes
i_class : integer_class,
i_cycles : multiple_cycles,
exu : call_unit,
c_what I none,

dest_type : none,
lop_type : special _input,
rop_type : none,
i_type - alu_type,
dest_reg : none
)
begin
exact s_ID
$2=builtin do_mips_syscall(lop,$4,%$5,%6,$7);
dest=0;
$7=0;
end;
end,

syscall macro
begin
syscall : code=0;
end,
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The first line gives the instruction mnemonic and its associated fields. The second line tells the assembler what
to output when it parses the instruction. The attributes component sets all the respective attributes for the given
instruction. For example, a system call requires multiple cycles to execute and has no destination register. Within the
RTL block exist any statements that produce the result of the instruction when executed. In the case of syscall, a
built-in MIPS system call is executed. The syscall macro declaration is enables the use of pseudo ops and will be
discussed in Chapter 8.

The sl1 instruction obeys the same syntax as the syscal l instruction, while demonstrating the use of the register
fields.

sl rd rt shamt
emit opcode=_special rs=0 rt rd shamt funct=_sllI

attributes
(
i_class : integer_class,
i_cycles : single cycle,
exu : integer_unit,
c_what I none,

dest_type : integer_register,
lop_type : none,

rop_type : integer_register,
i_type : alu_type,
dest reg : rd
)
begin
exact s_ID
dest=(+rop) << (+shamt);
end;
end;

The dest and rop registers were declared as artifacts in the main file. The << operator performs the same function
as in C. Therefore, dest gets the value stored in rop left-shifted by shamt bits.

18



Chapter 5

ADL Operators, Control Structures, and
Procedures

Like any programming language, ADL has a variety of operators, control structures and a means of specifying proce-
dures. Procedures come in handy when you must frequently use the same LRTL statements.

5.1 Operators

The following is a list of operators and a brief explanation of their meaning. Where necessary, an example is also
presented.

Assignment operator. Provides a means of assigning a value to a variable, register, or field. The right hand side may
be another variable, constant, or attribute.

Equality operator. Tests whether the left hand side is equal to the right hand side. Returns true if equal, false otherwise.

<
Less than operator. Tests whether the left hand side is less than the right hand side. Returns true if less than, false
otherwise.

>
Greater than operator. Tests whether the right hand side is greater than the left hand side. Returns true if greater than,
false otherwise.

Not equal operator. Tests whether the left hand side is not equal to the right hand side. Returns true if not equal, false
if equal.

<<
Left shift operator. Shifts the bits in the left hand side left by the number of spaces specified on the right.

>>
Right shift operator. Shifts the bits in the left hand side right by the number of spaces specified on the right hand side.
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+
Addition operator. Adds the value of the left hand side and the right hand side and returns the sum.

Subtraction operator. Subtracts the value of the right hand side from that of the left hand side and returns the difference.

*

Multiplication operator. Multiplies the value of the left hand side with that of the right hand side and returns the result.

/
Division operator. Divides the value of the left hand side by that of the right hand side and returns the result.

%
Modulus operator. Returns the modulus of the left hand side by the right hand side.

&
Logical AND/bitwise AND operator. When the operands are boolean values, this operator performs a logical AND.
When the operands are bit values, it performs a bitwise AND.

Logical OR/bitwise OR operator. When the operands are boolean values, this operator performs a logical OR. When
the operands are bit values, it performs a bitwise OR.

I<

Bit extension operator. Extends a bit on the left hand side the number of times specified on the right hand side and
returns the result. For example, suppose you wish to extend the 1 bit 16 times. You could use: 1 |< 16. This would
return 16 1 bits.

Concatenation operator. Concatenates the bits on the left hand side with those on the right hand side and returns the
result. For example, suppose you wish to extend a 1 bit 16 times and concatenate that to another value. You could use
1]<16 || x

[]

Index operator. Indexes into an array, register file, or pipeline stage. If you are indexing into a register file, an example
would be gpr[25], which will return the contents of the 26th register file location (indexing begins at 0). If you are
indexing into a pipeline stage, the syntax is the same, however the value of the index is replaced with the stage name.
For example, to get the value of dest in s_MEM, the following syntax is used: dest[s_MEM]. More on this later.

[:1]

Bit group operator. Used in conjunction with the dot operator. This extracts a sequence of bits from a register or
variable. For example, if you have a 32 bit integer register and wish to extract bits 16 through 23, the following syntax
is used: $7.[16:8]. The first argument is the register name, the second the start bit, and the third the width.

Dot operator. Used to pass a parameter to an artifact when it represents either an Ivalue or rvalue.

Field width operator. This is used to specify the width of the argument to a procedure. For example: x:8 means that x
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is 8 bits wide.

5.2 Control structures

ADL provides two conditional statements that can be used to test the values of variables, registers, and attributes. The
first is an if-else construct, while the second is a case statement that is analogous to a C switch statement.
The if-else statement works as follows.

if (condition) then
block

else
block

The else clause is optional. A block consists of a begin keyword, followed by statements, followed by an end
keyword. Note that if the block only contains a single statement, the begin and end keywords are not necessary.

The case statement can only be used with attributes. Attributes will be discussed in a chapter 8. Essentially it
operates in much the same way as a switch statement. The format looks like

case attribute of
begin
valuel : LRTL-statements

valueN : LRTL-statements
end

ADL also provides two looping control structures. The first is the foral I statement that is used to initialize all the
elements of a register file or integer array. Its use is demonstrated with the following example.

integer array my_array[1024,32];
forall my_array=0;

An array of 1024 32-bit integers was declared, and then each integer was initialized to 0.
The second loop structure more closely resembles a traditional for loop. This example performs the same function
as the previous, but using the for construct.

integer array my_array[1024,32];
for i = 0 step 1 until 1023 do
my array[i] = O;

end;

The flexibility is somewhat more limited than a C/C++ for loop, since a boolean condition is not checked at the
end of each iteration, but rather only a counter is incremented.

5.3 Procedures
ADL procedures can be used when the same code must be executed multiple times or to break up large chunks of

code into more manageable segments. The method of returning values from ADL procedures, however, is somewhat
different than in some other languages. Below is a simple procedure that we can consider.
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procedure sign_extend 24 (x:8)
begin

sign_extend_24=(x_.[7:1] |< 24) || x;
end sign_extend_24;

A procedure begins with the procedure keyword and is followed by the name of the procedure and then the
parameter list. As mentioned in the previous section, you can specify the size of each parameter with the : operator.
In this case, the sign_extend_24 procedure takes an argument that is 8 bits wide. Between begin and end keywords
lies the body of the procedure. In the case of this procedure, bit 7 of x is extended 24 spaces and concatenated with
the original 8 bits of x, resulting in a new 32 bit value. The trick to returning values from procedures is to assign the
return value to a variable of the same name as the procedure itself. This variable does not have to be explicitly declared
beforehand.

Procedures can take any number of arguments. If a procedure takes no arguments, there is no need to have the
parenthesis after the procedure name, and when calling the procedure, you do not need to use parenthesis either (such
as with a C function without arguments).

Procedures without return values are said to be untyped. This keyword is specified after the list of formal param-
eters of the procedure. For example, suppose you wish to write a procedure called do_forwarding that does not need
to return a value and does not take any arguments. It would look like the following:

procedure do_forwarding untyped
begin

end do_forwarding;

To call the procedure from elsewhere in your code, just use the do_forwarding procedure name among your
LRTL statements.

Variables, registers, and latches declared globally are also visible from procedures and can be modified by the
procedures.
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Chapter 6

Artifacts

Artifacts in ADL correspond to hardware objects with well-established operational semantics. ADL supports these
objects as built-in types. When declaring artifacts, attributes are supplied that determine the behavior of a specific
implementation of the artifact.

An artifact declaration can take on one of the following six forms:

artifact-declaration => register-declaration
| register-file-declaration
| memory-port-declaration
| cache-declaration
| buffer-declaration
| latch-declaration
6.1 Register declarations

A register declaration declares a simple register artifact. The only attribute associated with a register is its size in bits.
The syntax of a register declaration is the following:

(shadow) register identifier integer ;

For example, if you wanted to declare a register named my_reg of size 32 bits, you would use the following syn-
tax:

register my_reg 32;

The optional shadow attribute makes the given register invisible to the instruction set.

6.2 Register file declarations

A register file declaration declares an array of registers. Not surprisingly, it requires at least two attributes, those being
the number of registers in the array and the size of each register. Register files can also be given the attribute shadow.
An example shadow register file declaration is presented below.

shadow register file gpr[64,32];
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This declares a shadow register file named gpr that has 64 entries of 32 bits each.

Register files have the quality that each entry in the register file can be assigned one or more aliases. This is taken
care of in the same declaration along with the register file. For example, if you wanted to declare a register file with 8
32-bit entries while assigning aliases for each of them, you could use the following syntax:

register file mrf[8,32]
$ro 0,
$zero 0,
$rl 1,
$r2 2,
$r3 3,
$rd 4,
$r5 5
$ré 6
$r7 7;

Following the initial declaration is a comma-separated list of aliases and indices. Aliases always begin with the $
character. Notice that register 0 has two aliases. You are free to specify as many aliases as you wish for a given entry,
or none at all.

If you want to store some value into register 4 of this register file, you now have two options. Both of the following
RTL statements are valid:

mrf[4] = data_value;
$r4 = data_value;

6.3 Memory port declarations
Memory declarations define memory ports with given access latencies in units of machine cycles and and data path

widths in units of bits. There are no optional attributes for memory declarations, and as such all such declarations have
the following format:

memory identifier latency num_cycles width num_bits ;

The memory declaration declares a memory port, and not the memory itself. As such, the size of the memory cannot
and need not be specified. It is assumed to be arbitrarily large to suit the needs of the program being executed on the
target architecture. Multiple ports can be specified to the same memory. An example memory declaration where the

latency is 20 machine cycles and the data path width is 32 bits would look like the following:

memory main_mem latency 20 width 32;

6.4 Cache declarations
The cache artifact is used to declare either instruction or data caches. Caches are stackable, meaning they can be used

to construct memory hierarchies. Because of this, they need to be declared in relation to the memory object directly
below them in the hierarchy. This is accomplished with the of clause. The general syntax of this looks like:
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(data | instruction ) cache identifier of identifier size words_per_line ;

For example, suppose you wish to declare a 64 kilobyte direct-mapped instruction cache of the main memory de-
clared in the previous section. The following would be an acceptable declaration:

instruction cache icache of main_mem 64 4;
Now suppose you wanted a data cache hierarchy from the same memory port. The following would be acceptable:

data cache 12 of main_mem 64 4;
data cache 11 of 12 8 4;

This declares a 64 kilobyte level 2 cache with 4 words per line. Following this, an 8 kilobyte level 1 cache of the
level 2 cache is declared.

Instead of always storing or extracting complete words from cache or memory locations, it is possible to access
or store bytes and halfwords as well. Suppose you wanted to store a single byte to a level 1 cache location and later
extract a half word from the same location. This could be accomplished in the following manner:

bitconstant
_BYTE 00,
_HALFWORD 0 1

11.( BYTE)[addr] = data value;
data_value = 11.(_HALFWORD)[addr];

This illustrates the use of the dot operator.

6.5 The access_conpl et e statement

The access_complete statement allows you to query the status of the result from a cache or memory access. The
statement returns true if the operation has been completed successfully, and false otherwise. Slow artifacts and struc-
tural hazards are possible causes of access_complete returning false.

An example of how this statement can be used is seen below.

y_pc = pc;
r = icache[pc];
T access _complete then
begin
new_pc = pc+4;
unfreeze;
end
else
begin
freeze;
stall mem_ic;
end;

m
i

The second statement attempts to fetch the next instruction from the instruction cache. If this operation completes
successfully, the program counter is incremented and the pipeline is unfrozen. Should there be a reason for the access
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not to complete successfully in that cycle, the pipeline is frozen and the current stage stalled. freeze, unfreeze, and
stal l statements will be discussed in the Chapter 7.

6.6 Theinstruction register andinstruction pointer

Recall in Chapter 4 when you saw the instruction register and instruction pointer declarations. These two
declarations are critical in every ADL description. Failure to provide them in the program results in a compile-time
error.

The instruction register is where the next instruction gets loaded at the beginning of your pipeline. This
instruction is determined by means of the instruction pointer, also known as the program counter. The instruction
pointer stores the memory address of the next instruction.

Declaration of these two artifacts looks like this:

instruction register ir;
instruction pointer pc;

As you might expect, pc denotes program counter. Once these two are declared, they can be used in your pipeline.

my_pc = pc;
ir = icache[pc];

The above is an excerpt from the instruction fetch stage of the MIPS architecture. The my_pc variable is a control-
data register, and is used to keep track of the given instruction’s address in memory. These registers are discussed in
Chapter 7. The instruction pointer is used to index into the instruction cache to find the next instruction word. Once
this is available, the instruction decode stage can then decode the instruction and its operands.

6.7 Other artifacts

In addition to memory, registers, and cache, there are other items that can be declared. One such artifact is the latch.
Latches can be used in place of registers when only a single bit needs to be stored, and can be accessed from anywhere
in the description. An example latch declaration is presented below:

latch
exception 1,
is branch 1;

ADL also provides a means of declaring constants and integer variables. While not actual architectural artifacts,
they provide some means of abstraction when writing your code.
Constants and bit constants are declared in a similar manner. The syntax for declaring constants is:
constant constant-name constant-value
To declare bit constants, use the following syntax:
bitconstant constant-name bit-string
where a bit string is simply a string of Os and 1s separated by spaces.
The remaining item that ADL provides is the integer variable. Integers are general-purpose variables that can be

used to store whatever integer values are necessary in your ADL description. To declare an integer, use the integer
keyword followed by a name:
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integer variable-name

6.8 User-defined artifacts

When the selection of builtin artifacts isn’t enough, ADL allows you to define your own artifacts with custom proper-
ties and behaviours. Artifacts are specified with the artifact keyword followed by a number of attributes. An artifact
definition consists of a number of procedures that describe the behaviour of the artifact.

Consider the following example. This artifact defines a simple 2-bit branch predictor.

artifact predictor attributes (size)
begin

# Artifact data
integer array predict_bits[size,?2];
integer hash_val;

# Initialization stuff
initialization
begin

forall predict_bits=0;
end initialization;

# What to do if it is an rvalue
rvalue (addr)
begin

hash_val = addr.[10:8];

rvalue = predict_bits[hash val];
end rvalue;

# What to do if it is an lvalue
Ivalue (addr, rval)
begin

hash_val = addr.[10:8];
if (rval == 0) then # Not taken

begin
if (predict bits[hash _val] == ZERO) then
begin
predict_bits[hash_val] = ZERO;
end
else if (predict_bits[hash_val] == ONE) then
begin
predict_bits[hash_val] = ZERO;
end
else if (predict_bits[hash_val] == TWO) then
begin
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predict_bits[hash_val] = ZERO;

end
else if (predict_bits[hash_val] == THREE) then
begin
predict_bits[hash_val] = TWO;
end;
end;

if (rval == 1) then # Taken

begin
if (predict_bits[hash_val] == ZERO) then
begin
predict_bits[hash_val] = ONE;
end
else if (predict_bits[hash_val] == ONE) then
begin
predict bits[hash_val] = THREE;
end
else if (predict bits[hash _val] == TWO) then
begin
predict_bits[hash_val] = THREE;
end
else if (predict bits[hash_val] == THREE) then
begin
predict_bits[hash_val] = THREE;
end;
end;

end lvalue;

# Print statistics
statistics
begin
builtin printf(““Branch predictor %s\n””, myself.name);
end statistics;

end predictor;

Typically the first part of the artifact definition consists of data declarations. In the above example, only one array
is required, that which holds the two bits that determine the branch prediction. The size of the array is set at the value
passed via the size attribute

When an instance of an artifact is declared in an ADL program, the initialization procedure of the artifact is
called. The purpose of this procedure is to perform any initializations on the artifact data. The statistics procedure
is called at the end of the simulation. Any statements that you insert into this procedure will be performed when the
<machine_name>.sim file is being written. Clearly, it makes the most sense to insert printf statements here. This
is accomplished, as discussed earlier, with the builtin keyword. The myself keyword refers to the instance of the
artifact being operated upon (similar to the this keyword in C++). The name you assigned the artifact can be printed
this way.

The key to defining the behaviour of the artifact is via the rvalue and lvalue procedures. These procedures
characterize how the artifact behaves when it is an r-value and I-value, respectively. In the case of the branch predictor
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artifact above, when it is an r-value we simply wish to return the prediction bits for the given address. The rvalue
procedure takes one argument, which corresponds to the index passed to the artifact instance elsewhere in your ADL
code. For example:

predictor my predictor size=256;

if (my_predictor[pc] == 0) then
begin

end;

Values for the attributes of the artifact are passed during declaration of the artifact instance by giving the name
of the attribute, followed by an = sign, followed by the value. Artifacts are accessed as r-values by passing an index
value to the artifact. The return value can then be used as necessary. Recall that values are returned from procedures
by assigning a value to the procedure name. In the above case, a value is assigned to rvalue.

Accessing an artifact as an I-value works in a similar manner, except that the procedure takes two arguments. The
first argument corresponds to an index, the second to the r-value in the expression. Consider the following statements:

bitconstant TWO 1 0;
my_predictor[pc] = TWO;

The constant value TWO is assigned to the location specified by pc.
Aside from the basic procedures mentioned above, an artifact definition can contain other procedures, separate
pipelines, and other artifacts.
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Chapter 7
Pipelines

Specifying the pipeline(s) of the micro-architecture involves declaring the stage names and ordering of the stages,
followed by specifying procedures to implement each of these stages. In addition, you must specify which data make
up the instruction context.

7.1 The instruction context

As an instruction progresses through the pipeline, a set of data values is carried along through each pipeline stage.
These data values are grouped together in a structure called controldata. Since there is only one controldata
declaration in an ADL program, each pipeline stage has the same type of context. The instruction context is the union
of all the data required by all the stages in the pipeline.

Declaring the instruction context follows a pattern similar to other register declarations. This declaration is
given by the controldata register keyword followed by a list of register names and sizes. Failure to declare
the controldata register inan ADL program is a compile-time error.

In a pipelined MIPS architecture, the following data might make up the instruction context.

controldata register

my_pc 32,

Is_bypass 1,

mem_stat 1,

access_type 32,

byte 2,

lop r 6, # lop_r indicates the register number for the lop.
rop_r 6, # rop_r indicates the register number for the rop.
dest r 6, # dest_r holds the register number to write.

simm 32, # Sign extended immediate.

zimm 32, # Zero extended immediate.

smdr 32, # Store Memory data register.

store_v 32,

Imar 32, # load memory address register.

smar 32, # store memory address register.

dest 32, # dest holds the value to be written.

dest?2 32, # dest holds the value to be written.

lop 32, # lop holds the left operand value.

lop2 32, #
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rop 32, # rop holds the right operand value.
rop2 32; #

Elements of the controldata structure are accessible from pipeline stages and in the semantic parts of instruction
declarations. Both qualified and unqualified access modes are possible. In the case of unqualified access, the data
accessed is that of the respective pipeline stage performing the access, or the stage associated with the label for the
LRTL segment in the semantic portion of the instruction declaration. For example, in the following add instruction,
the LRTL statement under the exact s_EX label will access the dest, lop, and rop instruction context data from the
s_EX pipeline stage.

add rd rs rt
emit opcode=_special rs rt rd shamt=0 funct=_add
attributes

(

)
begin
exact s_EX
dest=lop + rop;
end;
end,

The syntax for qualified access of data involves specifying the name of the controldata element along with
its respective pipeline stage. The general syntax looks like controldata-element[stage-name]. For example, in our
pipelined MIPS processor, we may wish to check for data hazards and take appropriate action.

if has_context s EX then
if dest_type[s_EX] == lo_hi_register then
stall;
if has_context s MEM then
if dest_type[s MEM] == lo_hi_register then
stall;
if has_context s WB then
if dest_type[s WB] == lo_hi_register then
stall;

In this example, the instruction contexts of three different pipeline stages are accessed from the s_ID stage.

7.2 Implementation of pipeline stages

Pipelines are implemented in ADL in a distributed fashion in the form of procedures. As mentioned previously,
machine cycles in FAST are divided into several minor cycles. These minor cycles include a prologue, a series of
intermissions and an epilogue. In general, the prologue is responsible for receiving an instruction context from the
previous pipeline stage, the intermissions operate upon the instruction context, and the epilogue sends the instruction
context to the next pipeline stage.

For each pipeline stage, you may specify a procedure for each minor cycle. A procedure for both the prologue and
epilogue must be declared for each stage, while procedures for the intermissions are optional.

The general format for defining procedures is as follows.

procedure stage-name [prologue | intermission | epilogue]
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Figure 7.1: FAST processor cycles

begin
RTL statements

end stage-name ;

The RTL statements within the procedure define the behavior of the stage. Depending on the stage and on the
micro-architecture, you may need to check for data or structural hazards, vary behavior based on the type of instruction
in the stage, etc. In order to accomplish many of these functions, ADL provides several keywords that are used to
affect the behavior of the pipeline.

7.3 Instruction flow through the pipeline

Instruction flow through pipelines is facilitated through a number of keywords that affect the behavior of the pipeline
and instructions. The send statement is responsible for forwarding a particular instruction context from one stage to
the next. send statements can be successful or unsuccessful. A successful send is achieved when the next stage is idle
or performing a send in the same cycle. If a stage does not execute a send in a particular cycle, send operations of
preceding stages will fail in that cycle, and those stages will repeat the send operation in the next cycle. All pipeline
stages, with the exception of the final stage, must execute a send somewhere in their epilogue minor cycle.

The send keyword takes a single argument corresponding to the pipeline stage to which the current instruction
context should be sent. This is important since instruction contexts can be sent to more than one pipeline stage. For
example, a floating point add instruction may need to be forwarded to a different stage than an integer add instruction.
This becomes especially apparent when the micro-architecture has more than one pipeline.

An example of how the send statement is used is given below.

procedure s_ID epilogue
begin
if ((exu == integer_unit ) | (exu == load unit) |(exu == store_unit)) & (send_enabled(s _EX) == 0) then
stall;

if (exu == f_add_unit) & (send_enabled(f_addl) == 0) then
stall fpaddfull;

if (exu == f _mul_unit) & (send_enabled(f mull) == 0) then
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stall fpmulfull;

if dest_type == float_register then
fpr_tag[dest_r]=my_pc
else
if dest_type == double_register then
begin
fpr_tag[dest_r]=my pc;
fpr_tag[dest_r+1]=my _pc;
end;

if exu == f_add_unit then

send f _addl
else
if exu == f mul_unit then
send f mull
else
send s_EX;
end s_ID;

This procedure defines the epilogue of the instruction decode stage for the MIPS processor. You can see how the
instruction context is forwarded to different stages depending on some of its attributes. In this example, a check is
made to determine which execution unit the instruction will require. If it requires the floating point add unit, then the
instruction context is forwarded to the first stage of the floating point add pipeline. If it requires the floating point
multiply unit, it is forwarded to the floating point multiply pipeline. In all other cases, the instruction is sent to the
execute stage of the main instruction pipeline.

Before they can be used, instruction contexts must first be allocated using the newcontext statement. This nor-
mally appears in the first pipeline stage. When an instruction is loaded into the instruction register, this context is filled
in with its respective data.

Use of the newcontext statement is illustrated in the following example.

procedure s_IF epilogue

begin
if send_enabled(s_ID) then
begin
send s _ID;
if (branch_input) then
begin
branch_input=0;
pc=branch_target;
end
else
pc=new_pc;
newcontext;
end;
end s_IF;
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As you can see, the newcontext statement appears in the epilogue minor cycle of the Instruction Fetch stage. Once
the new program counter is calculated, a new instruction context is allocated, and then the Instruction Decode stage
fills in the instruction context.

With the newcontext statement comes a corresponding retire statement. As you might guess, the retire
statement is responsible for deallocating the current instruction context.

procedure s WB epilogue
begin

retire stat;
end s_WB;

Above is an example of how to use the retire statement. The Write back stage is the final stage in the MIPS
pipeline, and not surprisingly the retire statement appears in the stage’s epilogue minor cycle. The retire statement
takes one of two arguments: stat or nostat. If the instruction needs to commit, you should use stat. If the
instruction is to be discarded, then you can use nostat.

Decoding of instructions is accomplished with the decode statement. The following segment of ADL code is the
prologue minor cycle of the Instruction Decode stage in the MIPS pipelined processor.

procedure s_ID prologue
begin

decode;
end s_ID;

The decode statement establishes a mapping from the instruction name to the current instruction context. The map-
ping is computed from the binary section of the instruction declaration. The purpose of the decode instruction is to load
the attributes of the instruction into the controldata register. Once this has been accomplished, the controldata
variables can be accessed by the pipeline stage.

Recall the variables present in the controldata register for the MIPS pipelined architecture. Let’s say the next
instruction fetched by the Instruction Fetch stage is SLL, or Shift Left Logical. According to the ISA specification, the
SLL instruction has the following attributes:

attributes

(

i_class : integer_class,
i_cycles : single_cycle,
exu : integer_unit,
c_what I none,

dest_type : integer_register,
lop_type : none,

rop_type : integer_register,
i_type : alu_type,

dest reg : rd

)

Once the instruction gets decoded using the decode statement, the attributes can be accessed as read only controldata

variables. In the following segment of code, the left operand type is checked in order to decide on a course of action.

case lop_type of
begin
integer_register:
lop_r=rs;
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lop=gpr[lop_r];

lo_hi_register:
lop_r=lo_hi_register_number;
lop=gpr[lop_r];
lop2=gpr[lop_r+1];

end;

This also illustrates the use of the case statement. Depending on the instruction’s attributes, different values
are loaded into the controldata register’s fields. The decision on how best to accomplish this is programmer
dependent.

For the purposes of handling data flow, structural, control, and data hazards, ADL provides a number of other
keywords that affect the behavior of the pipeline. Stages may stall themselves through the use of the stall statement.
The stal l statement terminates processing of that stage for the remainder of the machine cycle. As a result, no send
operation will be executed by that pipeline stage during that machine cycle. The stall statement has no effect on
other stages. Consider the following example:

stall category mem_ic, 1d_d_dep, pool_full;
instruction register ir;

procedure s_ID epilogue
begin
if i_type[EX] == load_type & (dest_r[EX] == lop_r | dest_r[EX] == rop_r) then
stall Id_d dep;
end s_ID;

In this example, the Instruction Decode stage checks whether the instruction that precedes it is fetching data that
it needs. Since loads take more than one machine cycle, this amounts to a data hazard. The only way around this
problem is to insert a bubble into the pipeline. Since the stall statement only stalls the pipeline stage in which it is
executed, send operations of successive stages will continue and the s_EX stage will enter the next cycle in the idle
state.

The stall statement takes one argument that corresponds to the stall category. Stall categories are declared in
advance in the manner shown in the example. In this example, since the stall is due to a load data dependency, this
category is used. Stall categories are left to programmer preference.

In addition to stalling single pipeline stages, it is also possible to freeze and unfreeze the entire pipeline. The
freeze statement functions in a manner somewhat opposite to that of the stal I statement. While the stal I statement
will stall only the stage in which it was executed, the freeze statement will stall all stages except that in which it was
executed. The only stage that may execute the unfreeze statement is that which executed the corresponding freeze
statement. Use of the freeze statement is illustrated below.

procedure s_IF prologue
begin

ir = icache[pc];

if access_complete then

begin

unfreeze;

pc = pc + 4;
end
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else
begin
freeze;
stall mem_icl;
end;
end s_IF;

This illustrates how the pipeline gets frozen in the event that a cache miss occurs in the Instruction Fetch stage.
A stall is necessary after the freeze so that the epilogue will not attempt to execute a send. If access_complete
evaluates to true in the next machine cycle, then the pipeline will be unfrozen. You will notice that unfreeze is always
executed whenever there is a cache hit. An unfreeze operation on a pipeline that is not frozen is a null operation.
This saves coding, as you are not required to keep track of whether or not the pipeline is frozen.

7.4 Other pipelines

ADL is capable of describing multiple pipelines. In addition to the standard MIPS pipeline, for example, you can
have a pipeline for floating point addition and another for floating point multiplication. Here is the floating point add
pipeline from the MIPS architecture:

procedure T _addl prologue
begin
end f addl;

procedure T _addl epilogue
begin

send f_add2;
end f addl;

procedure T _add2 prologue
begin
end f add2;

procedure T _add2 epilogue
begin

send f _add3;
end f add2;

procedure T _add3 prologue
begin
end f add3;

procedure T _add3 epilogue
begin

send s wb;
end f _add3;

As you can see, the floating point add pipeline has three stages, each of which is implemented with a prologue
and an epilogue. None of these functions, however, contain any LRTL statements, since they are only simulating an
instruction traveling through a floating point pipeline, and the end result is the same in each case. If a floating point
addition instruction is detected in the instruction decode pipeline stage, its instruction context is sent to f_add1. Once
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the instruction context has traveled through all the floating point pipeline’s stages, it is sent to the writeback stage,
bypassing both the execute and memory stages.
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Chapter 8

Thelnstruction Set Architecture

8.1 Instruction formats

Any given architecture places specific requirements on the format of its machine instructions. These instructions nor-
mally consist of a number of different fields that contain opcodes, operands, and other data. In the MIPS architecture,
for example, instructions consist of a single 32-bit word aligned on a word boundary. MIPS has three different in-
struction formats, the R, J, and | formats, which correspond to arithmetic, jump, and branch/immediate instructions,
respectively.

Each of these instruction formats consist of a unique set of instruction fields. These fields vary in width, but the
sum of the widths always equals 32 bits.

op rs rt rd shamt funct R-FORMAT
31 26 25 2120 16 15 1110 65 0

op target J-FORMAT
31 26 25 0

op rs rt immediate I-FORMAT
31 26 25 2120 16 15 0

Figure 8.1: MIPS Instruction Formats

Instruction fields are defined in ADL by associating a start bit and field width pair with the name of the field.
Instruction formats are not defined explicitly, but rather are defined implicitly as part of each instruction’s binary part.
The binary part of instructions are represented as a sequence of field expressions. This is simply an assignment of a
value to a particular field of the instruction. This will be discussed in more detail later.

If we consider the instruction formats in the above diagram, the fields could be defined with the following start bits
and widths:

op 31 6
rs 25 5
rt 20 5
rd 15 5
shamt 10 5
funct 5 6
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target 25 26
immediate 15 16

Syntax for specifying instruction fi elds

Declaration of the instruction fields is accomplished via the type keyword, followed by a list of field declarations.
Each field declaration follows the following syntax.

field-name [constant | integer | register | signed] [field | fixedfield] start-bit field-width

Constant fields are those that have a constant value for all instructions in the instruction set. This is not to say that
the field is the same for all instructions, but rather that it is not determined by the assembly instruction itself. Fields
that are not constant are considered to be variable fields. The values of these fields are typically determined by the
assembly instruction itself.

The difference between a field and a fixedfield has to do with when the value of the field is determined. Any
instruction fields which are accessed before the instruction is decoded must be declared fixedfield. For example,
the values of the rs and rt fields from the instruction register are available immediately after the instruction register is
loaded with a new instruction. You can then access the rt field of the instruction in the instruction register before it is
decoded.

If we wish to declare the above instruction fields, the resulting code would look like this:

type
op constant field 31 6,
rs register field 25 5,
rt register field 20 5,
rd register field 15 5,
shamt integer field 10 5,
funct integer field 5 6,

target integer field 25 26,
immediate signed field 15 16;

The op field is declared to be constant since for every instruction in the instruction set, it carries an opcode value
that is determined ahead of time. The rs, rt, and rd fields are all declared to be of type register since they always
refer to registers, whether these registers contain operand values, or are destination registers. The remaining fields
are declared as integer fields and signed fields since they contain integer values. The shamt field contains a shift
amount, while the funct field contains a value that represents a function type for those instructions whose opcode
is 0 or 1. The target field contains an address for jump instructions, while the immediate field contains addresses
for branch instructions or constant operand values. Since it has to contain these operand values for MIPS immediate
addressing modes, it must be declared signed.

In addition to the Field definition, you can also declare fields of type variable and temporary. These two types
do not take a start bit or field width value, as they have nothing to do with the instruction formats themselves. For
example, suppose you required three variables and a a temporary.

type
rdest register variable,
rsrcl register variable,
rsrc2 register variable,
tx integer temporary;

The three variables are of type register, since they will be used in macro instructions to refer to registers, while the
temporary is of type integer, since it will be used to store the contents of integer registers.
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8.2 Attributes

Attributes in ADL can be thought of as enumerated data types such as in C++. Any given attribute can take on one
of a specific set of values declared along with the attribute name. These attributes can then be used later to keep
track of instruction types, operand types, and any other necessary conditions that must be checked to properly control
instruction flow.

To declare an attribute is simply a matter of specifying an attribute name followed by a comma-separated list of
possible values. The list is terminated with a semicolon. Multiple attributes can be declared with the same attribute
keyword.

An example of declaring two attributes looks like this:

attributes
i_class : float_class,
integer_class,
branch_class,
long_integer_class;
i_cycles : single_cycle,
multiple_cycles;
end;

8.3 Assertions

Assertions provide a means of checking whether certain conditions are met for each instruction loaded into the
pipeline. While not necessary in an ADL program, they are useful in debugging and ensuring your code works as
you had planned. An assertion consists of two boolean expressions. If the first is evaluated to true, the second ex-
pression is evaluated. If the second expression evaluates to true, the assertion is successful. If it evaluates to false, an
exception is raised. If the first expression is false, then the assertion is skipped.

Let’s say you wanted to make sure that single cycle instructions were always executed by the call or integer unit,
and if either operand type is an integer register, it is executed with the integer, call, divide, load, or store unit. To
accomplish this via assertions, you could write the following block of code:

assertion

1 : i_cycles == single cycle : (exu == integer_unit) |
(exu == call_unit) ;

2 : (lop_type == integer_register) |
(rop_type == integer_register) : (exu == integer_unit) |
(exu == call_unit) |
(exu == divide_unit) |
(exu == load_unit) |
(exu == store_unit);
end;

You have already seen this example in a previous chapter. An assertion first begins with a number. You should
number your assertions starting with 1. While it is possible to have two assertions with the same number, this would
complicate matters during debugging if either of those assertions raised an exception.

Following the assertion number is a colon character, after which comes the first boolean condition. This is the
condition the program checks to decide whether to evaluate the second expression. If the condition is true, the second
expression is evaluated. The second expression comes after another colon character and is terminated with a semicolon.
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Whenever an assertion fails, a line like the following is printed:

Assertion 1 failed : bclt
Some assertions(s) failed. Exiting

The simulator then terminates. In the case of this failure, assertion 1 failed, which means that a single cycle
instruction appeared whose execution unit was neither the integer nor call unit. The simulator also tells us which
instruction this was, in this case the bc1t__instruction.

8.4 Opcode constants

Opcode constants tell the assembler what binary form of an instruction to emit during assembly. These constants are
used in the binary parts of the instruction definitions. An opcode constant consists of a name and a simple string of
bits. In general the length of these opcodes should be consistent over your entire instruction set.

Declaring opcode constants begins with the bitconstant keyword, which is followed by a list of names and bit
strings. You’ve already seen an example of how this is done in a previous chapter.

8.5 Instruction declarations

The instruction declarations are the heart of the ISA description and tell the assembler how to parse instructions and
the simulator how to execute them. An instruction definition consists of a syntax part, binary part, and a semantic
part. The syntax part tells the assembler how to parse the instruction. The binary part tells the assembler what
machine code to emit, and indirectly describes the instruction formats of the architecture. The semantic part provides
an implementation of the instruction with LRTL statements.

The first part of the instruction definition is the syntax part. This consists of the instruction mnemonic followed by
any arguments the assembler should expect. For example, for the MIPS shift left logical (s11) instruction, this piece
of code looks like sl rd st shamt, since these are the three fields that are used in the instruction.

The emit keyword signifies the beginning of the binary part. What follows tells the assembler what to emit (hence
the name) during the assembly stage. As part of the bit constants, we defined the _special opcode. This is the opcode
that is used for the sl instruction. Since the rs field is not used for sl1, it can be filled with 0s. What follows are
the rt and rd fields and then shamt and finally the funct field, which is assigned the function value for sl1. The
resulting binary part looks like: emit opcode=_special rs=0 rt rd shamt funct=_sll.

The binary parts of the instruction definitions are what define the instruction formats for the architecture in ques-
tion.

The third part of the instruction declaration is semantic part. Here is where the instruction’s attributes are set, and
then the implementation of the instruction is provided. The attributes component looks like:

attributes

(

attributel : value,
attribute2 : value,

attributeN : value

)

Following the attributes come the actual LRTL statements that implement the instruction. Here you specify the
actions to be taken in each pipeline stage the instruction passes through. You may specify LRTL statements for any
pipeline stage you wish. The format looks like this:
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begin
exact STAGE_1
LRTL statements...
end;

exact STAGE_2
LRTL statements...
end;

end;
The begin and end keywords simply signify the beginning and end of the semantic block. The exact keyword

takes one argument corresponding to the pipeline stage that you are specifying operations for. Each exact keyword

also has a corresponding end keyword.
Let us now look at an example of all these pieces put together. The following piece of code is the instruction

declaration for the MIPS div (divide word) instruction.

div rs rt
emit opcode=_special rs rt rd=0 shamt=0 funct=_div
attributes
(
i_class : long_integer class,
i_cycles : multiple_cycles,
exu . integer_unit,
c_what I none,

dest_type : lo_hi_register,
lop_type : integer_register,
rop_type : integer_register,

i_type : alu_type,
dest_reg : lo_hi_register_number
)
begin
exact s_ID
latency 7;
end;
exact s_EX
if rop == 0 then
exception = 1
else
begin
dest2 = lop / rop;
dest = lop % rop;
end;
end;
end,

The div instruction takes two integer register arguments. The contents of the first register are divided by the
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contents of the second and the result is stored in the first register. In the binary part of the instruction declaration, the
_special opcode is used with the _div function. The rd and shamt instruction fields both get filled with 0s. The
attributes section sets the necessary attributes for the instruction. Since division is a multiple-cycle operation, that
must be specified. Since there are two destination registers in division, the dest_type attribute is lo_hi_register. In
addition, the div instruction only takes integer registers as arguments. For floating point division, a separate instruction
exists.

For many MIPS instructions, it suffices to specify LRTL statements for only one pipeline stage. The div instruc-
tion, among a few others, however, requires a little more. The latency keyword takes an argument corresponding to
the number of cycles that the instruction requires to return its result. This is specified in the s_ID (instruction decode)
stage, since this is where the machine determines the type of instruction it is dealing with.

The s_EX (instruction execute) stage is where the real work gets done, and this is where the majority of the LRTL
statements are found. At this point you may be wondering how the rs and rd registers translate into lop and rop,
respectively. This is the job of the Instruction Decode stage. If you look at the following excerpt from s_ID, you can
see how lop is calculated:

case lop_type of
begin
integer_register :
lop_r=rs;
lop=gpr[lop_r];

Since the left operand type for the divide instruction is of type integer register, the machine looks to the integer
register file for the value of lop.
The same can be seen for rop:

case rop_type of
begin
integer_register :
rop_r=rt;
rop=gpr[rop_r];

Likewise, the type of the left operand register determines where the machine goes to look for the value of the left
operand. Once the values of the operands are known, they can be used to perform the required computations. The
instruction now moves on to the execution stage.

The first thing that must be checked in s_EX is whether the right operand has a value of zero. Since this is a
division operation, dividing by zero will raise an exception. If this is not the case, then the actual calculation proceeds.
dest?2 receives the value of the quotient, while dest gets the value of the remainder. The instruction now moves on
through the s_MEM stage into the s_WB stage, where the values of dest and dest2 get written back to the integer register
file. Note that there are no explicit LRTL statements needed in the instruction declaration to accomplish this. This is
handled automatically by the Writeback stage for all instructions.

case dest_type of
begin
lo_hi_register
gpr[dest_r]=dest;
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gpr[dest_r+1]=dest2;

Recall that the destination register type for the divide word instruction is lo_hi_register. As a result, two
registers must be written to.

Let us now look at a different instruction, the Iw or load word instruction. This instruction demonstrates some
additional options available for the binary part of instruction declarations.

Iw rt address
emit opcode=_lw rs=<address.base> rt immediate=<address.offset>

attributes

(
i_class : integer_class,
i_cycles : multiple_cycles,
exu : load_unit,
c_what I none,

dest_type : integer_register,
lop_type : integer_register,
rop_type : none,
i_type - load_type,
dest_ reg : rt
)
begin
exact s_ID
simm=sign_extend_16(immediate);
end;

exact s_EX
Imar=lop + simm;
end;

exact s_MEM
if Is_bypass then
dest=dest?2
else
begin
dest=dcache [Imar];
mem_stat=access_complete;
end;
end;

end,

The first thing you should notice is that the binary part looks a little bit different from the other examples you’ve
seen so far. Recall that the binary part takes the form of a sequence of field expressions. These field expressions can be
made up of a single field, a constant assigned to a field, or a field transformed by a built-in function or pure function.
Pure functions are functions that take a single argument and return a transformation of this argument.

Thus, the sequence of field expressions that make up the binary part of an instruction definition have the following
format:
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field | field = constant | field = <fog-list>

where a fog-list is a sequence of predeclared or pure function calls on the field. The predeclared functions that are
available are: base, offset, absolute, delta, and segoffset.

In the example above, once the assembler parses the Iw instruction in the assembly file, it will emit the opcode,
followed by the base register number corresponding to the address, then the rt register number, followed by the offset
representing the address.

ADL does not limit you to performing a single transformation on a label variable, and as such you can combine
functions. For example, suppose you wish to use the delta built in function and transform its output with your own
Jump_address function, assigning the result to the b_offset label variable. You can use the following code:

b_offset=<address.delta.jump_address>;

8.6 Macro instructions

ADL provides a means of declaring macro instructions, often called pseudo instructions. Such instructions are com-
mon in many compilers today such as gcc. Macro instructions normally break down into several machine instructions.
This is the task of the assembler, and thus allows a slightly higher level of abstraction for the programmer and simplifies
the assembly code.

The syntax part of macro instructions looks the same as that for machine instructions. The difference is that
all the arguments to the instruction must be variables. No instruction fields are allowed. Additionally, since macro
instructions do not lead directly to binary code, there is no binary part in the macro definitions.

Let’s look at a very simple macro instruction.

sra rdest rsrcl rsrc2 macro
begin
srav : rd=rdest rt=rsrcl rs=rsrc2;
end,

The syntax part of this macro instruction tells the assembler that whenever it sees the sra mnemonic that it should
look for three values after it and load those into the variables rdest, rsrcl and rsrc2. These variables have been
defined in advance and are of the type you saw when instruction fields were discussed.

The remainder of the definition describes what instructions to generate. Instructions to be generated are specified
using an instruction call statement. The syntax for this looks like:

instruction-call = instruction-mnemonic : field-assignment-list
field-assignment-list = field=constant | variable

In the above example, only a single instruction is generated, that being the srav instruction. This instruction takes
three arguments, and those are assigned the values in rdest, rsrcl and rsrc2, respectively.

Of course the point of macro instructions is to reduce many machine instructions to a single pseudo instruction. In
addition, a different set of instructions can be generated based on the values of the arguments. Let’s take a look at a
more complex example.

li rdest src2 macro
begin
if (src2 > 0) | (src2 == 0) then
begin
tx=src2;
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if tx < 65536 then
ori : rt=rdest rs=0 immediate=src2

else
begin
ty = src2.[31:16];
tx = src2.[15:16];

lui : rt=rdest immediate=ty;

if tx then
ori : rt=rdest rs=rdest immediate=tx;
end;
end
else
if (src2 == 0x80000000) then
begin
ty = src2.[31:16];
lui : rt=rdest immediate=ty;
end
else
begin
tx=-src2;
if (tx < 32768) then
addiu : rt=rdest rs=0 immediate=src2
else
begin
ty = src2.[31:16];
tx = src2.[15:16];
lui : rt=rdest immediate=ty;
if tx then
ori : rt=rdest rs=rdest immediate=tx;
end;
end;

end,

In this example, the value of the variable src2 is the deciding factor in which instructions are generated.

46



Chapter 9

Statistics Collection and Debugging

Collection of statistics reported in the statistics files is facilitated through a number of ADL constructs for this purpose.
Instructions can be categorized and this categorization is reflected in the statistics files.

Suppose you wanted to categorize some instructions in an integer_arithmetic category. Here’s how you could
do this:

instruction category integer_arithmetic
add,
addi,
addiu,
addu;

Any use of these instructions will now be reported under an integer_arithmetic heading in the statistics files.

As mentioned before, stalls can also be classified into categories to aid in performance evaluation and debugging.
The stall keyword takes an optional category argument, and then stalls are classified into these categories in the
statistics files. Declaring stall categories involves the stall category keywords followed by a list of category
names. For example:

stall category

ext_ref,

latency T, # Floating point latency.

latency d, # Divide latency.

latency m, # Multiply latency.

fpaddfull, # Floating add pipeline is full with long latency op.
fpmulfull, # Floating multiply pipeline is full with lo la op.
mem_ic,

mem_dc,

fl_d dep,

Id_d _dep,

float_cc;

When you need to stall the pipeline, you can choose to categorize it or leave it uncategorized. For example, if you
need to stall due to floating point latency, issue the following command:

stall latency_f;
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ADL provides two statements that are used specifically for the debugging purposes. The pause statement can be
inserted anywhere among the LRTL segments and causes the simulator to start the debugger at the point where that
statement is reached. The registers to be displayed in the debugger window are specified with the monitor statement.

Suppose you wanted to display the the first six integer and floating point registers along with the program counter
and instruction register in the debugging window. This can be accomplished by placing the following code in your
ADL program:

monitor

$0, $1, $2, $3, $4, $5,

linebreak,

linebreak,

$f0, $f1, $f2, $f3, $f4, $f5,

linebreak,

linebreak,

pc,

ir;

All that is needed is to specify a comma separated list of registers to monitor. The Iinebreak keyword simply
inserts a blank line in the debugging window to aid in readability.

In addition to the pause statement, the debugger can be entered automatically using a the --monitor option on
the command line. The simulator will also automatically invoke the debugger in the event of a deadlock. A deadlock
occurs when an instruction is not retired for a large number of cycles. The debugger consists of two windows. The first
window displays a memory image consisting of the line number of the program, followed by the memory location,
binary encoding of the instruction, machine instructions, and the corresponding line from the assembly language
program. The second window displays those registers that were specified with the monitor keyword, along with the
contents of each pipeline stage. Finally, some other data, such as the current machine cycle and number of stall cycles
are displayed.

To single step through the program execution, you can use the arrow keys and space bar with the cursor positioned
in the second window. The arrow keys cause the program to step in major cycles (ie: from prologue to prologue),
while the space bar will step in minor cycles (ie: prologue to intermission to epilogue to prologue).
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Appendix A

Compilation and run-time issues

A.1l Compilation issues

The xgcc compiler

C programs that require use of stdarg.h or varargs.h will experience compilation errors with xgcc. The type
__builtin_va_list is built in to gcc version 2.96 and higher, and as such, is undefined to xgcc.
The solution is to use the following argument to xgcc:

-D__builtin_va_list=void*

Running the simulator

Executing the simulator will issue the following errors. They can safely be ignored.

Not Found etext:#global.ulimit.etext text @ (nil) offset =0 label type =5 segment type =0
start_bit =15 nbits =16 patch_address=0x2acaa9fc which =3 fog =4
Not Found etext:#global.ulimit.etext text @ (nil) offset =0 label type =5 segment_type
start_bit =15 nbits =16 patch_address=0x2acaaa00 which =3 fog =5

0
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