
Computer Science Technical Report

The Location Consistency Memory Model

and Cache Protocol: Specification and

Verification

Charles Wallace, Guy Tremblay and José Nelson Amaral

Michigan Technological University

Computer Science Technical Report

CS-TR-01-01

Department of Computer Science

Houghton, MI 49931-1295

www.cs.mtu.edu

The Location Consistency Memory Model and Cache Protocol:

Specification and Verification

Charles Wallace

Computer Science Dept.

Michigan Technological University

Houghton, Michigan, USA

Guy Tremblay

Dépt. d’informatique

Université du Québec à Montréal

Montréal, Québec, Canada

José Nelson Amaral

Computing Science Dept.

University of Alberta

Edmonton, Alberta, Canada

Abstract

We use the Abstract State Machine methodology to give formal operational semantics for
the Location Consistency memory model and cache protocol. With these formal models, we
prove that the cache protocol satisfies the memory model, but in a way that is strictly stronger
than necessary, disallowing certain behavior allowed by the memory model.

1 Introduction

A shared memory multiprocessor machine is characterized by a collection of processors that ex-
change information with one another through a global address space [1, 6]. In such a machine,
processors access memory locations concurrently through standard read (load) and write (store)
memory instructions. Shared memory machines have many buffers where data written by a pro-
cessor can be stored before it is shared with other processors. As a consequence, multiple values
written to a single memory location may coexist in the system. For instance, the local caches of
various processors might contain different values written to the same memory location.1

The programs running on a shared memory machine are profoundly affected by the order in
which memory operations are made visible to processors. For instance, when a processor performs
a read operation, the value it reads depends on which previous write operations are currently vis-
ible. A memory consistency model is a contract between a program and the underlying machine
architecture that constrains the order in which memory operations appear to be performed with
respect to one another (i.e., become visible to processors) [6]. By constraining the order of opera-
tions, a memory consistency model determines which values can legally be returned by each read
operation. The implementation of a memory consistency model in a shared memory machine with
caches requires a cache protocol, which invalidates or updates cached values when they no longer
represent readable values according to the memory model.

1There may be multiple values per location even in a uniprocessor system, if it allows writers to bypass one another
in write buffers or in the cache.

The most common memory consistency model, sequential consistency (SC) [17], ensures that
memory operations performed by the various processors are serialized (i.e., seen in the same order
by all processors). This results in a model similar to the familiar uniprocessor model. A simple
way to implement SC on a shared memory multiprocessor is to define a notion of ownership of a
memory location and require a processor to become the owner of a location before it can update
its value. The serialization of memory operations is obtained by restricting ownership of a location
to one processor at a time.

In the SC model, at any time there is a unique most recent write to a location, and any other
values stored in the system for that location are not legally readable; they must either be invali-
dated or updated. Thus a major drawback of SC is the high level of interprocessor communication
required by the cache protocol. Each new write may lead to the invalidation or update of many
values cached in other processors. Because of the requirement that all write memory operations
be serialized, the SC model is quite restrictive and is thus said to be a strong memory model.
Weaker memory models have been proposed to relax the requirements imposed by SC. Examples
include release consistency [11], lazy release consistency [15], entry consistency [2], and DAG con-
sistency [3]. Relaxed memory models place fewer constraints on the memory system than SC.
Eliminating constraints permits more parallelism and requires less interprocessor communication
but complicates reasoning about program behavior.

All these models have the coherence property. In a coherent memory model, all writes become
visible to other processors, and all the writes in the system are seen in the same order by all
processors. In 1994, Gao and Sarkar proposed the Location Consistency (LC) memory model [9],
one of the weakest memory models proposed to date. LC is the only model that does not ensure
coherence. Under LC, memory operations performed by multiple processors need not be seen in
the same order by all processors. Instead, the content of a memory location is seen as a partially
ordered set of values. Multiple values written to the same memory location can be stored in write
buffers, local caches, and in the main memory. Because LC allows the coexistence of multiple legal
values to the same location, there is no need to invalidate or update remote cached values, as is
the case with SC. Hence the LC model has the potential to reduce the consistency-related traffic
in the network significantly.

In their more recent paper [10], Gao and Sarkar describe both the LC memory model and a
cache protocol, the LC cache protocol, that implements the LC model. They describe the LC model
in terms of an “abstract interpreter”. This interpreter maintains the state of each memory location
as a partially ordered set of values. The partial order defines the set of legal values for a read
operation according to the LC model. The LC cache protocol is designed for a machine in which
each memory location has a single value stored in main memory and each processor may cache
values for many memory locations.

An important requirement of a cache protocol is that the resulting machine is restricted to
behavior allowed by the corresponding memory model. Gao and Sarkar present a proof that the
cache protocol satisfies the memory model. However, their description of the memory model is
based on an ad hoc operational semantics notation that is not rigorously defined. The description
of the cache protocol is entirely informal and leaves some important assumptions unstated. A formal
approach would bring clarity and precision to the memory model and cache protocol definitions,
and it would provide a more convincing basis for a correctness proof.

In this paper, we specify the LC memory model and the LC cache protocol using the formal
operational semantics methodology of Abstract State Machines (ASM) [12]. We use the original

2

descriptions by Gao and Sarkar as the basis for our models, augmented with a couple of assumptions
that are implicit in the original descriptions. We then prove that the LC cache protocol correctly
implements the LC memory model, i.e., for a machine that implements the cache protocol, every
read operation returns a legal value according to the memory model. In addition, we show that
the LC cache protocol is strictly stronger than the LC memory model; i.e., there are legal values
according to the memory model that cannot be returned under the cache protocol.

An Abstract State Machine, like a Finite State Automaton (FSA) [20], a Turing Machine [21],
or a Random Access Machine [5], is a mechanism that takes input and performs actions that lead
to state transformations. These computing models have different notions of state, state transfor-
mation, and program (the set of rules that describe the possible state transformations). An ASM
state is an algebra (a collection of function names interpreted over a given set), and a state trans-
formation is a set of changes to the interpretations of these functions. A brief introduction to ASM
is presented in Appendix A.

An interesting feature of ASM is that the specification of a model is not confined to a fixed level
of representation, as is the case with other computing models, e.g., the infinite tape of a Turing
Machine or the infinite register sequence of a Random Access Machine. Moreover, both atomic state
transformations (e.g., a change of a single function interpretation at a single location) and complex
transformations (e.g., a change of multiple functions at different locations) can be interpreted as
single abstract machine steps. These properties allow the unification of the models of the abstract
interpreters for the memory model and the cache protocol. Furthermore, the operational nature of
the ASM model is closer to Gao and Sarkar’s description of the model than a purely declarative
specification (e.g., using a process algebra [18]) would be.

Our specifications of the LC memory model and of the LC cache protocol are similar in that
they refine a common (top-level) specification. In §2 we define the common portions of the two
models. The result is an ASM model LC0. In §3 we refine this model to arrive at a model LCmm of
the LC memory model. In §4 we make different refinements, resulting in a model LCcp of the LC
cache protocol. In §5 we prove that LCcp is an implementation of LCmm, in the sense that every
value read in a run of LCcp is also read in an equivalent run of LCmm. In §6 we prove that LCcp is
strictly stronger than LCmm, in the sense that there are readable values in a run of LCmm that are
not read in any equivalent run of LCcp. We conclude in §7 with some directions for future work.

2 Shared memory system and memory operations

In a shared memory machine, processors can reference a shared set of memory locations, organized
in a global shared address space. The operations that processors use to access these shared locations
are no different from those they use to access their local memory locations. Although it may appear
intuitive to think that each shared memory location holds a single value at any given time, cache
memories provide multiple places to store values for a single location. Thus at any given time,
multiple values may be simultaneously associated with the same memory location.

A processor can perform four types of operation on a memory location.

• A read retrieves a value associated with a location, possibly storing it in some area local to
the processor.

• A write adds a value to the set of values associated with the location.

3

In real systems, the number of places available to store the set of values associated with a
location is finite. Therefore, a side effect of a read or write operation is that a value previously
associated with a given location may no longer be available in the system.

• An acquire grants exclusive ownership of a location to a processor.2

The exclusive ownership of a location imposes a sequential order on processor operations.
Hence when it is useful to have a unique global “most recent write” to a location, such write
can be defined as the most recent write by a processor that owned the location at the time
of the write. When acquiring a location, a processor updates its own state by discarding any
old value it has stored for the location.

• A release operation takes exclusive ownership away from a processor. A processor that owns
a location must release it before any other processor can acquire it. Any processor attempting
to acquire a location currently owned by another processor must wait until the location is
released by its current owner. If the releasing processor has written to the location, the release
operation has the additional effect of making the value of its most recent write available to
other processors. In this way, a processor that subsequently acquires the location will have
access to the value of the global “most recent write”.

Gao and Sarkar do not speak of acquire and release operations separately; rather, they speak of
acquire-release pairs of operations. Thus it is assumed that a processor must gain ownership of
a location through an acquire before releasing that location. Furthermore, if a processor acquires
a location, it must later relinquish ownership through a release before any processor can perform
another acquire on that location.

The model of the LC memory model (LCmm) in §3 and the model of the LC cache protocol
(LCcp) in §4 both require formalizations of the notions discussed above. In the rest of this section,
we define a higher-level ASM model LC0 to represent these notions in a generic way. LC0 models
only the the general control flow associated with the execution of the memory operations, including
the waiting associated with an acquire operation. In this initial model, the flow of data is ignored.
Later, we refine LC0 to the models LCmm and LCcp, adding details appropriate to each of these
models (partial order of operations vs. cache information).

LC0: Universes and agents

In this section, we present the universes used in all our ASM models. We assume that the mul-
tiprocessor system has a fixed set of processors, a fixed set of memory locations, and a fixed set
of data values. These sets are represented in LC0 as the Processor, Location and Value universes,
respectively. We also define an OpType universe, comprising the four types of operation: read,
write, acquire and release.

A distributed computation in ASM is modeled as a multi-agent computation in which agents
execute concurrently and where each agent performs a sequence of state transformations. To define
the agents of the model, we consider the various forms of concurrency that can exist between

2Exclusive ownership is used in SC to restrict the processors reading or writing to a single location to one at a
time. In SC, only a processor that owns a location may perform a read or write on it. However, this is not the case
with all memory models. As we shall see, LC has a notion of exclusive ownership, but it also allows processors without
ownership to perform reads and writes. In LC, exclusive ownership does not mean exclusive read/write access.

4

Function Profile/Description

p.loc ProcAgent → Location
Memory location on which agent p performs operations (static).

p.proc ProcAgent → Processor
Processor on behalf of which agent p performs operations (static).

p.opType ProcAgent → OpType
Type of operation that agent p performs in the current step.

p.nextOpType ProcAgent → OpType
Type of operation agent p will perform at the next step (monitored).

p.waiting? ProcAgent → Boolean
Is p waiting to acquire ownership of its location?

p.writeVal ProcAgent → Value
Value to be written in the current write operation by agent p (monitored).

Figure 1: Attributes of ProcAgents.

actions. We must then distinguish those actions that should not be performed concurrently from
those that may but need not be performed concurrently, and from those that must be performed
concurrently. To ensure that two actions are performed concurrently, a single agent can be defined
to perform these actions using a “block rule”; to allow (but not require) two actions to be performed
concurrently, the actions can be assigned to different agents; finally, to preclude two actions from
being done concurrently, they can be assigned to mutually exclusive clauses within a single agent.

In modern multiprocessors, a single processor may perform operations on different locations
concurrently. Moreover, when both a relaxed memory model and write buffers are used, multiple
outstanding writes to the same location may coexist in the system. Moreover, multiple processors
may perform concurrent memory operations, either on the same location or on different locations.
However, we assume that a given processor does not perform multiple concurrent memory oper-
ations on a given location. Therefore, in our abstract model, for each processor P and for each
location ` there is a unique agent whose task is to perform operations on location ` on behalf of
processor P . We call such agents processor agents, and we define a universe ProcAgent in LC0

accordingly. In order to complete the definition of LC0, we introduce two more universes of agents:
InitAgent (initializer agent) and OwnAgent (ownership agent). We now describe each of these agents.

LC0: Processor agents

A processor agent is characterized by the attributes loc and proc: loc is the location on which the
agent performs actions, and proc is the processor on behalf of which the agent acts. Note that
there may be multiple agents with the same proc attribute or the same loc attribute; indeed, such
commonality exists in all but the degenerate case of a uniprocessor machine. Both attributes have
fixed values, i.e., they are never changed by the state transformations of the abstract machine.
Thus in ASM terminology, they are called static functions.

Associated with each ProcAgent are some attributes whose values may change during an execu-
tion of the abstract machine; in ASM terminology, these are dynamic functions. For instance, the

5

Function Profile/Description

i.loc InitAgent → Location
Memory location that agent i must initialize (static).

i.opType InitAgent → OpType
Type of operation that agent i performs in the current step.

i.writeVal InitAgent → Value
Value used to initialize the location of agent i (monitored).

`.initialized? Location → Boolean
Has ` been initialized by its InitAgent?

Figure 2: Attributes of InitAgents and Locations.

attribute opType indicates the type of operation that the agent is to perform in the current step.
Some operations may take multiple steps; for instance, a processor agent performing an acquire
operation may need to wait for another processor agent to release ownership of its location. When
the current operation is completed, the processor agent updates its opType attribute.

The type of the next operation that the agent is to perform (once all actions associated with
the current operation have been completed) is given by the attribute nextOpType. Since we are
not interested in how the sequence of operations performed by each processor agent is chosen,
nextOpType is not specified in our formal model; we simply leave it to the environment to update
this function. In ASM terminology [14], nextOpType is an external or monitored function. In
contrast, the attribute opType is explicitly updated by agents (and never by the environment), so
it is called a dynamic internal function or controlled function.3

The attribute waiting? (a controlled function) determines whether a processor agent is waiting
for ownership of its location (as the result of an acquire operation). If a processor agent is unable
to gain ownership immediately, it updates its waiting? attribute to true. Finally, the monitored
function writeVal, associated with the ProcAgent universe, provides the value written by a write
operation. This function is not used in LC0 but is used in both LCmm and LCcp.

In Figure 1, we present the attributes for the processor agents with their profile and brief
descriptions of each attribute. The profile of a function specifies the function’s signature (types of
arguments and result); for example, the application of the function loc to a ProcAgent produces a
Location. Note that we use postfix notation for terms involving unary functions.

LC0: Initializer agents

A question arises regarding the initial status of each location. If a processor agent reads from a
location that has never been written to, it is not clear what the result should be. We avoid this
complication by ensuring that each location is initialized with a proper value before the processor
agents start to perform operations on it. To this end, we define the InitAgent (“initializer agent”)
universe. Each initializer agent performs operations on a specific location; thus each InitAgent has
the loc attribute (a static function) associated with it. An initializer agent performs two operations

3In fact, the terms “monitored” and “controlled” are taken from Parnas [19].

6

Function Profile/Description

o.loc OwnAgent → Location
Memory location whose ownership agent o controls (static).

`.owner Location → ProcAgent
Agent that has acquired location ` and has not released it.

`.nextOwner Location → ProcAgent
Agent that is to become the owner of location `

in the next request for ownership (monitored).

Figure 3: Attributes of OwnAgents and Locations.

to initialize its location, after which it terminates. The operations are:

• a write, that associates some value with the location, followed by

• a release. A release performed by an initializer agent is similar to but simpler than a release
performed by a processor agent. Releases by initializer agents, unlike those by processor
agents, do not affect ownership of locations, since initializer agents do not perform acquires
and therefore never have ownership. However, a release by an initializer agent does have the
effect of making the initial value available to all processor agents.

Like a processor agent, each initializer agent has an opType attribute and a writeVal attribute. Each
initializer agent consults its writeVal attribute to obtain the initial value to write to its location.
Since it performs a fixed sequence of operations, an initializer agent has no nextOpType attribute.
The attributes associated with initializer agents are presented in Figure 2.

We associate the attribute initialized? with each location. When an initializer agent has initial-
ized its location, it updates the initialized? attribute of the location to true, indicating that processor
agents are now free to perform operations on the location. This attribute is shown in Figure 2.

LC0: Ownership agents

A processor agent seeking ownership of a location can gain ownership as long as no other processor
agent currently owns the location. If another agent does own the location, the agent wishing
to acquire must wait to gain ownership at a later time. At any time, there may be multiple
processor agents waiting for ownership of the same location. The decision as to which agent
is granted ownership is beyond the control of any processor agent. Furthermore, the ownership
arbitration policy is implementation-dependent and beyond the scope of our specification. Therefore
we define the OwnAgent universe, whose members have the responsibility of arbitrating ownership
of locations. Since the ownership of different locations can be granted concurrently, we associate a
unique OwnAgent with each memory location.

Since each ownership agent controls ownership of a single location, each OwnAgent has a loc
attribute (a static function). Each location has an owner attribute, indicating which processor
agent (if any) has ownership of the location. When a processor agent releases a location, there may
be other processor agents waiting to gain ownership. The monitored (oracle) function nextOwner

7

is an attribute associated with locations; it provides the next processor agent selected to receive
ownership of the location. This monitored function is consulted by the OwnAgent. All these
attributes are presented in Figure 3.

Terminology

We introduce the following terminology for agents and actions in runs of either LCmm or LCcp.

Definition If a ProcAgent or InitAgent p makes a move Rd at which p.opType = read, we say that
p performs a read (or simply reads) at Rd. (Similarly for write.)

Definition If a ProcAgent or InitAgent p makes a move A at which p.opType = acquire and
p.loc.owner = p, we say that p performs an acquire (or simply acquires) at A. (Simi-
larly for release.)

LC0: Conditions on runs

Some aspects of our models LC0, LCmm and LCcp are outside the control of the ASM transition
rules. First, our static functions must have certain properties. We restrict attention to runs in
which the following conditions are true of the static functions loc and proc, in the initial state (and
therefore every subsequent state) of any run:

Static condition 1 For every Processor P and for every Location `, there is a unique ProcAgent
p for which p.proc = P and p.loc = `.
(The ProcAgent performs operations on `, on behalf of P .)

Static condition 2 For every Location `, there is a unique InitAgent i for which i.loc = `.
(The InitAgent performs operations on `.)

Static condition 3 For every Location `, there is a unique OwnAgent o for which o.loc = `.
(The OwnAgent performs operations on `.)

Second, there are certain conditions that must be true of the dynamic functions in the initial state
of any run. In both specifications, we restrict attention to runs in which the following conditions
are true in the initial state:

Init condition 1 For every InitAgent i, i.opType = write.
(The first operation performed by an InitAgent is a write.)

Init condition 2 For every Location `, `.owner.undef? and not `.initialized?.4

(Initially, all locations are uninitialized, and no ProcAgent has ownership of any location.)

Init condition 3 For every ProcAgent p, not p.waiting?.
(Initially, no ProcAgent is waiting for ownership.)

4In general, the notation t.undef?, where t is a term, means t is undefined, that is, t evaluates to the special value
undef. In other words, t.undef? if and only if t = undef. Similarly, t.def? is a shorthand notation to indicate that t is
defined; that is, t 6= undef.

8

Also, the monitored function nextOwner must produce “reasonable” values at every move of any
run. The nextOwner attribute identifies the next processor agent to own the given location. Only a
processor agent currently waiting to obtain ownership on the location should be granted ownership.
Thus we restrict attention to runs in which the following condition is met at every move:

Run condition 1 For every Location `, if `.nextOwner.def?, then `.nextOwner.loc = ` and
`.nextOwner.waiting?.

Finally, in order to remain faithful to Gao and Sarkar’s description, we restrict our attention to runs
in which acquires and releases come in matching pairs. We formalize this notion in the following
two conditions:

Run condition 2 If a ProcAgent p acquires at a move Ap and releases after Ap, then there is a
move Rp after Ap at which p releases such that p does not acquire in (Ap, Rp).

5

Run condition 3 If a ProcAgent p releases at a move Rp, then there is a move Ap before Rp at
which p acquires such that p does not release in (Ap, Rp).

6

LC0: Processor agent module

The behavior of a processor agent is presented as an ASM module (i.e., a transition rule) in Figure 4.
ASM uses Self to refer to the entity executing the module. In a distributed ASM model such as
the one we are presenting, there are a number of universes of agents, each universe associated with
a specific module.7

The structure of the ProcAgent module has a recurring pattern: based on the current opType, the
actions specified by an appropriate abstract rule (Read , Write, Acquire, or Release) are performed.
Note that these rules are redefined in §3, giving us a complete ASM model LCmm. A different set
of definitions for these same rules then appears in §4, resulting in a distinct ASM model LCcp.

A ProcAgent may begin performing operations on its location once the location is initialized.
While an operation is executed, the operation to be performed in the next step is obtained through
the rule Get next operation . This rule simply consults the environment to determine what should
be done in the next step. Note that a processor agent may update its opType attribute to undef. In
this case, it temporarily stops performing operations but continues to execute its program, firing
the rule Get next operation . Once the opType attribute has a “well-defined” (non-undef) value, the
agent resumes operations.

The acquire case is slightly different because a processor agent must first acquire ownership
of the location. Thus if the location is owned by another processor agent, the acquiring agent
must wait. In ASM terms, execution of the ProcAgent module with opType = acquire does not
change opType until the location has finally been acquired (i.e., Self.loc.owner = Self). As for the

5Note that we do not require p to release after an acquire. A processor agent may maintain ownership of a location
indefinitely.

6An effect of this run condition is the exclusion of any release “unpaired” with a preceding acquire (and therefore
done by a processor agent that is not the current owner of the location). A similar effect can be achieved without
additional run conditions by defining the ProcAgent module in Figure 4 so that such releases are simply ignored. Gao
and Sarkar make a stronger claim, however: unpaired releases simply do not occur. Hence we reject this alternative
solution since it is less faithful to the original description of the LC model.

7In object-oriented programming terminology, an agent universe could be interpreted as a class, the agents in the
universe as the instances of that class, and the universe’s module as the behavior associated with the class.

9

module ProcAgent:
if Self.loc.initialized? then

case Self.opType of
read: Read
write: Write
acquire: Acquire
release: Release
undef: Get next operation

rule Read :
Get next operation

rule Write:
Get next operation

rule Acquire:
if Self.loc.owner 6= Self then Self.waiting? := true
else Get next operation

rule Release :
Self.loc.owner := undef
Get next operation

rule Get next operation :
Self.opType := Self.nextOpType

Figure 4: Module for processor agents (ProcAgent).

10

module InitAgent:
case Self.opType of
write: InitWrite
release: InitRelease

rule InitWrite:
Self.opType := release

rule InitRelease :
Self.opType := undef
Self.loc.initialized? := true

Figure 5: Module for initializer agents (InitAgent).

release case, it is Run Condition 3 that ensures that the releasing agent indeed has ownership of the
location, which entails that it is correct to release ownership (i.e., update Self.loc.owner to undef).

LC0: Initializer agent module

Figure 5 contains the module for an initializer agent. Initial Condition 1 stipulates that the opType
attribute of each initializer agent has the value write. Therefore, the following sequence of actions
is performed by each initializer agent:

• Perform the actions described by rule InitWrite: change the value of opType to release.

• Perform the actions described by rule InitRelease: change the value of opType to undef, and
indicate that the location associated with the agent is now initialized.

After this sequence of actions, undef matches neither write nor release. Therefore, no further actions
are performed by the initializer agent. Once the execution of an initializer agent is complete, the
associated location is properly initialized, thereby enabling processor agents to perform operations
on the location.

The execution of the initializer agent associated with a location ` ensures that the location is
properly initialized and thus enables the processor agents associated with the location.

LC0: Ownership agent module

Figure 6 contains the module for ownership agents. If the location associated with the ownership
agent currently has no owner (according to the owner attribute), and the nextOwner attribute has
a defined value, then according to Run Condition 1, the processor agent indicated by nextOwner
is currently waiting to gain ownership of the location (i.e., the waiting? attribute evaluates to true
for that processor agent). Therefore the ownership agent grants ownership to the processor agent,
updating its waiting? status to false and making it the owner. Note that the waiting? attribute’s
only role is to allow this interaction with the OwnAgent: once a ProcAgent updates its waiting?
attribute to true, only the appropriate OwnAgent can update it to false when ownership is granted.

11

module OwnAgent:
if Self.loc.owner.undef? and Self.loc.nextOwner.def? then

Self.loc.nextOwner.waiting? := false
Self.loc.owner := Self.loc.nextOwner

Figure 6: Module for ownership agents (OwnAgent).

The same is true of the owner attribute: once an OwnAgent updates it to a particular ProcAgent
p, only the ProcAgent p can change it (to undef, when it is releasing the location).

3 The LC memory model

In the previous section, we described a generic framework — in terms of abstract Read , Write,
Acquire and Release rules — that provides the top-level description of both the memory consis-
tency model (LCmm) and the cache protocol model (LCcp). In this section we present a complete
specification for the LC model, LCmm, by defining the transition rules according to the memory
model specifications.

The state of a memory system is determined entirely by the operations that have been performed
upon the system. Following Gao and Sarkar [10], we view the state of a memory system as a history
(i.e., partial order) of events (i.e., instances of operations) that modify the memory system state.8

These events are organized according to a partial order relation. The following information is
recorded for each event: its type (read, write, acquire, release), the agent that generated it (its
issuer), and the location on which it was performed.

Events are temporally ordered by a relation ≺. Each processor must act as if it observed
the events in an order compatible with ≺. When a processor performs an operation, an event is
added to the history, and the ≺ relation is updated accordingly. In practice, the memory system
does not maintain such a history, but this view is useful for thinking of consistency models in an
implementation-independent way. How the relation ≺ is updated depends on the consistency model
adopted. For instance, SC requires a total order of events, common to all processors. Therefore,
each event would be ordered with respect to all events issued previously. In more relaxed models
like LC, a partial order is sufficient.

For any memory model, a key question is: what value should be returned when a processor
performs a read? For a strong memory consistency model, there is a unique value to be returned,
which is the value written by the most recent write operation to that location. However, when a
weaker memory model is used, there may be more than one value associated with a single location at
a given time. In such models, a read operation is associated with a set of values that are considered
readable for that location.

A specification of a memory consistency model can thus be characterized by two main features:

• What is the precedence relation between a new event and other events already recorded in
the history?

8In fact, Gao and Sarkar speak only of operations and not events. Since any operation may be performed more
than once, they define a history as a partially ordered multiset of operations. We find it more natural to distinguish
between operations and events and use a partially ordered set of events.

12

In the case of the LC model, this question is answered as follows. A new write, acquire, or
release event e by a processor agent p on a location ` is ordered so that it succeeds any event
e already issued by p on `. In other words, the set of events by p on ` is linearly ordered.
Furthermore, since LC assumes that the history is a partial order, ≺ is transitive, so the
new event also succeeds any event e′ ≺ e, possibly including events issued by other processor
agents.

In the case of a new acquire event a, the partial order is updated further. The latest release
event issued on ` (by any processor agent)9 precedes a, along with any events that precede
that release. This release could have been issued by any processor agent, not necessarily
the issuer of the new acquire. Hence, it is through acquires that events issued by different
processor agents are ordered according to ≺.

• Which values are associated with a new read event?

In the LC model, when a processor agent p issues a read on a location `, any write event on
` that has not been “overwritten” by another write event has its value associated with the
new read event. We formalize this notion as follows. Let e be the last event issued by p; then
according to the LC model, write event w is readable by p if and only if there is no write
event w′ such that w ≺ w′ � e. This can be true of a write event w in either of the following
ways:

– If w precedes e and w is “recent” in the sense that there is no intervening write event
between w and e, w’s value is readable.

– Alternatively, if w is simply unordered with respect to e, w’s value is also readable.10

Our specification differs from Gao and Sarkar’s description in a couple of aspects. First, we model a
read as a single-step operation. In Gao and Sarkar’s conception, a read first generates a read event
and places it in the history, and then determines the readable values for the read. Our conception is
more abstract, and it eliminates the need to place read events in the history. Second, our rules ensure
that ≺ remains a transitive relation throughout the course of the system’s execution. While Gao
and Sarkar clearly intend for their precedence relation to be transitive, the state transformations
they propose would not maintain that property.

LCmm: Universes, attributes, and relations

We define universes ReadEvent, WriteEvent, AcquireEvent and ReleaseEvent to represent the sets of
events of various types. We use the term Event to refer to the union of these universes.11 Each
Event has an issuer attribute that indicates which agent issued the event. In addition, a WriteEvent
has a val attribute indicating the value written.

9Note that there is at most one latest release for ` at any given time, since (as pointed out in §2 and as formalized
by Run Condition 3) a processor agent may only release ` if it has (exclusive) ownership of `.

10Note that if w is unordered with respect to e, then the associated write has been performed by another processor
agent q, and p and q have not synchronized with proper acquire/release operations. Thus the value of w could have
been written to memory at an arbitrary moment, which is why it must be considered readable by p.

11In object-oriented terms, Event could be seen as a general or base type and the others as specializations or
subtypes.

13

Function Profile/Description

e.issuer Event → ProcAgent ∪ InitAgent
Agent that issued e.

w.val WriteEvent → Value
Value written at w.

p.latestEvent ProcAgent → Event
The most recent event issued by p.

`.latestRelease Location → ReleaseEvent
The most recent release event issued on location `.

i.initWrite InitAgent → WriteEvent
The write event issued by i.

reads?(rd, v) ReadEvent × Value → Boolean
Is v in the set of values read at event rd?

e ≺ e′ Event × Event → Boolean
Does e precede e′ in the current system history?

Figure 7: Additional attributes and relations for LCmm.

We introduce attributes to maintain the most recent events issued. Each processor agent has a
latestEvent attribute that gives the most recent event issued by the agent. Similarly, each initializer
agent has an initWrite attribute that gives the write event issued by the agent. Finally, each location
has a latestRelease attribute that gives the most recent release event issued on the location.

Finally, we define two key relations:

• reads?(rd, v) indicates whether value v can be read at ReadEvent rd. The set of possible values
that can be read by ReadEvent rd is thus the set {v|reads?(rd, v)}.

• e ≺ e′ represents the partial order among memory events.

Initially, the relations ≺ and reads? are empty because there are no events in the system. Attributes
and relations associated with events and with locations are presented in Figure 7.

Terminology

The following terms refer to the issuing of events in a run of LCmm.

Definition An event e with e.issuer = p (for some ProcAgent or InitAgent p) is a p-event.

Definition If a ProcAgent or InitAgent p makes a move Rd that creates a ReadEvent rd, we say
that p issues a read event rd at Rd. (Similarly for write, acquire, and release.)

Definition If a ProcAgent p reads at a move Rd and readOK?(w, p) for a WriteEvent w, we say
that p reads w at Rd. We also say that p reads value w.val at Rd.

14

LCmm: Conditions on runs

We restrict attention to runs in which the following conditions are true in the initial state of LCmm:

Init condition 4 For every Location `, `.latestRelease.undef?.
(Initially, there is no latest release event defined for any location.)

Init condition 5 For every ProcAgent p, p.latestEvent.undef?.
(Initially, there is no latest event defined for any processor agent.)

LCmm: Terms and transition rules

The rules for write, acquire, and release operations by processor agents in the LC model are given
in Figure 8. In each of these rules, a new event of the appropriate type is created using the extend
construct. The issuer attribute of this event is updated to Self, which is the agent that executes
the rule and generates the event.

The rule for read operations is given in Figure 9. The term readOK?(w, p), also defined in
Figure 9, determines whether the write value of WriteEvent w is readable for ProcAgent p. For the
value of WriteEvent w to be readable by processor agent p, w must be a write to the appropriate
location, and there must be no WriteEvent w′ that intervenes between w and the last event issued
by p. Note that in the case where w ≺ p.latestEvent does not hold (i.e., there is no ordering relation
between the write w and the latest event of p), there is no such w ′, so the value written by w will
indeed be readable according to the LC model.

In the case of a read, the set of possible values that can be returned is associated with the new
ReadEvent by updating the reads? relation. Any write event whose value is considered readable
(according to readOK?) is in the set. For all non-read events,12 the partial order relation ≺ is
updated to account for the newly created event:

• The new event succeeds its issuer’s latest event (as well as all predecessors of that event).

• Synchronization between processors imposes additional ordering constraints. In the LC
model, these synchronizations occur exclusively through acquire and release operations. Thus
a new AcquireEvent succeeds the latest release event on the location being acquired — which,
by Run Conditions 2 and 3, is sure to exist and is sure to have been performed by the
appropriate ProcAgent — as well as all predecessors of the latest release.

The rules for write and release operations by initializer agents (InitWrite and InitRelease ,
respectively) appear in Figure 10. In LCmm, they are similar to their processor-agent counterparts
(Write and Release , respectively). As we shall see in the next section, this is not the case for LCcp:
in that model, InitWrite differs significantly from Write, as does InitRelease from Release .

The rules presented in Figures 8–10 refine the processor agent and initializer agent modules
of LC0. Along with the ownership agent module in Figure 6, they complete LCmm, the ASM
representation of the LC model. In the next section, we describe LCcp, the ASM representation of
the LC cache protocol.

12As noted earlier, only non-read events are inserted into the partial order, contrary to [10].

15

rule Write:
extend WriteEvent with w

w.issuer := Self
w.val := Self.writeVal
Order w after Self.latestEvent and its predecessors
Self.latestEvent := w

Get next operation

rule Acquire:
if Self.loc.owner 6= Self then Self.waiting? := true
else

extend AcquireEvent with a

a.issuer := Self
Order a after Self.latestEvent and its predecessors
Order a after Self.loc.latestRelease and its predecessors
Self.latestEvent := a

Get next operation

rule Release :
extend ReleaseEvent with r

r.issuer := Self
Order r after Self.latestEvent and its predecessors
Self.latestEvent := r

Self.loc.latestRelease := r

Self.loc.owner := undef
Get next operation

rule Order e after d and its predecessors :
if d.def? then

d ≺ e := true
do-forall c: Event: c ≺ d

c ≺ e := true

Figure 8: LCmm rules for write, acquire and release operations.

16

rule Read :
extend ReadEvent with rd

rd.issuer := Self
do-forall w: WriteEvent: readOK?(w, Self)

reads?(rd, w.val) := true
Get next operation

term readOK?(w, p):
w.issuer.loc = p.loc and not (∃w′: WriteEvent) w ≺ w′ ≺ p.latestEvent

Figure 9: Rule and auxiliary term for read operation in LCmm.

rule InitWrite:
extend WriteEvent with w

w.issuer := Self
w.val := Self.writeVal
Self.initWrite := w

Self.opType := release

rule InitRelease :
extend ReleaseEvent with r

r.issuer := Self
Self.initWrite ≺ r := true
Self.loc.latestRelease := r

Self.opType := undef
Self.loc.initialized? := true

Figure 10: LCmm rules for the initial write and release operations.

17

4 The LC cache protocol

In LCmm, the state of the memory system is represented as a partially ordered set of events, and
values are simply stored as attributes of events. We now present LCcp, a formal model of the
LC cache protocol, in which we make some stronger assumptions about how values are stored. In
particular, we assume that each processor is equipped with its own cache, and that there is a set of
memory areas collectively called main memory, distinct from any processor’s cache. Each location
has a unique value stored in main memory. Processors store values for reading and writing in their
caches. When a processor writes to a location the new value is only written to the processor’s
cache. Eventually this value is written back to the main memory. Thus in this more concrete
model, agents update cache entries and main memory locations instead of a history of events.

At any time, each cache entry is either valid or invalid, and a valid entry is either clean or
dirty. A valid entry has a readable value, while an invalid one does not. A clean entry has a value
from main memory that has not been overwritten; a dirty entry has a value written by the local
processor that has not been written back to the main memory. When all the cache entries are
occupied, a write or read of a location with no entry in the cache requires the removal (or ejection)
of an existing location from the cache. A cache replacement policy is used to select which location
should be removed from the cache; since we do not consider the details of any particular cache
replacement policy, we use a monitored function to model the choice of which cache entry to eject.

In a multiprocessor machine, it is unrealistic to conceive of a writeback to main memory as a
single-step action. There is an intrinsic delay between the initiation of a writeback (when the value
stored in a cache entry is sent toward main memory) and the completion of the writeback (when
the value is recorded in main memory). Writebacks may be completed concurrently with actions
by processor agents, and a writeback to a remote main memory location is certainly not performed
by the processor agent itself. To represent the process of writing back values to main memory, we
introduce a universe of writeback agents. A writeback is initiated by generating a writeback agent
and copying the dirty cached value to the writeback agent. The writeback is completed when the
writeback agent copies this value to main memory.

An ejection removes a value from a processor agent’s cache. Thus when a dirty entry is written
back and ejected, it may be necessary for a processor agent to fetch a value from main memory. In
many multiprocessor machines, however, a value may still be available locally even if the value has
been ejected from the cache earlier. For instance, there may be a local write buffer that temporarily
stores values that are to be written to main memory. If a processor agent performing a read finds
no valid cache entry, it may still find a value in its write buffer that was recently sent to main
memory. In this way, the processor agent avoids having to consult main memory.

Indeed, any implementation of the cache protocol must have a way for a processor agent to
access its latest value in the transition period between ejection from the cache and writeback to
main memory. Otherwise, a subsequent read may violate the memory model. Consider a simple
uniprocessor example in which a processor agent performs two writes in succession, with no acquire
or release actions. At some later time, it may be that the first write has been written back to main
memory, and a writeback of the second write has been initiated but not yet completed. Imagine
that the processor agent performs a read at this point. If it were to consult main memory for the
read, it would get the value of the first write — a violation of the memory model.

The order in which writebacks are completed must also be restricted to avoid violating the
memory model. For instance, in the previous example, if the two writebacks on the processor
agent’s cache entry are initiated but then completed in reverse order, the value in main memory

18

will come from the first writeback. If the processor agent were to read this value, the memory model
would be violated. Gao and Sarkar do not make any explicit claims about the order of writebacks,
so we will assume that writebacks must be completed in the order they were initiated.13

Our view of writebacks as multi-step actions requires us to clarify the meaning of a release
operation. As noted earlier, one effect of a release is to make the last write by the releaser available
to other processor agents. This is why a release initiates a writeback in the case of a dirty cache
entry: the write that made the cache entry dirty must be propagated to main memory. But since
a writeback cannot be performed in a single step, the following question arises: is it sufficient to
initiate the writeback before completion of the release (i.e., giving up ownership and proceeding
to the next operation), or must the writeback also be completed? Gao and Sarkar [10] indicate the
latter. This implies that a releasing processor agent may have to wait for a writeback to complete
before proceeding to the next operation.14 In fact, Gao and Sarkar require that all writebacks must
be completed before the release can proceed.15

The actions for each operation are as follows. A read puts a value in the processor agent’s cache,
if there is no valid entry present in the cache already. This value comes from the processor agent’s
most recent writeback agent, if it is storing a value that has not been written back; otherwise it
comes from main memory. A write generates a value, caches it, and updates the status of the cache
entry to dirty. An acquire of a location invalidates the cache entry for the location, unless it is
dirty (in which case the last value written by the processor remains in the cache, a legal value for
subsequent read operations). A release of a dirty location initiates a writeback of the value stored
in the cache, then waits until the value is transferred to main memory. Only when the writeback
is completed does the release terminate.

Note that the LC cache protocol only requires two inexpensive operations to enable synchro-
nization between multiple processors: the self-invalidation of cache entries that are not dirty for the
Acquire rule, and the writeback of a dirty cache entry for the Release rule. Therefore no expensive
invalidation or update requests need to be sent across the network under the LC cache protocol.16

LCcp: Attributes

Like in the general model, in LCcp a processor agent p is associated with a particular processor p

and location `. For each processor p, the attribute cacheVal gives the value in p’s cache for location
` (if any such value exists), and the attributes cacheValid? and cacheDirty? give the valid/invalid
status and dirty/non-dirty status of the cache entry.

In order not to tie our model to any specific cache replacement policy, the cache entry to be
ejected (if any) is determined by a monitored function: the attribute ejectee. For each processor
agent p, ejectee selects another processor agent associated with the same processor and which has

13There are undoubtedly looser restrictions possible; we choose this one for its simplicity.
14Later, they claim that “this wait for write completion does not require exclusive ownership”. This would seem to

suggest the contrary: a releasing processor agent may simply relinquish ownership, initiate a writeback, and continue
to the next operation. However, they have a different intended meaning here for “exclusive ownership” [8]. They are
referring here to exclusive ownership in the SC sense (where only the owner can perform reads or writes). They are
simply emphasizing that other processor agents can perform reads and writes on a location while the owner of the
location prepares to release.

15One can imagine a less stringent requirement: only the latest writeback must complete, and any earlier writebacks
need not complete at all.

16Note that, in order to satisfy the LC model when a release operation is performed, any previous write must be
completed, which thus incurs some additional cost (acknowledgement of writes).

19

Function Profile/Description

p.cacheVal ProcAgent → Value
Value (if any) that p has cached.

p.cacheValid? ProcAgent → Boolean
Does p have a readable cached value?

p.cacheDirty? ProcAgent → Boolean
Has p performed a write that has not been written back to main memory yet?

p.ejectee ProcAgent → ProcAgent
Processor agent whose cache entry is to be ejected
to make room for p’s entry (monitored).

`.MMVal Location → Value
Value of ` stored in main memory.

p.latestWB ProcAgent → WritebackAgent
Writeback agent most recently generated by p.

wb.issuer WritebackAgent → ProcAgent
Processor agent that generated wb.

wb.val WritebackAgent → Value
Value that wb is to write to main memory.

wb.active? WritebackAgent → Boolean
Does wb still have to write its value back to main memory?

Figure 11: Additional attributes for LCcp.

20

a cache entry; the cache entry of p.ejectee is then to be ejected in order to make room for p’s entry.
The attribute MMVal is associated with each location ` and represents the value currently

stored in the main memory for `. We introduce a universe WritebackAgent representing the agents
charged with writing values to main memory. The function latestWB is an attribute associated
with each ProcAgent, giving the writeback agent most recently generated by the processor agent.
We associate three attributes with the WritebackAgent universe: issuer, which gives the processor
agent that generated the writeback agent; val, which gives the value to write to main memory;
and active?, which determines whether a given writeback agent has yet to write its value to main
memory. Figure 11 summarizes the attributes that we use to model caches, writeback agents, and
the main memory.

Terminology

In LCcp, releases generally are multi-step actions. Therefore, we must reformulate what it means for
a processor agent to perform a release. In our terms, a processor agent first prepares to perform a
release by initiating a writeback of its dirty cache entry and waiting for the writeback to complete.
It only performs the release (relinquishing ownership) after these actions have completed. We
formalize this as follows.

Definition If a ProcAgent p makes a move PRp at which p.opType = release and
(p.cacheDirty? or p.latestWB.active?), we say that p prepares to release at PRp.

Definition If a ProcAgent p makes a move Rp at which p.opType = release and
not (p.cacheDirty? or p.latestWB.active?), we say that p releases at Rp.

We use the following terms to characterize read actions and cache maintenance actions in ρcp.

Definition If a ProcAgent p reads at a move Rdp, we say that p reads value v at Rdp, where

• v = p.cacheVal if p.cacheValid?;

• otherwise, v = p.latestWB.val if p.latestWB.active?;

• otherwise, v = p.loc.MMVal.

Definition Let p be a ProcAgent that reads at a move Rdp.

• If not p.cacheValid? and not p.latestWB.active?, we say that p performs a miss
read at Rdp;

• Otherwise, if p.cacheDirty? or p.latestWB.active?, we say that p performs a dirty
read at Rdp;

• Otherwise, we say that p performs a clean read at Rdp.

Definition Let p be a ProcAgent, and let wbp be a WritebackAgent for which wbp.issuer = p.

• If at a move Ip, p.cacheDirty? is updated from true to false, we say that a writeback
of p’s cache entry is initiated at Ip.

17

17Note that a writeback may be initiated by p itself (through a release) or by another ProcAgent (through a read
or write that triggers an ejection of p’s cache entry).

21

• If at a move Cp, wbp.active? is updated from true to false, we say that a writeback
of p’s cache entry is completed at Cp.

• Let Ip be a move at which a writeback of p’s cache entry is initiated and wbp

is generated. Let Cp be a move of wbp at which a writeback of p’s cache is
completed. Then we say that the writeback initiated at Ip is completed at Cp.

LCcp: Conditions on runs

We put the following restrictions on initial states of LCcp.

Init condition 6 For every ProcAgent p, not (p.cacheValid? or p.cacheDirty?).
(Initially, each cache entry must be invalid and (therefore) non-dirty.)

Init condition 7 The WritebackAgent universe is empty.
(Initially, there are no values to write back to main memory.)

The attribute ejectee must take on reasonable values during a run. We restrict attention to runs
that obey the following conditions:

Run condition 4 For every ProcAgent p, if p.ejectee.def?, then p.ejectee.proc = p.proc and
p.ejectee.cacheValid?.
(The ejectee for a processor agent p must be a ProcAgent associated with the same processor as p

and must have a valid cache entry.)

Run condition 5 For every ProcAgent p, if p.ejectee.def?, then p.ejectee.opType 6= read and
p.ejectee.opType 6= write.
(The ejectee for a given processor agent must not currently be reading or writing, since otherwise
it would need its cache entry.)

Finally, we ensure that writebacks are completed in the order in which they are initiated.

Run condition 6 Let p be a ProcAgent. Let Ip be a writeback initiation on p’s cache entry that
is completed at Cp. Let I ′p be a writeback initiation on p’s cache entry that is completed at C ′

p. If
Ip precedes I ′p, then Cp precedes C ′

p.

LCcp: Transition rules

The rules and terms associated with cache ejection and writeback are presented in Figure 12. The
ejection of a cache entry requires an invalidation of the cache entry, and a writeback if the entry is
dirty. The writeback initiation updates the cache entry’s status to non-dirty, generates a writeback
agent, and passes the cached value to the writeback agent. The writeback agent module is simple:
a writeback agent makes a single move in which it copies its value to main memory.

The rules for read, write, acquire, and release operations by processor agents are presented in
Figure 13. If there is no valid cache entry, reading involves fetching a value from the last writeback
agent, as represented by the update rule Self.cacheVal := Self.latestWB.val, or from main memory,
as represented by the update rule Self.cacheVal := Self.loc.MMVal. Writing involves storing a new
value in the cache, as represented by Self.cacheVal := Self.writeVal.

22

rule Eject cache entry of p:
p.cacheValid? := false
if p.cacheDirty? then

Initiate writeback on cache entry of p

rule Initiate writeback on cache entry of p:
p.cacheDirty? := false
extend WritebackAgent with wbp

wbp.val := p.cacheVal
wbp.active? := true
p.latestWB := wbp

module WritebackAgent:
if Self.active? then

Self.loc.MMVal := Self.val
Self.active? := false

term p.allWritebacksCompleted?:
(∀wbp: WritebackAgent: wbp.proc = p) not wbp.active?

Figure 12: LCcp rules for cache maintenance.

In the case of a read or write, a new cache entry may be needed; therefore the attribute ejectee
is checked to determine whether a cache entry is to be ejected to make room for the new one. The
rules for acquire and release operations are simple. An acquire invalidates a clean cache entry. A
release initiates a writeback of the cache entry, if it is dirty. Only when all writebacks on the cache
entry are completed does the release terminate.

The rules for write and release operations by initializer agents are given in Figure 14. The
initial write records the initializer’s value directly to main memory. As a result, the initial release
is not really needed to force the value to main memory.

5 LCcp obeys LCmm

In this section, we show that the cache protocol described by LCcp implements the abstract model
described by LCmm. In particular, we show that any value read in an execution of LCcp is also
a legal value in an equivalent execution of LCmm. In a run of LCmm, for each read operation a
set of legal readable values is computed, while in the run of LCcp a single value is read at each
read operation. We consider runs of LCmm and LCcp in which the memory operations (read, write,
acquire, release) that are performed and the order in which they are performed are identical. We
then show that for each read operation of LCcp, the single value read is in the set of readable values
computed at the corresponding move of LCmm’s run.

23

rule Read :
if not Self.cacheValid? then

if Self.allWritebacksCompleted? then Self.cacheVal := Self.loc.MMVal
else Self.cacheVal := Self.latestWB.val
Self.cacheValid? := true
if Self.ejectee.def? then Eject cache entry of Self.ejectee

Get next operation

rule Write:
Self.cacheVal := Self.writeVal
Self.cacheValid? := true
Self.cacheDirty? := true
if Self.ejectee.def? then Eject cache entry of Self.ejectee
Get next operation

rule Acquire:
if Self.loc.owner 6= Self then Self.waiting? := true
else

if Self.cacheValid? and not Self.cacheDirty? then Self.cacheValid? := false
Get next operation

rule Release :
if Self.cacheDirty? then Initiate writeback on cache entry of Self
elseif Self.allWritebacksCompleted? then

Self.loc.owner := undef
Get next operation

Figure 13: LCcp rules for read, write, acquire and release operations by processor agents.

rule InitWrite:
Self.loc.MMVal := Self.writeVal
Self.opType := release

rule InitRelease :
Self.opType := undef
Self.loc.initialized? := true

Figure 14: LCcp rules for write and release operations by initializer agents.

24

Equivalent runs of LCmm and LCcp

We start by considering what it means for runs of LCmm and LCcp to be “equivalent”. An ASM
run consists of a partial order of moves performed by agents, with some agent executing its asso-
ciated module at each move. Informally, for runs of the two models to be equivalent, the system
components (locations and processors) must be the same, and the same agents must make the same
moves in the same order. More precisely, the following conditions must be met:

• All the static information (e.g., number of processors, locations and agents) must be the same
in the two runs.

• The runs must have the same partial order of moves.

• For each move, the environment in the two runs must produce the same results for the
functions nextOpType, writeVal, and nextOwner.

We formalize the above as follows:

• Let σ be a state of LCmm or LCcp. Then σ− is the reduct of σ to the static and monitored
functions common to LCmm and LCcp (i.e., the static and monitored functions of LC0,
introduced in §2).

• A state σmm of LCmm is equivalent to a state σcp of LCcp if σ−

mm and σ−

cp are isomorphic.

Let ρ∗cp = (µ∗

cp, αcp, σ
∗

cp) be a run of LCcp. µ∗

cp is a partially ordered set (poset) of moves, αcp is a
function mapping moves to agents, and σ∗

cp is a function mapping finite initial segments of moves
to states of LCcp. αcp gives the agent performing each move, and σ∗

cp gives the state resulting from
each finite initial segment of moves.

In our proofs, we find it simpler to consider a sequential “equivalent” of a distributed run than
the run itself. As mentioned by Gurevich and Rosenzweig [14], a sequential run has two attractive
properties: each move can be seen as executing in a unique, well-defined state, and changes to
monitored functions can be seen as located in time (essentially, allowing monitored changes to be
represented as actions by hidden agents). According to the ASM Lipari guide [12], we lose no
generality by proving correctness of an arbitrary linearization of a run. Hence we consider an
arbitrary linearization ρcp= (µcp, αcp, σcp) of ρ∗cp. µcp is a linearly ordered set (i.e., sequence or
interleaving) of moves that has exactly the same moves as µ∗

cp and preserves all the ordering of µ∗

cp.
Since µcp is a sequence, every finite initial segment of µcp is a prefix of µ∗

cp, so σcp is a restriction
of σ∗

cp to finite prefixes of µ∗

cp.
Let ρmm= (µmm, αmm,Σmm) be a run of LCmm that is equivalent to LCcp, as defined below.

Informally, in the runs ρmm and ρcp the same agents perform the same operations in the same
order; only the implementation details differ. In LCmm the partial order ≺ is updated, while in
LCcp it is the cache entries and main memory locations that are updated.

Fewer moves are made in ρmm than in ρcp. First, WritebackAgents do not exist in ρmm and
so do not make moves. Second, a release in ρmm is always a single-move action; there is no
need to prepare for a release. We restrict µmm to the moves of µcp that are neither writeback-agent
moves nor release preparation moves. More formally, µmm = µcp\ ({M : WritebackAgent(αcp(M))}∪
{M :αcp(M) prepares to release at M}). Likewise, we define αmm as the restriction of αcp to moves
of µmm. Finally, for each prefix X of µmm, σmm(X) is equivalent to σcp(X). Since the only sources

25

of nondeterminism in LCmm are the monitored functions nextOpType, writeVal and nextOwner, and
these are identical in ρcp and ρmm, ρmm is unique up to isomorphism.

Lemmata: ordering of events in ρmm

An inspection of the rules in LCmm shows that the predecessors of a given event e are computed at
the time the event is issued, through firing of a rule of the form Order e after . . . and its predecessors .
Note that the firing of this rule does not add predecessors to any events other than the new event
e. Furthermore, an inspection of the rules of LCmm shows that predecessors are never removed:
once d ≺ e is updated to true for any two events d and e, d ≺ e never becomes false later. Thus
the set of predecessors of a given event is established at the time of its creation and never changes.
We formalize this notion as follows.

Claim 1 Let d and e be Events, and let E be the move at which e is issued.

• If ≺ is updated at E so that d ≺ e, then d ≺ e forever after E.

• If ≺ is not updated at E so that d ≺ e, then not d ≺ e forever after E.

Thus it makes no difference whether we speak of d ≺ e at some particular move after E or at all
moves after E. We use the following abbreviatory device: we take “d ≺ e” to mean “d ≺ e forever
after E, the move at which e is issued”.

Our first lemma asserts that ≺, in accordance with Gao and Sarkar’s intentions, is a transitive
relation.

Lemma 1 Let e and f be Events such that e ≺ f . Then for any Event g such that f ≺ g, it is also
the case that e ≺ g.

Proof. Let pf and pg be the issuers of f and g, respectively. Let Ef and Eg be the moves at which
f and g are issued, respectively. We induct on the number of successors of f issued before Eg.

• If no such successors are issued before Eg, then at Eg, f is a maximal Event (i.e., an Event
with no successors). By inspection of the rules of LCmm, there are only two ways in which g

can become a successor of f :

– pf = pg and f = pg.latestEvent at Eg;

– g is an AcquireEvent and f = pg.loc.latestRelease at Eg.

In either case, the rule Order g after f and its predecessors fires at Eg, updating ≺ so that
not only f ≺ g but also e ≺ g.

• Otherwise, assume that for every successor esucc of f issued before Eg, e ≺ esucc. Then there
are only two ways in which g can become a successor of f :

– f ≺ pg.latestEvent at Eg. Then since pg.latestEvent is a successor of f issued before Eg,
by the inductive hypothesis, e ≺ pg.latestEvent. At Eg, the rule
Order g after pg.latestEvent and its predecessors fires, updating ≺ so that not only f ≺ g

but also e ≺ g.

26

– g is an AcquireEvent and f ≺ pg.loc.latestRelease at Eg. Then since pg.loc.latestRelease is
a successor of f issued before Eg, by the inductive hypothesis, e ≺ pg.loc.latestRelease.
At Eg, the rule Order g after pg.loc.latestRelease and its predecessors fires, updating ≺
so that not only f ≺ g but also e ≺ g.

Next, we prove some basic properties of the ordering of events in ρmm. Lemma 2 states that the
events issued by a ProcAgent or InitAgent are linearly ordered by ≺; whenever a processor agent
issues two events d and e in sequence, d becomes a predecessor of e.

Lemma 2 In ρmm, let p be a ProcAgent, let dp be a p-event issued at a move Dp, and let ep be a
p-event issued at a move Ep after Dp. Then dp ≺ ep.

Proof. We induct on the number of p-events issued between Dp and Ep.

• If there are no such events issued, then p.latestEvent = dp at Ep, so at Ep the rule
Order e after d and its predecessors fires, updating ≺ so that dp ≺ ep.

• Otherwise, let lastp be the last p-event issued before Ep, at a move Lastp in the interval
(Dp, Ep). By the inductive hypothesis, we assume that dp ≺ lastp. At Lastp, p.latestEvent is
updated to lastp and is not updated in the interval (Lastp, Ep), so p.latestEvent = lastp at Ep.
The rule Order ep after lastp and its predecessors fires at Ep, updating ≺ so that lastp ≺ ep.
By Lemma 1, dp ≺ ep.

2

Lemma 3 states that release events issued on a common location are linearly ordered by ≺.

Lemma 3 In ρmm, let p and q be ProcAgents or InitAgents for which p.loc = q.loc. Let Rp be a
move at which p issues a release event rp, and let Rq be a move after Rp at which q issues a release
event rq. Then rp ≺ rq.

Proof. Let ` = p.loc = q.loc. By Run Condition 3, q can only release at Rq if q acquires in the
interval (Rp, Rq). Let Aq be the move at which the last acquire by q occurred, and let aq be the
acquire event issued at Aq. We induct on the number of release actions on ` between Rp and Aq.

• If no release actions on ` are performed in this interval, then at Rp, `.latestRelease is updated
to rp and is not updated in the interval (Rp, Aq). Thus at Aq, `.latestRelease = rp, so q

updates ≺ at Aq so that rp ≺ aq.

• Otherwise, let rlast be the last release event on ` issued before Rq, at a move Rlast in the in-
terval (Rp, Rq). By the inductive hypothesis, we assume that rp ≺ rlast. By Run Condition 3,
Rlast precedes Aq. At Rlast, `.latestRelease is updated to rlast and is not updated in the interval
(Rlast, Aq), so `.latestRelease = rlast at Aq. The rule Order aq after rlast and its predecessors
fires at Aq, updating ≺ so that rlast ≺ aq. By Lemma 1, rp ≺ aq.

In either case, we have that rp ≺ aq. By Lemma 2, aq ≺ rq, so by Lemma 1, rp ≺ rq. 2

The following lemma concerns how events issued by different agents in ρmm can become ordered
with respect to each other. This is important in determining whether a write event wp by one agent

27

p is readable by another agent q (where p and q operate on a common location). In particular,
it is necessary to determine whether wp precedes q’s latest event (according to ≺). If not, wp is
readable; if so, wp is only readable if there is no write event intervening between wp and q’s latest
event. Lemma 4 asserts that

• a p-write becomes a predecessor of a q-event if p releases after the write and q then acquires;

• this is the only way that a p-write can come to be ordered with respect to a q-event.

Lemma 4 In ρmm, let p be a ProcAgent or InitAgent, and let q be a ProcAgent for which p 6= q but
p.loc = q.loc. Let Wp be a move at which p issues a WriteEvent wp, and let Rdq be a move after
Wp at which q reads. Then wp ≺ q.latestEvent at Rdq if and only if

• p issues a ReleaseEvent rp at a move Rp in the interval (Wp, Rdq) and

• q issues an AcquireEvent aq at a move Aq in the interval (Rp, Rdq).

Proof. Let ` = p.loc = q.loc.

(if) By Lemma 2, wp ≺ rp. Let Rlast be the move of the last release on ` in the interval [Rp, Aq).
At Rlast, a ReleaseEvent rlast is created, and `.latestRelease is updated to rlast. By Lemma 3,
rp ≺ rlast, so by Lemma 1, wp ≺ rlast. In the interval (Rlast, Aq), `.latestRelease is not
updated, so `.latestRelease = rlast at Aq. Thus rlast ≺ aq, so by Lemma 1, wp ≺ aq. By
Lemma 2, aq ≺ q.latestEvent at Rdq, so by Lemma 1, wp ≺ q.latestEvent at Rdq.

(only if) Let Aq be the first move in the interval (Wp, Rdq) at which a q-event is issued and made
a successor of wp; call the new q-event aq. If aq is a WriteEvent or ReleaseEvent, q fires the
rule Order aq after q.latestEvent and its predecessors , updating ≺ so that aq succeeds only
the q-event q.latestEvent and its predecessors. But since wp precedes no q-event at Aq, aq

cannot be a WriteEvent or ReleaseEvent; it must be an AcquireEvent. So q must acquire at Aq.

Let As be the first move in the interval (Wp, Aq] at which wp is made a predecessor of an s-
event for any ProcAgent s 6= p. By Claim 1, s must issue an event as at As. If as is a WriteEvent
or ReleaseEvent, s fires the rule Order as after s.latestEvent and its predecessors , updating ≺
so that as succeeds only the s-event s.latestEvent and its predecessors. Since wp precedes
no s-event at As, as cannot be a WriteEvent or ReleaseEvent; it must be an AcquireEvent.
Therefore at As, it must be the case that s acquires and wp ≺ `.latestRelease. As is the first
move at which wp becomes a predecessor of a non-p-event, so at As, any successor of wp

(including `.latestRelease) must have been issued by p. Therefore `.latestRelease.issuer = p.
This is only possible if p releases at a move Rp in the interval (Wp, As).

2

Lemmata: Properties of ρcp

In Gao and Sarkar’s description of the cache protocol, a cache entry can be in one of three states:
invalid (i.e., not valid, not dirty), clean (i.e., valid, not dirty), or dirty (i.e., valid, dirty). We
must show that the (not valid, dirty) state never arises in our model. Initially, the cacheValid? and
cacheDirty? attributes evaluate to false for all processor agents. An inspection of the rules of LCcp

28

shows that cacheDirty? is updated to true only in a write, when cacheValid? is also updated to true.
Furthermore, cacheValid? is updated to false only in an ejection, in which case cacheDirty? is either
already false or updated to false. Therefore we can make the following claim.

Claim 2 At every move of ρcp in which p.cacheDirty? for a ProcAgent p, it is also the case that
p.cacheValid?.

Lemma 5 states that when a processor agent performs a release, any write it has performed previ-
ously has been written back.

Lemma 5 In ρcp, let Wp be a write by a ProcAgent p, followed by a release Rp by p. Then a
writeback of p’s cache entry is initiated and then completed in the interval (Wp, Rp).

Proof. At Wp, p.cacheDirty? is updated to true, but at Rp, not p.cacheDirty?, so there must be a
writeback of p’s cache entry initiated in (Wp, Rp) to update p.cacheDirty? to false. Let Ip be the
first such writeback initiation, and let wbp be the WritebackAgent generated. At Ip, wbp.active? is
updated to true, but at Rp, not wbp.active?, so in (Ip, Rp) there must be a writeback by wbp to
update wbp.active? to false. 2

Lemmata: properties of read operations

Lemmata 6–8 concern the three types of read operation in ρcp: dirty, miss, and clean. For a read
operation of any type in ρcp, it is established that the value read is one of the (possibly many)
values read at the corresponding move of ρmm.

Lemma 6 In ρcp, let RdD
p be a move at which a ProcAgent p performs a dirty read of a Value v.

Then in ρmm, p also reads v at RdD
p .

Proof. First, consider ρcp. We start by tracing the value v back to a particular write Wq. There
are two circumstances under which a read can be dirty:

• At RdD
p , p.cacheDirty?. In this case, p reads from its cache, so p.cacheVal = v at RdD

p .

Initially, not p.cacheDirty?, so p must write before RdD
p , updating p.cacheDirty? to true and

updating p.cacheVal. Let Wp be the last such write.

We show that the value written at Wp is v. There is no writeback of p’s cache entry initiated
in the interval (Wp, RdD

p), since it would update p.cacheDirty? to false and there is no write by

p in (Wp, RdD
p) to update p.cacheDirty? back to true. Since p.cacheDirty? is (Wp, RdD

p), there

is no ejection of p’s cache entry in (Wp, RdD
p), so p.cacheValid? in this interval. Therefore any

read by p in the interval (Wp, RdD
p) leaves p.cacheVal unchanged. Since p does not write in

the interval (Wp, RdD
p), p.cacheVal is unchanged in the interval, so the value written at Wp is

v.

• At RdD
p , not p.cacheValid?, but p.latestWB.active?. In this case, p reads a value from its last

writeback agent, so at RdD
p , p.latestWB.val = v. Let wbp be p.latestWB at RdD

p . Before RdD
p

there is a writeback initiation Ip of p’s cache entry, generating wbp and updating wbp.active?
to true, and an ejection of the entry (updating p.cacheValid? to false), but the writeback is

29

not completed before RdD
p (since its completion would update wbp.active? to false). Let Wp

be the last write by p before Ip. (Since p.cacheDirty? at Ip, there must be such a write.)

We show that the value written at Wp is v. At Ip, wbp.val is updated to p.cacheVal and is
unchanged in (Ip, RdD

p), so p.cacheVal = v at Ip. In (Wp, Ip), p.cacheDirty?, so by Claim 2,
p.cacheValid?; hence any read by p in (Wp, Ip) leaves p.cacheVal unchanged. Thus the value
written at Wp is v.

We now show that p does not write in (Wp, RdD
p). Assume to the contrary that p does write

at W ∗

p in (Wp, RdD
p). Clearly, W ∗

p is not in (Wp, Ip), since Wp is p’s last write before Fp. Then

W ∗

p is in (Ip, RdD
p). At W ∗

p , p.cacheDirty? is updated to true, but at RdD
p , not p.cacheDirty?,

so there must be a writeback of p’s cache entry at I ∗

p in (W ∗

p , RdD
p) to update p.cacheDirty?

to false. But at RdD
p , p.latestWB = wbp, and a writeback initiation at I∗

p would update
p.latestWB to a value other than wbp. So there can be no such I∗p .

Since p does not write in (Wp, RdD
p), the value written at Wp is v.

Now consider ρmm. We show that in this run, p also reads v at RdD
p . Let wp be the WriteEvent

issued at Wp; then wp.val = v. Since p does not write in the interval (Wp, RdD
p), at RdD

p there

is no p-WriteEvent w∗

p � wp. Then not readOK?(wp, p) at RdD
p only if, for some q 6= p, there is a

q-WriteEvent wq such that wp ≺ wq ≺ p.latestEvent. By Lemma 4, this is the case only if p releases
and then q acquires in the interval (Wp, RdD

p).

Returning to ρcp we show that p does not release in (Wp, RdD
p). Assume to the contrary that

p does release at R∗

p in (Wp, RdD
p).

• If p reads from its cache, then at RdD
p , p.cacheDirty?, but at R∗

p, not p.cacheDirty?, so there

must be a write in (R∗

p, RdD
p) to update p.cacheDirty? back to true. But since there is no such

write, there can be no such R∗

p in (Wp, RdD
p).

• If p reads from its last writeback agent, then at Wp, p.cacheDirty? is updated to true, and
there is no writeback of p’s cache entry initiated in (Wp, Ip) to update p.cacheDirty? to false,
so p.cacheDirty? in (Wp, Ip]. Since not p.cacheDirty? at R∗

p, R∗

p is not in (Wp, Ip]. At Ip,

wbp.active? is updated to true, and there is no writeback completion by wbp in (Ip, RdD
p), so

wbp.active? in (Ip, RdD
p]. Therefore, R∗

p is not in (Ip, RdD
p). Hence R∗

p can occur nowhere in

(Wp, RdD
p).

Finally, we return to ρmmṠince p does not release in (Wp, RdD
p), readOK?(wp, p) at RdD

p , so p

reads v. 2

Lemma 7 In ρcp, let RdM
p be a move at which a ProcAgent p performs a miss read of a Value v.

Then in ρmm, p also reads v at RdM
p .

Proof. Let ` be p.loc. First, consider ρcp. At RdM
p , `.MMVal = v and not p.cacheValid?. We start

by tracing the value v back to a particular write Wq. There are two cases:

• If there is a writeback to ` completed before RdM
p , let Cq be the move at which the last such

writeback was completed, let wbq be the WritebackAgent that performs the writeback, and

30

let q be the ProcAgent for which wbq.proc = q. At Cq, `.MMVal is updated to wbq.val, and
`.MMVal is unchanged in the interval (Cq, RdM

p) (since Cq is the last writeback to ` before

RdM
p), so wbq.val = v at Cq.

Let Iq be the writeback initiation that generates wbq. At Iq, wbq.val is updated to q.cacheVal.
In (Iq, Cq), wbq.val is not updated, so q.cacheVal = v at Iq. Let Wq be the last write by q be-
fore Iq. (Since q.cacheDirty? at Iq, there must be such a write.) In the interval (Wq, Iq),
q.cacheDirty? and so by Claim 2, q.cacheValid?; hence any read by q in (Wq, Iq) leaves
q.cacheVal unchanged. Since there is no write by q in (Wq, Iq), the value written at Wq

is v.

• If there is no writeback to ` before RdM
p , let q be the InitAgent of `, let Wq be the write by

q, and let Cq be the release by q. Since there is no writeback to ` in the interval (Wq, RdM
p),

`.MMVal is unchanged in this interval, so the value written at Wq is v.

Now consider ρmm. We show that in this run, p also reads v at RdM
p . Let wq be the WriteEvent

issued at Wq; then wq.val = v. We show that readOK?(wq, p) at RdM
p . For readOK?(wq, p) to be

false at RdM
p , there must be a WriteEvent w∗

s such that wq ≺ w∗

s � p.latestEvent. Assume that such
a w∗

s exists; let s be the agent issuing w∗

s , and let W ∗

s be the move at which s issues w∗

s . We have
the following cases:

• q = s = p (i.e., p issues wq and then issues another WriteEvent w∗

s before RdM
p). For

readability, let Wp = Wq, W ∗

p = W ∗

s , Ip = Iq, Cp = Cq, and wbp = wbq. Then W ∗

p must be in

the interval (Wp, RdM
p).

Returning to ρcp we show that W ∗

p cannot exist. Assume to the contrary that p does write at

W ∗

p in (Wp, RdM
p). Since there is no write by p in (Wp, Ip), W ∗

p must be in (Ip, RdM
p). Such

a write would update p.cacheDirty? to true, but not p.cacheDirty? at RdM
p . So there must be

a writeback of p’s cache entry initiated in the interval (W ∗

p , RdM
p), updating p.cacheDirty? to

false. Let I∗p be the last such writeback initiation, generating a WritebackAgent wb∗p. Then

wb∗p = p.latestWB at RdM
p . At I∗p , wbp.active? is updated to true, but at RdM

p , not wbp.active?,

so wbp must write back at C∗

p in the interval (I∗p , RdM
p), to update wbp.active? back to false.

Since Ip precedes I∗p , C∗

p is in the interval (Cp, RdM
p) (by Run Condition 6). But since Cp is

the last writeback to ` before RdM
p , this is impossible.

• q = s 6= p (i.e., q issues another WriteEvent w∗

s before RdM
p). Let W ∗

q = W ∗

s , and let w∗

q = w∗

s .

Since w∗

q ≺ p.latestEvent at RdM
p , by Lemma 4 q releases and then p acquires in the interval

(W ∗

q , RdM
p).

Returning to ρcp we show that W ∗

q cannot exist. Assume to the contrary that q does write
at W ∗

q in (Wq, Rq). By Lemma 5, there must be a writeback of q’s cache entry initiated in
(Wq, Rq). Since Iq is the first such writeback initiation after Wq, Iq must be in (Wq, Rq).
Since Wq is q’s last write before Iq, W ∗

q must be in (Iq, Rq). By Lemma 5, there must be
a writeback initiation of q’s cache entry at I∗

q in (W ∗

q , Rq), followed by a completion at C∗

q

in (I∗q , Rq). Since Iq precedes I∗q , C∗

q must be in (Cq, Rq) (by Run Condition 6). But this is

impossible, since Cq is the completion of the last writeback to ` before RdM
p .

31

• q 6= s = p (i.e., p issues a WriteEvent w∗

s before RdM
p). Let W ∗

p = Ws. Since wq ≺ w∗

p at

RdM
p , by Lemma 4 q releases and then p acquires in the interval (Wq,W

∗

p).

Returning to ρcp we show that W ∗

p cannot exist. Assume to the contrary that p does write

at W ∗

p in (Ap, RdM
p).

First, we show that Cq must be in the interval (Wq, Rq). By Lemma 5, there must be a
writeback of p’s cache entry initiated and completed in the interval (Wq, Rq). Since Iq is the
first writeback initiation of q’s cache entry after Wq and Cq is the corresponding writeback
completion, it must be that Cq is in (Wq, Rq).

Next, we show that Cq must be in the interval (W ∗

p , RdM
p). At W ∗

p , p.cacheDirty? is updated

to true, but at RdM
p , not p.cacheDirty?, so there must be a writeback initiation of p’s cache

entry in (Wp, RdM
p) to update p.cacheDirty? to false. Let I∗

p be the last such writeback

initiation, and let wb∗p be the WritebackAgent generated. Then at RdM
p , p.latestWB = wb∗p.

At I∗p , wb∗p.active? is updated to true, but at RdM
p , not wb∗p.active?, so wb∗p must write back

in (I∗p , RdM
p). Since Cq is the completion of the writeback to ` before RdM

p , Cq must be in

(I∗p , RdM
p).

But since Rq precedes W ∗

p , Cq cannot be in both (Wq, Rq) and (W ∗

p , RdM
p).

• q 6= s 6= p (i.e., some ProcAgent other than p or q issues a WriteEvent w∗

s before RdM
p).

Since wq ≺ w∗

s , by Lemma 4, q releases and then s acquires in the interval (Wq,W
∗

s).
Since w∗

s ≺ p.latestEvent at RdM
p , by Lemma 4, s releases and then p acquires in the interval

(W ∗

s , RdM
p).

Returning to ρcp we show that W ∗

s cannot exist. Assume to the contrary that s does write
at W ∗

s in (As, Rs).

First, we show that Cq must be in the interval (Wq, Rq). By Lemma 5, there must be a
writeback of q’s cache entry that is initiated and completed in the interval (Wq, Rq). Since
Iq is the first writeback initiation of q’s cache entry after Wq and Cq is the corresponding
writeback completion, it must be that Cq is in (Wq, Rq).

Next, we show that Cq must be in the interval (W ∗

s , Rs). By Lemma 5, there must be a
writeback of s’s cache entry that is initiated and completed in the interval (W ∗

s , Rs). Since
Cq is the completion of the last writeback to ` before RdM

p , it must be that Cq is in (W ∗

s , Rs).

But since Rq precedes W ∗

s , Cq cannot be in both (Wq, Rq) and (W ∗

s , Rs).

Finally, we return to ρmmṠince W ∗

s does not exist in any case, readOK?(w, p) at RdM
p , so p reads

v. 2

Lemma 8 In ρcp, let RdC
p be a move at which a ProcAgent p performs a clean read of a Value v.

Then in ρmm, p also reads v at RdC
p .

Proof. First, consider ρcp. At RdC
p , p.cacheVal = v. For the read to be clean, it must be the case

that p.cacheValid? and not p.cacheDirty?. Initially, not p.cacheValid?, so this is only possible if one
of the following operations has occurred earlier:

• A miss read by p (which updates p.cacheValid? to true and p.cacheDirty? to false).

32

• A writeback of p’s cache entry (which is only initiated if p.cacheValid?, and which updates
p.cacheDirty? to false) resulting from a release, that therefore does not eject the entry (leaving
p.cacheValid? unchanged).

Let MIp be the move of the last such operation (either a miss read or a writeback initiation) before
RdC

p . Then in the interval (MIp, RdC
p):

• any read by p leaves p.cacheVal unchanged, since p.cacheValid?;

• p does not write, since not p.cacheDirty? at RdC
p . A write by p in the interval (MIp, RdC

p)

would update p.cacheDirty? to true, and there is no writeback of p’s cache entry in (MIp, RdC
p)

to update p.cacheDirty? to false (since MIp is the last such writeback).

Thus p.cacheVal is unchanged in the interval (MIp, RdC
p).

MIp is either a miss read move or a writeback initiation move. We consider each possibility in
turn.

• If MIp is a miss read, then we give MIp a more descriptive name: let RdM
p = MIp. In ρcp, p

reads v at RdM
p .

Now consider ρmm. We show that in this run, p also reads v at RdC
p . By Lemma 7, p reads

v at RdM
p . Hence there is a WriteEvent w such that w.val = v and readOK?(w, p) at RdM

p .

Since readOK?(w, p) at RdM
p , one of the following must be true:

– At RdM
p , w 6≺ p.latestEvent. If not readOK?(w, p) at RdC

p , then w ≺ p.latestEvent at RdC
p .

By Lemma 4, this is true only if p acquires in the interval (RdM
p , RdC

p).

– At RdM
p , w � p.latestEvent, but there is no write event w∗ for which w ≺ w∗ � p.latestEvent.

If not readOK?(w, p) at RdC
p , then there is a WriteEvent w∗ such that w ≺ w∗ ≺ p.latestEvent

at RdC
p . Since p does not write in the interval (RdM

p , RdC
p), w∗ cannot be a p-write. So

by Lemma 4, p must acquire in the interval (RdM
p , RdC

p).

Returning to ρcp we show that p does not acquire in (RdM
p , RdC

p). Assume to the contrary

that p does acquire at A∗

p in (RdM
p , RdC

p). Then at A∗

p, p.cacheValid? is updated to false, but

p.cacheValid? at RdC
p , so there must be a write or miss read by p in (A∗

p, RdC
p). But as shown

earlier, this is not the case.

Finally, we return to ρmmṠince p does not acquire in the interval (RdM
p , RdC

p), readOK?(w, p)

at RdC
p , so p reads v.

• If MIp is a writeback initiation move, then let Ip = MIp. At Ip, p.cacheVal = v.

Let Wp be the last write operation by p (updating p.cacheDirty? to true) before Ip. Since Ip is
a writeback initiation move, p.cacheDirty? at Ip. Then in the interval (Wp, Ip), p.cacheDirty?,
so by Claim 2, p.cacheValid?; hence any read by p leaves p.cacheVal unchanged. Thus the
value written at Wp is v.

Now consider ρmm. We show that in this run, p also reads v at RdC
p . Let wp be the write

event issued at Wp; then wp.val = v. At RdC
p , not readOK?(wp, p) only if there is a write

event w∗ � wp that precedes p.latestEvent.

33

Returning to ρcp, we show that w∗ cannot exist. Assume to the contrary that such a w∗ exists;
let W ∗ be the move at which w∗ is issued. Since p does not write in the interval (Wp, RdC

p),
w∗ is not a p-write event. There are two cases:

– W ∗ is in the interval (Wp, Ip). By Lemma 4, such a W ∗ exists only if p releases in the
interval (Wp,W

∗).

Returning to ρcp we show that p cannot release in the interval (Wp,W
∗). First, note

that in this interval, no writeback of p’s cache entry is initiated, since it would update
p.cacheDirty? to false, and there is no write in the interval to update it back to true.

Assume to the contrary that p does release at R∗

p in (Wp, Ip). By Lemma 5, in (Wp, R
∗

p)
there must be a writeback of p’s cache entry. But as shown above, there is no such
writeback initiated.

– W ∗ is in the interval (Ip, RdC
p). By Lemma 4, such a w∗ exists only if p acquires in the

interval (W ∗, RdC
p).

Returning to ρcp we show that p does not acquire in (Ip, RdC
p). Assume to the contrary

that p does acquire at A∗

p in (RdM
p , RdC

p). Then at A∗

p, p.cacheValid? is updated to false,

but p.cacheValid? at RdC
p , so there must be a write or miss read by p in (A∗

p, RdC
p). But

as shown earlier, this is not the case.

Finally, we return to ρmmṠince w∗ does not exist, readOK?(wp, p), so p reads v at RdC
p .

2

Theorem: LCcp obeys LCmm

Theorem 1 Let Rdp be a move of ρcp at which a ProcAgent p reads a Value v. Then at Rdp in
ρmm, p also reads v.

Proof. Immediate from Lemmata 6–8. 2

6 LCcp is strictly stronger than LCmm

We now show that LCcp disallows certain behavior allowed by LCmm. In particular, we give an
execution of LCmm in which a particular value is read; we then show that this value cannot be read
in any equivalent run of LCcp.

Consider a run ρmm of LCmm with the following properties. In ρmm, two distinct processor
agents p and q operate on a common location `, and no other processor agents operate on `. (Other
processor agents may perform operations on locations other than `.) The operations of p and q

occur in the following sequence:

Ap: Acquire by p.

Wp: Write by p, that writes the value 1.

Rp: Release by p.

Wq: Write by q, that writes the value 2.

34

Aq: Acquire by q.

Rdq: Read by q.

First we show that at Rdq, 1 is a readable value, according to LCmm. (Note that 2 is also a readable
value.)

Lemma 9 In ρmm, q reads the Value 1 at Rdq.

Proof. Let wp be the WriteEvent generated at Wp. We show that q reads wp at Rdq. At Rdq,
not readOK?(wp, q) only if there is a WriteEvent w∗ such that wp ≺ w∗ ≺ q.latestEvent. Assume
that there is such a w∗. Since the only write to ` after Wp is Wq, w∗ must be generated at Wq.
But since q does not acquire in the interval (Wp,Wq), not wp ≺ q.latestEvent at Wq by Lemma 4,
so not wp ≺ w∗. Hence there is no such w∗, so readOK?(wp, q) at Rdq and therefore q reads the
Value 1. 2

Next, we show that in any equivalent run of LCcp, 2 is the value read at Rdq. (Note that in any
run of LCcp, a processor agent reads only a single value at a time, so q does not read 1 at Rdq.)

Lemma 10 Let ρcp be any run of LCcp equivalent to ρmm. Then in ρcp, q reads the Value 2 at
Rdq.

Proof. At Wq, q.cacheValue is updated to 2, q.cacheValid? is updated to true, and q.cacheDirty? is
updated to true. There are two possibilities:

• A writeback of q’s cache entry is initiated at Iq in the interval (Wq, Rdq). Since q does not
release in (Wq, Rdq), Iq must be an ejection of q’s cache entry (due to a read or write by
some ProcAgent other than p or q). Since q does not read or write in (Wq, Iq), q.cacheVal is
unchanged in the interval, so q.cacheVal = 2 at Iq. At Iq, a WritebackAgent wbq is generated,
wbq.val is updated to q.cacheVal = 2, wbq.active? is updated to true, q.latestWB is updated to
wbq, and q.cacheDirty? is updated to false.

There is no writeback of q’s cache entry initiated in the interval (Wq, Iq); any such writeback
would update q.cacheDirty? to false, but q.cacheDirty? at Iq and there is no write by q in
(Wq, Iq) to update q.cacheDirty? back to true. Therefore q.latestWB = wbq at Rdq. Further-
more, by Lemma 5, a writeback of p’s cache entry is initiated and completed in the interval
(Wp, Rp), so not p.cacheDirty? at Rp. Since p does not read or write in (Rp, Rdq), p.cacheDirty?
is unchanged in the interval, so there is no writeback of p’s cache entry.

There are two possibilities:

– wbq completes the writeback at Cq in (Iq, Rdq). At Cq, `.MMVal is updated to 2, and
wbq.active? is updated to false. Since there is no writeback by p or q initiated in (Iq, Rdq),
there is no writeback completion in (Cq, Rdq), so `.MMVal is unchanged in this interval.
Thus at Rdq, not q.cacheValid?, and not wbq.active?, so q reads the Value `.MMVal = 2.

– wbq does not complete the writeback in (Iq, Rdq). Then at Rdq, wbq.active? and
q.latestWB = wbq, so q reads the Value wbq.val = 2.

35

• No writeback of q’s cache entry is initiated in (Wq, Rdq). Then q.cacheDirty? is unchanged in
(Wq, Rdq), so q.cacheDirty? at Rdq. By Claim 2, q.cacheValid? at Rdq, so q reads the Value
q.cacheVal at Rdq. Since q performs no read or write in (Wq, Rdq), q.cacheVal is unchanged
in the interval, so q.cacheVal = 2 at Rdq.

Theorem: LCcp is strictly stronger than LCmm

Theorem 2 There exists a run ρmm of LCmm in which a read operation Rd returns a Value v that
cannot be returned by the same read operation in any equivalent run of LCcp.

Proof. Consider the run ρmm described earlier in this section. By Lemma 9, q reads the Value 1
at Rdq in ρmm. But by Lemma 10, q reads the Value 2 (and therefore does not read 1) at Rdq in
any run of LCcp equivalent to ρmm. 2

7 Conclusion

In this paper, we have presented formal specifications for the LC memory model and for the LC
cache protocol. These specifications, contrary to the descriptions presented in [9] or [10], have been
expressed rigorously using the formal ASM specification language. Using these formal specifications
and the notions of sequential and distributed runs, we have then been able to show that the protocol
indeed satisfies the model. In other words, we have shown that, using the LC protocol, any value
returned by a read operation is a value legal according to the LC memory model.

In its current state, the ASM methodology has only a rudimentary notion of automated veri-
fication compared to process algebra or other techniques. For example, using the ASM approach,
it is not currently possible to formally show the equivalence of the two models LCmm and LCcp

by finding an appropriate bisimulation relation between them, as is possible with process algebra
descriptions [18]. An interesting area of further study would thus be to explore the use of techniques
such as model checking to automate portions of the proof. Model checking of ASM specification is
an active area of research [4].

Another interesting question to explore would be to determine whether the protocol is as strong,
or weaker, than the memory model, that is, are there some events allowed by the memory model
which are precluded by the protocol? Finally, another interesting area of future research would be
to express other weak memory models using the same approach and see how these models, and
their associated protocols, differ/compare with the LC memory model.

A Abstract state machines

In this appendix, we provide a brief introduction to ASM; for further description and discussion,
consult the standard ASM language guides [12, 13]. For illustrative purposes, we include a running
example: the well known algorithm of Euclid [7, 16] for finding the greatest common divisor of two
natural numbers.

A.1 Vocabulary

As in classical (more exactly, first-order) logic, a vocabulary is a collection of function and relation
names, with each name assigned a natural number as its arity. Deviating slightly from classical

36

tradition, we view relation names as special function names (called predicates). We consider only
vocabularies that contain (at least) the nullary (0-ary) predicates true and false, the nullary function
name undef, the equality predicate and the standard Boolean connectives treated as predicates.
Since these names appear in each vocabulary, they are usually omitted when a vocabulary is
described. In fact, the vocabulary of an ASM is often given implicitly, as the collection of those
function names that occur in the program of the ASM.

For our implementation of Euclid’s algorithm we define a vocabulary Υ0 which contains (in
addition to the obligatory names) the nullary function names mode, Compute, Final, 0, 1, left, right,
output, the unary function name Nat, and a binary function name mod.

We use these function names in the following way. The ASM starts in Compute mode and
continues executing until it is in Final mode; the current mode of the ASM is given by mode.
Euclid’s algorithm requires two variables for storing natural numbers; initially, these variables
contain the two numbers for which the user wishes to compute the greatest common divisor. These
variables are represented by left and right. The final output of the algorithm is given by output.
Finally, we use Nat to represent the set of natural numbers, 0 and 1 to represent the natural
numbers 0 and 1, and mod to represent the remainder function defined over the natural numbers.

A.2 States and updates

For those familiar with classical logic, we can say that a state S of a vocabulary Υ is a structure of
vocabulary Υ where the interpretations of the obligatory names satisfy the standard constraints; in
particular, the elements (which interpret) true and false are distinct, and any Boolean connective
has value false if at least one of its arguments is non-Boolean. In addition, the only possible values
of (the interpretation of) any predicate are true and false.

In other words, S consists of a nonempty set X, called the basic set of S, and an interpretation
of each function name in Υ over X. A r-ary function name is interpreted as a r-ary function from
Xr to X. Intuitively, (the interpretation of) undef represents an undefined value and is used to
represent partial functions. While in principle every basic function f (i.e., the interpretation of
every function name “f”) in the state is total, we usually define the domain for f and then set
its value to undef for every tuple outside its domain. We think of a basic relation R (i.e., the
interpretation of predicate R) as the set of tuples where R “is true” (i.e., takes the value true).
This explains why the default value of Boolean connectives is false rather than undef. Some basic
unary relations may be called universes and used to define domains of basic functions.

To continue our example, we describe a class K0 of states S of vocabulary Υ0 mentioned above.
The members of K0 are the valid initial states of our implementation of Euclid’s algorithm. The
basic set of S consists of the natural numbers together with three elements (which interpret) true,
false and undef. The function 0 means (i.e., is interpreted by) the number zero, the function 1
means one, and the function mod is (interpreted by) the standard arithmetic function (e.g., seven
mod three equals one). The functions Compute and Final mean zero and one respectively. The
function mode means zero. The functions left and right are natural numbers. The function Nat
represents the universe of natural numbers; it is (interpreted by) the predicate which holds for all
and only the elements of the basic set that are natural numbers.

We commonly associate each function with a profile, indicating the intended domain and range
of each function. For instance, a function with profile Nat → Nat maps elements of Nat to elements
of Nat. Function profiles are not types; rather, they are an informal means to illustrate how each
function is used. We represent the vocabulary Υ0 in tabular form, as shown in Figure 15.

37

Function Profile/Description

0, 1 Nat
The natural numbers zero and one.

Compute, Final Nat
Execution modes.

mode Nat
Current execution mode.

left, right Nat
Working values.

output Nat
Output value.

x mod y Nat × Nat → Nat
The arithmetic modulo operator.

Figure 15: Functions for sequential ASM.

An update is an atomic state change, that is, a change in the interpretation of a single function
name for a single tuple of arguments. We formalize the notion of an update as follows. A location
in a state S is a pair ` = (f, x̄), where f is an r-ary function name in the vocabulary of S and x̄

is an r-tuple of elements (of the basic set) of S. Then an update of S is a pair (`, y), where ` is a
location of S and y is an element of S. To fire an update (`, y) at a state S, bind y to the location
` (i.e., redefine S to map ` to y).

To avoid expanding the basic set of the current state of a program when modeling the dynamic
creation of elements, it may be convenient to endow states with a reserve. Formally, an element a

is in the reserve if (1) every basic relation returns false when given a as one of its arguments; (2)
every other basic function returns undef when given a as one of its arguments; (3) no basic function
returns the element. When a new element is needed, it is simply taken from the reserve.

A.3 Terms and transition rules

Terms of a given vocabulary Υ are defined inductively. For succinctness, we define the following
within the same inductive definition: i) the class of terms; ii) the (sub)class of Boolean terms; iii)
the function [] that gives the value [t]S of a term t given an Υ-state S and a mapping V alS of the
variables of t to elements of S.

• Any variable v is a term.

[v]S is given by the mapping V alS , i.e., V alS(v).

• If f is an r-ary function name and t1, . . . , tr are terms, then f(t1, . . . , tr) is a term.

If f is a predicate, then f(t1, . . . , tr) is a Boolean term.

[f(t1, . . . , tr)]S is defined as fS([t1]S , . . . ,[tr]S), where fS is the interpretation of f in S.

38

• If g(v) and t(v) are Boolean terms where v is a variable, then (∃v : g(v))t(v) and (∀v : g(v))t(v)
are Boolean terms.

The values of the quantified terms are defined in the expected way, e.g., [(∃v : g(v))t(v)]S is
true if there exists a value v such that [g(v)]S and [t(v)]S are both true.

We use (∀v : U : g(v))t(v), where U is a universe name, to abbreviate (∀v: U(v) and g(v)) t(v).

One may use infix notation for binary functions. For example, left mod right is a term in the
vocabulary Υ0. Postfix notation can also be used, for example, we use t.undef?, where t is a term,
as an abbreviation for t = undef.

An ASM performs state updates through transition rules. For a given state S, a rule gives rise
to a set of updates as follows.

• If R is an update instruction, of the form f(t1, . . . , tr) := t0, where f is an r-ary function
name and each ti is a term, then the update set of R at S contains a single update (`, y),
where y =[t0]S and ` = (f, ([t1]S , . . . ,[tr]S)). To execute R at S, set fS([t1]S , . . . ,[tr]S), where
fS is the interpretation of f in S, to [t0]S .

• If R is a conditional rule, of the form

if g0 then R0

...
elseif gn then Rn

endif

where g0 . . . gn (the guards) are Boolean terms and R0 . . . Rn are rules, then the update set
of R at S is the update set of Ri at S, where i is the minimum value for which gi evaluates
to true. If all gi evaluate to false, then the update set of R at S is empty. To execute R at S,
execute Ri if it exists; otherwise do nothing.

If there is a “default” rule Rn to execute when all guards g0 . . . gn−1 fail, we use the following
abbreviation:

if g0 then R0 abbreviates if g0 then R0

elseif g1 then R1 elseif g1 then R1

...
...

elseif gn−1 then Rn−1 elseif gn−1 then Rn−1

else Rn elseif true then Rn

In a situation where different actions are taken based on the value of a term t0, we use the
following abbreviation:

case t0 of abbreviates
t1: R1 if t0 = t1 then R1 endif

...
...

tn: Rn if t0 = tn then Rn endif
endcase

Finally, for brevity we often omit the “end” keywords such as endif, using indentation to
indicate the intended level of nesting.

39

• If R is an import rule, of the form

import v

R0

endimport

where v is a variable name and R0 is a rule, then the update set of R at S is the update set
of R0 at S(v → a), where a is a reserve element. To execute R at S, execute R0 at S(v → a).
When an imported element is to be added to a universe U , we use the following abbreviation:

extend U with v abbreviates import v

R0 U(v) := true
endextend R0

endimport

• If R is a block rule, of the form

do-inparallel
R0

...
Rn

enddo

where R0 . . . Rn are transition rules, then the update set of R at S is the union of the update
sets of each Ri. To execute R at S, execute all Ri simultaneously. We often abbreviate such
a rule as R0 . . . Rn, omitting the keywords.

• If R is a for-all rule, of the form

do-forall v: g

R0

enddo

where v is a variable name, g is a Boolean term and R0 is a rule, then the update set of R is
the union of the update sets of R0 at all S(v → a), where a is any element of S for which g

evaluates to true at S(v → a). To execute R at S, execute R0 at S(v → a) for all such a. We
also use the following abbreviation:

do-forall v: U : g abbreviates do-forall v: U(v) and g

R0 R0

enddo enddo

For certain rules (more specifically, certain rules with block or for-all components), execution may
result in updates of the same location to different values. Obviously, such updates cannot be
performed simultaneously. If an update set contains updates (l, x) and (l, y), where x 6= y, then it
is inconsistent ; otherwise it is consistent. To fire a consistent update set at a given state, fire all
its members simultaneously. To fire an inconsistent update set, do nothing.

To reduce the size of our rules and avoid repetition, we often give names to certain terms and
rules which appear within (larger) rules. We then use the name of a term/rule rather than the
term/rule itself when it appears within a rule. We also use parameterized terms and rules. To
instantiate a parameterized term or rule, give its name with each parameter name replaced by

40

rule Compute GCD :
if mode = Compute then

if right = 0 then
output := left
mode := Final

else
left := right
right := left mod right

Figure 16: Rule for sequential ASM.

an ASM term/rule. The result of the instantiation is achieved by replacing each instance of a
parameter name with the corresponding term/rule.

For our implementation of Euclid’s algorithm, we define a rule named Compute GCD . The rule
is given in Figure 16. Given appropriate initial values associated with left and right and an initial
mode defined as Compute, Compute GCD finds the greatest common divisor of left and right by
repetitively performing the state transitions specified by the update rule. At each repetition, the
following updates are performed in parallel : transferring the right value to the left variable, and
storing the remainder of left and right to the right variable.18 Once the right variable attains the
value 0, the ASM sets its final output to the current value of left and then enter its Final state.

A program is a rule without free variables. A sequential ASM A consists of a vocabulary Υ,
a class K of Υ-states (the initial states of A), and a program P of vocabulary Υ. For example,
the vocabulary Υ0, the class K0 of states, and the program Compute GCD constitute a sequential
ASM. A pure run of a program P is a sequence S0, S1, . . . of states appropriate to P such that each
Sn+1 is obtained from Sn by firing (the update set of) P at Sn.

We call such a run a pure run because it is not affected by the environment; all state changes are
caused by program execution. In general, however, runs of certain programs may be affected by the
environment; for example, a program may respond to user input during its execution. Functions
that manifest the environment are called external or monitored functions. An external function acts
as a (dynamic) oracle. It need not be consistent over multiple steps; that is, it may give different
results at different steps, even when all inputs are the same. However, the oracle is consistent
during a single step; if an external function is evaluated multiple times in the same step, it returns
the same value each time.

We call non-external basic functions internal. If S is an appropriate state for a program P , let
Sint be the reduct of S to the internal vocabulary. A run of P is a sequence of states S0, S1, . . .

such that (1) every non-final Sn is an appropriate state for P and the final state (if any) is a state
of the internal vocabulary of P ; and (2) every S int

n+1 is obtained from Sn by firing P at Sn.

18It should be stressed that the order of the rules in a block is arbitrary, since the corresponding updates happen in
parallel. Thus in the example, the updates “left := right” and “right := left mod right” could appear in the opposite
order, with no effect on behavior.

41

A.4 Agents and distributed runs

In a distributed computation, multiple agents act concurrently, each according to its own program.
Distributed ASMs are an extension of sequential ASMs in which some elements of the basic set
are identified as agents and are assigned programs. A special function Self is used for agent self-
reference. The notion of a run is enriched to reflect the concurrency of agents’ executions.

A distributed ASM A consists of

• A finite indexed set of programs πν , called modules. Each module name ν is a static nullary
function name.

• A vocabulary Υ which includes every function name that appears in any πν , except for the
function name Self. In addition, Υ contains a unary function name Mod that, given an agent,
returns its associated module name; Υ also contains a unary function name Prog that, also
given an agent, returns its associated module.

• A collection of Υ-states, the initial states of A, satisfying the following conditions:

– Different module names are interpreted as different elements.

– For every module name ν, there are only finitely many elements a such that Mod(a) = ν.

An Υ-state is a (global) state of A if it satisfies the two conditions imposed on initial states. An
element a is an agent at S if there is a module name ν such that Mod(a) = ν at S. The program
πν is the program Prog(a) of agent a.

We give an example of a distributed ASM by modifying our sequential ASM of the previous
section. Instead of a single pair of values as input, we take a set of pairs. In addition to computing
the GCD of each pair, the program determines whether any of the pairs are relatively prime; this
is true if the right value of any pair ever reaches the value 1. We implement this as a distributed
ASM, in which a set of agents (members of the universe GCD), computes the greatest common
divisor of each pair.

We define the vocabulary Υ1 by making the following changes to Υ0, as shown in Figure 17.
Note that the function primePair? does not have an agent parameter; it serves as a global flag shared
by all agents.
The class K1 of initial states is described as follows. In any initial state, the function primePair?
is false, and for each GCD agent a, mode(a) = Compute, left(a) and right(a) are natural numbers,
and output(a) = undef. The single module of the ASM is given in Figure 18.

Distributed ASMs require a more elaborate notion of run. Observers of a distributed execution
may differ in their perceptions of the execution; in particular, their histories of the execution may
differ in the relative order of concurrent actions. A run of a distributed ASM can be seen as the
common part of all observers’ histories.

For every agent a and state σ, View(a, σ) (the local state of a) is the reduct of σ to the functions
appearing in Prog(a), extended by interpreting the function name Self as a. To fire a at state σ,
execute Prog(a) at state View(a, σ). A run ρ of a distributed ASM A is a triple (µ, α, σ), where

• µ, the moves of ρ, is a poset (partially ordered set) where for every M ∈ µ, {N : N ≤ M} is
finite. If µ is totally ordered, we say that ρ is sequential.

42

Function Profile/Description

mode(a) GCDAgent → Nat
Current execution mode of agent a.

left(a), right(a) GCDAgent → Nat
Working values for agent a.

output(a) GCDAgent → Nat
Output value for agent a.

primePair? Boolean
Is there a relatively prime pair?

Figure 17: Functions of distributed ASM.

module GCD:
if mode(Self) = Compute then

if right(Self) = 0 then
output(Self) := left(Self)
mode(Self) := Final

else
if right(Self) = 1 then primePair? := true
left(Self) := right(Self)
right(Self) := left(Self) mod right(Self)

Figure 18: Module for distributed ASM.

43

• α is a function mapping moves to agents so that for every agent a, every nonempty set
{M : α(M) = a} is linearly ordered. (For each move M , α(M) is the agent performing M .
The condition on α ensures that every agent’s execution is sequential.)

• σ is a function mapping finite initial segments of µ to states of A. The state σ(∅) is an initial
state. (The state σ(ν), where ν is a finite initial segment of µ, is the result of performing all
moves of ν in the order given by µ. A state σ of A is reachable in a run ρ if it is in the range
of σ.)

• Coherence condition: If X is a maximal element in a finite initial segment ν of µ and ν ′ =
ν − {X}, then α(X) is an agent in σ(ν ′), X is a move of α(X) and σint(ν) is obtained from
σ(ν ′) by performing X at σ(ν ′).

Certain pairs of moves are seen by all observers as executing in a particular order. These moves
are ordered according to the poset µ. Other pairs of moves may be seen in different orders by
different observers. These moves are unordered. Note that the predecessors of a given move may
not be totally ordered. For instance, imagine a run in which agent a and agent b make moves that
are unordered with respect to each other. It is possible that agent c makes a move that is ordered
after both a and b. Intuitively, observers may disagree about the relative order of a’s move and b’s
move, but all agree that of the three moves, c’s is the last.

Note that the state function σ maps finite initial segments of µ to states. This, along with the
coherence condition, implies that for each finite initial segment of moves, there is a single state σ

such that all observers who witness all (and only) the moves in that finite initial segment agree on
σ as the current global state. In our example, all observers who have witnessed a’s move and b’s
move must have a common notion of what the current global state is.

It would be useful to be able to speak of “the state at move M”, but in a distributed run, there
may not be a unique state associated with M . Nevertheless, we can speak of a property holding at
a move M , meaning that for every state associated with M , the property holds. We formalize this
as follows.

Definition Let M be a move of µ.

• For any finite initial segment ν of µ that has M has a maximal element, Σ(ν) is
a state at M .

• Let φ be a proposition that holds for every state at M . Then φ holds at M .

• Let φ be a proposition that holds at every successor of M . Then φ holds forever
after M .

There is one slight complication involving monitored functions. The coherence condition on runs
does not require monitored functions to be interpreted identically at the various states associated
with a move. This makes it impossible to state that a property involving a monitored function
holds at a given move. The freedom to interpret monitored functions differently at different states
of a move does not give us anything, so we place the following restriction on runs.

• Let ν1 and ν2 be finite initial segments of µ, and let X be a maximal element in both ν1 and
ν2. Then σext(ν1) = σext(ν2).

44

It is often more convenient to reason about a sequential run than a distributed one. A lin-
earization of a distributed run is a sequential run that preserves the partial order on moves in the
distributed run. More formally, a linearization of a poset π is a linearly ordered set π ′ with the
same elements as π such that if X < Y in π then X < Y in π ′. A run ρ′ is a linearization of a
run ρ if the move poset of ρ′ is a linearization of that of ρ, the agent function of ρ′ is that of ρ,
and the state function of ρ′ is a restriction of that of ρ. The following corollary in the ASM Lipari
guide [12] relates a distributed run to its linearizations:

Corollary A proposition holds in every reachable state of a run ρ if and only if it holds in every
reachable state of every linearization of ρ.

This implies that we can reason about a distributed run by considering all its possible linearizations
instead of the distributed run itself.

References

[1] S.V. Adve and K. Gharachorloo (1995). Shared memory consistency models: a tutorial. Research
Report 95/7, Digital Western Research Laboratory.

[2] B. Bershad, M. Zekauskas and W. Sawdon (1993). The Midway distributed shared memory
system. in Proceedings of the IEEE COMPCON.

[3] R.D. Blumofe, M. Frigo, C.F. Joerg, C.E. Leiserson and K.H. Randall (1996). An analysis of
DAG-consistent distributed shared-memory algorithms. In Proceedings of the 8th Annual ACM
Symposium on Parallel Algorithms and Architectures, 297–308.

[4] G. Del Castillo and K. Winter (2000). Model checking support for the ASM high-level language.
In Proceedings of TACAS 2000, S. Graf and M. Schwartzbach (editors), LNCS 1785, Springer-
Verlag, 331-346.

[5] S. Cook and R. Reckhow (1973). Time bounded random access machines. Journal of Computer
and System Sciences 7, 354–375.

[6] D.E. Culler and J.P. Singh, with A. Gupta (1999). Parallel computer architecture: a hard-
ware/software approach. Morgan Kaufmann.

[7] Euclid (1956). The Thirteen Books of Euclid’s Elements, Volume II: Books III–IX. T. Heath
(editor and translator). Dover.

[8] G.R. Gao. Personal communication.

[9] G.R. Gao and V. Sarkar (1994). Location consistency: Stepping beyond the barriers of memory
coherence and serializability. ACAPS Technical Memo 78, School of Computer Science, McGill
University.

[10] G.R. Gao and V. Sarkar. Location consistency — A new memory model and cache consistency
protocol. IEEE Trans. on Comp., 49(8):798–813, August 2000.

45

[11] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta and J. Hennessy (1990). Mem-
ory consistency and event ordering in scalable shared-memory multiprocessors. In Proceedings of
the 17th Annual International Symposium on Computer Architecture, 15–26. Also in Computer
Architecture News 18(2).

[12] Y. Gurevich (1995). Evolving Algebras 1993: Lipari guide. In E. Börger (editor), Specification
and Validation Methods, Oxford University Press, 9–36.

[13] Y. Gurevich (1997). May 1997 draft of the ASM guide. Available at
http://www.eecs.umich.edu/gasm/.

[14] Y. Gurevich and D. Rosenzweig. Partially ordered runs: A case study. In Abstract State
Machines: Theory and Applications, pages 131–150. Springer-Verlag, LNCS-1912, 2000.

[15] P. Keleher, A.L. Cox and W. Zwaenepoel (1992). Lazy release consistency for software dis-
tributed shared memory. In Proceedings of the 19th Annual International Symposium on Com-
puter Architecture, 13–21. Also in Computer Architecture News 20(2).

[16] D. Knuth (1973). The Art of Computer Programming, Volume I: Fundamental Algorithms.
Addison-Wesley.

[17] L. Lamport (1979). How to make a multiprocessor computer that correctly executes multipro-
cess programs. IEEE Transactions on Computers C-28(9): 690–691.

[18] R. Milner (1989). Communication and concurrency. Prentice-Hall.

[19] D.L. Parnas and J. Madey (1995). Functional documentation for computer systems. Science
of Computer Programming 25(1): 41–61.

[20] D. Perrin (1990). Finite automata. In Handbook of Theoretical Computer Science,
ed. J. van Leeuwen, Elsevier, 1–57.

[21] A. Turing (1936). On computable numbers, with an application to the Entscheidungsproblem.
In Proceedings of the London Mathematical Society 2(42), 230–265.

46

