
Computer Science Technical Report

Pairwise synchronization in UPC
Ernie Fessenden and Steven Seidel

Michigan Technological University
Computer Science Technical Report

CS-TR-04-01
July, 2004

Department of Computer Science
Houghton, MI 49931-1295

www.cs.mtu.edu

Pairwise synchronization in UPC

Ernie Fessenden and Steven Seidel

July, 2004

Contents

1 Introduction 4

2 History of UPC 4

3 Introduction to UPC 5

4 Introduction to the collective operations 7
4.1 Relocalization collectives . 8

4.1.1 upc all broadcast . 8
4.1.2 upc all scatter . 9
4.1.3 upc all gather . 9
4.1.4 upc all gather all . 10
4.1.5 upc all exchange . 10
4.1.6 upc all permute . 11

4.2 Computational collectives . 11
4.2.1 upc all reduce . 11
4.2.2 upc all prefix reduce . 12
4.2.3 upc all sort . 12

5 Synchronization modes 13

6 Pairwise synchronization 14
6.1 Applications of pairwise synchronization . 16

7 Testbed 18

8 Description of algorithms 19
8.1 MYSYNC . 19
8.2 Pairwise synchronization . 23

9 Results 24
9.1 Flyer . 24
9.2 Lionel . 28

1

10 Future work 34

11 Summary 35

2

Abstract

UPC (Unified Parallel C) is a small extension of C that provides a partitioned shared memory
model for parallel programming. Synchronization between threads (processes) in UPC is done
through the use of locks or barriers. We have investigated a new synchronization process that we
believe to be better suited in situations where threads do not need to synchronize with all of the
other threads in the system.

This project explores how to synchronize UPC threads in specialized ways. Our approach is to use
UPC locks to implement pairwise synchronization. Using this new approach we implemented the
MYSYNC synchronization mode and compared it to the ALLSYNC synchronization mode that is
often implemented by using a barrier. Pairwise synchronization can also be used to synchronize
arbitrary subsets of threads while not disturbing the remaining threads. Such subset-based syn-
chronization does not presently exist in UPC. We also investigate how to implement the barrier
using pairwise synchronization.

The MYSYNC synchronization mode has shown better performance than the ALLSYNC synchro-
nization mode for several of the relocalization collective operations. Specifically, for an uneven
computational load the MYSYNC implementation of upc all broadcast, upc all scatter,
and upc all gather outperforms the ALLSYNC implementation. For upc all permute under
even and uneven computational loads the MYSYNC implementation shows large improvements in
run time. However, for upc all exchange and upc all gather all the MYSYNC implementa-
tion runs slower than the ALLSYNC implementation.

3

1 Introduction

The goal of this thesis is to determine in what situations the MYSYNC synchronization mode is
more efficient than the ALLSYNC synchronization mode. The MYSYNC synchronization mode
is part of a work in progress of the UPC collectives specification [2]. This thesis also explores
if pairwise synchronization is a good choice to implement the MYSYNC synchronization mode.
Also, UPC does not have a simple easy to use function to facilitate a sub set barrier, this thesis
explores the use of pairwise synchronization to implement one.

The implementation of the collective functions will be tested in such a way as to compare the per-
formance of the MYSYNC synchronization mode to the ALLSYNC synchronization mode when
there is an even workload and when there is an uneven workload. An even workload is defined
to be when all threads have the same amount of computation to do, and an uneven workload is
defined to be when one thread has twice the amount of computation as the other threads.

Section 2 covers the history of UPC. In Section 3 an overview of the UPC language is given, which
includes code examples. The collective operations that we wish to apply the MYSYNC synchro-
nization mode are reviewed in Section 4. The synchronization modes are explained in detail in
Section 5. The algorithm for pairwise synchronization is in Section 6 along with an explanation of
how it works. How the collective implementations were tested and timed is explained in Section
7. A description of the MYSYNC collective implementations and the sub set barrier is provided
in Section 8. Section 9 covers the results that were observed for some of the collectives on Flyer
and Lionel. The future work is examined in Section 10. Section 11 contains the summary. Ap-
pendix A contains the code that was added to the reference implementation of the relocalization
collectives to implement the MYSYNC synchronization mode and a complete implementation of
upc all broadcast. Appendix B contains all of the graphs of runtimes that were observed on
Flyer.

2 History of UPC

UPC is a parallel extension to the C language that allows programmers to write parallel programs
using only a small set of extensions to the C language [1]. UPC is the result of many years of
work. Previous to the creation of UPC there was Split-C [3] by David Culler and Kathy Yelick and
PCP [4] created by Eugene Brooks and Karen Warren. Bill Carlson created the first UPC compiler
for the Cray T3E. Similar languages are Co-array Fortran [5] and Titanium [6]. These languages
all have a similar memory model, in which there is a shared or global address space that all other
threads or processes can access.

4

3 Introduction to UPC

UPC has several features that make manipulating data easy. If a thread declares a variable inside
the main function such as the integer A in Figure 1, then each thread has a private variable called
A in its local memory. However, UPC has a type qualifier called shared that signifies that the
variable will reside in shared memory, such as the shared integer B in Figure 1. There is only one
variable named B and it resides in the shared memory space of thread 0. All threads have access
to B. However UPC can be used on a cluster where the memory is distributed and thus there is not
actually any real shared memory. So whenever thread 1 or thread 2 accesses the variable B the run
time system handles all of the communication necessary for each thread to get the current value of
B.

For example, if thread 1 executes:

A = B;

Then the local variable A will be updated to the current value of B on thread 1.

Shared

Local

int A;

shared int B;

shared [] int C[6];

C[0] C[3]

B

A

C[1] C[4]

A

C[2] C[5]

A

T T T0 1 2

Figure 1: The UPC memory model

UPC also allows arrays to be distributed in shared memory. Immediately following the shared type
qualifier the programmer may include a blocking factor for the array. The blocking factor specifies
how many array elements are distributed contiguously on each thread. However, if there are more
array elements than (block size * threads) the remaining elements are distributed in a cyclic fash-
ion. For example the declaration:

shared [1] int C[6];

distributes elements 0 and 3 on thread 0, elements 1 and 4 on thread 1, and elements 2 and 5 on
thread 2.

If a variable is located on a given thread then that variable is said to have affinity to that thread. Op-
erations on a variable that a thread has affinity to are generally more efficient than doing operations

5

on variables for which the thread does not have affinity. If a shared variable is remote, it resides on
a different thread. The reason remote operations take longer is because the run time system must
do the communication necessary to get the current value of the variables involved from the thread
they reside on. Operations on a shared array can be done using the upc forall operation.

int i;
upc_forall(i=0; i< 6; i++; &C[i])

{
C[i]++;
}

The upc forall operation works just like a for loop, except that each thread will do the body of the
loop only if it has affinity to the fourth field of the upc forall. In the example above thread 0 will
increment C[0] and C[3], thread 1 will increment C[1] and C[4], and thread 2 will increment C[2]
and C[5].

The programmer can have a specific thread do something different than the other threads. The
identifier MYTHREAD is used to identify a given thread.

if(MYTHREAD == 0)
{
C[0]++;
}

In this example thread 0 increments C[0].

The identifier THREADS can also be used, it is the number of threads in the system.

UPC has two techniques for synchronizing threads. A barrier synchronizes all threads; no thread
may proceed beyond the barrier until all threads have reached the barrier.

upc_barrier;

The barrier in UPC is a collective operation, meaning all of the threads must call it. No thread may
leave the barrier until all threads have entered the barrier. UPC also provides a split barrier, where
the barrier is broken up into two commands. The first is upc notify which signals all of the other
threads that it has reached the synchronization point. The second is upc wait which forces the
threads to wait until all other threads have reached the upc notify. The programmer should have
useful computation following the upc notify and before the upc wait that uses only local data
to maximize performance.

UPC provides locks to protect a specific variable.

6

#include <stdio.h>
#include <upc_strict.h>

upc_lock_t thelock;
shared int A;

main()
{
if(MYTHREAD == 0)

{
A = 0;
}

upc_barrier;

upc_lock(&thelock);
A++;
upc_unlock(&thelock);

upc_barrier;
if(MYTHREAD == 0)

{
printf(%d \n,A);
}

}

Figure 2: An Example of using locks in UPC

If the code in Figure 2 was compiled and executed thread 0 would initialize the shared variable A
to 0. Then all of the threads in the system synchronize because of the statement upc barrier().
After each thread gets the lock they increment the shared variable A. However as locks are mutu-
ally exclusive only one thread has the lock at a time. Then all of the threads synchronize again,
and thread 0 would output the current value of A, which in this case is the value of THREADS.

4 Introduction to the collective operations

A collective operation is an operation that all threads must perform. There are several types of
collective operations; the two types that we will focus on are the relocalization collectives and
the computational collectives. The relocalization collectives copy shared data to a new location.
The computational collectives do computation on data. These collectives are defined in the UPC
collectives specification [2].

Figure 3 through Figure 10 use the notation Ti to signify thread i and Di to signify data element i.

7

A data element can be of any arbitrary size provided it is a legal type, also a data element can be a
section of an array.

4.1 Relocalization collectives

4.1.1 upc all broadcast

void upc all broadcast (shared void *dst, shared const void *src,
size t nbytes, upc flag t sync mode);

The upc all broadcast function copies a block of memory with affinity to a single thread to a
block of shared memory on each thread. The number of bytes in each block is nbytes. If copying
takes place between objects that overlap, the behavior is undefined. The shared void *dst is a
shared pointer that is the destination of where the data is to be moved. The shared const void *src
is a shared pointer that references the source of the data. The size t nbytes is the number of
bytes to be copied. The upc flag t sync mode is the identifier to which synchronization mode
is to be used. The synchronization mode will be explained in more detail in section 5. Figure 3
illustrates upc all broadcast.

D0

D0

D0

D0

T

T

T

T

0

1

2

3

T

T

T

T

0

1

2

3

D0

Figure 3: Data distribution of the upc all broadcast

8

D0 already resides in shared memory, we would want to broadcast it so all threads could do local
computation which should be considerably faster.

4.1.2 upc all scatter

void upc all scatter (shared void *dst, shared const void *src,
size t nbytes, upc flag t sync mode);

The upc all scatter function copies the ith block of shared memory with affinity to a single
thread to a block of shared memory with affinity to the ith thread. The arguments to upc all scatter
and the remaining relocalization operations are similar to those for upc all broadcast. Figure 4
illustrates
upc all scatter.

T

T

T

T

0

1

2

3

D0 D1 D2 D3

D0

D1

D2

D3

T

T

T

T

0

1

2

3

Figure 4: Data distribution of upc all scatter

4.1.3 upc all gather

void upc all gather (shared void *dst, shared const void *src,
size t nbytes, upc flag t sync mode);

The upc all gather function copies a block of shared memory that has affinity to the ith thread
to the ith block of a shared memory area that has affinity to a single thread. Figure 5 illustrates
upc all gather.

9

D0

D1

D2

D3

T

T

T

T

0

1

2

3

T

T

T

T

0

1

2

3

D0 D1 D2 D3

Figure 5: Data distribution of upc all gather

4.1.4 upc all gather all

void upc all gather all (shared void *dst, shared const void *src,
size t nbytes, upc flag t sync mode);

The upc all gather all function copies a block of memory from one shared memory area with
affinity to the ith thread to the ith block of a shared memory area on each thread. Figure 6 illustrates
upc all gather all.

D0 D1 D2 D3

D0

D1

D2

D3

D0 D1 D2 D3

D0 D1 D2 D3

D0 D1 D2 D3

T

T

T

T

0

1

2

3

T

T

T

T

0

1

2

3

Figure 6: Data distribution of upc all gather all

4.1.5 upc all exchange

void upc all exchange (shared void *dst, shared const void *src,
size t nbytes, upc flag t sync mode);

The upc all exchange function copies the ith block of memory from a shared memory area that
has affinity to thread j to the jth block of a shared memory area that has affinity to thread i. Figure
7 illustrates upc all exchange.

10

D0 D1 D2 D3

D4 D5 D6 D7

D8 D
9

D10 D11

D12 D13 D14 D15

D0

D1

D2

D3

D4

D5

D6

D7

D8

D
9

D10

D11

D12

D13

D14

D15

T

T

T

T

0

1

2

3

T

T

T

T

0

1

2

3

Figure 7: Data distribution of upc all exchange

4.1.6 upc all permute

void upc all permute (shared void *dst, shared const void *src,
shared const int *perm, size t nbytes, upc flag t sync mode);

The upc all permute function copies a block of memory from a shared memory area that has
affinity to the ith thread to a block of shared memory that has affinity to thread perm[i]. Figure 8
illustrates upc all permute.

permutation
 vector

D0

T

T

T

T

0

1

2

3

T

T

T

T

0

1

2

3

D0

D1

D2

D3

D3

D2

D1

2

0

1

3

Figure 8: Data distribution of upc all permute

4.2 Computational collectives

4.2.1 upc all reduce

void upc all reduce(shared void *dst, shared const void *src,
upc op t op, size t nelems, size t blk size, TYPE (*func)
(TYPE, TYPE), upc flag t sync mode);

The upc all reduce collective operation reduces the elements in a given range of a shared array.
The result of that reduction is stored in a single location. The upc op t op identifies the compu-

11

tational operation. For example UPC ADD adds all of the elements together. The size t blk size
is the number of elements in each block. Figure 9 illustrates upc all reduce.

T

T

T

T

0

1

2

3

D0

D1

D2

D
4

D3 Σ D
i

4

i=0

T

T

T

T

0

1

2

3

Figure 9: Data distribution of upc all reduce

4.2.2 upc all prefix reduce

void upc all prefix reduce(shared void *dst, shared const void *src
upc op t op, size t nelems, size t blk size, TYPE (*func)
(TYPE, TYPE), upc flag t sync mode);

The upc all prefix reduce collective operation reduces all of the elements in a given range of a
shared array, however each partial reduction is also stored. Figure 10 illustrates upc all prefix reduce.

T

T

T

T

0

1

2

3

D0 D1 D2

D11
D10D

9

D8D7D6

D5D4D3

Σ
i=0

D
i

1

Σ
i=0

D
i

2

Σ
i=0

D
i

4

Σ
i=0

D
i

3

Σ
i=0

D
i

5

Σ
i=0

D
i

6

Σ
i=0

D
i

7

Σ
i=0

D
i

8

Σ
i=0

D
i

9

Σ
i=0

D
i

10

Σ
i=0

D
i

11

D0
T

T

T

T

0

1

2

3

Figure 10: Data distribution of upc all prefix reduce

4.2.3 upc all sort

void upc all sort (shared void *A, size t elem size, size t nelems,
size t blk size, int (*func)(shared void *, shared void *),
upc flag t sync mode);

12

The upc all sort computation collective operation sorts the elements in a given range of a shared
array.

5 Synchronization modes

All of the computational and relocalization collective operations in UPC have two synchronization
modes specified by the single argument sync mode. These modes are the state of the data before
and after the collective call. The following text describes the synchronization modes in detail, and
the text is taken from the UPC collective operations specification V1.0 [1].

If sync mode has the value (UPC IN XSYNC || UPC OUT YSYNC), then
if X is

NO the collective function may begin to read or write data when
the first thread has entered the collective function call,

MY the collective function may begin to read or write only data
which has affinity to threads that have entered the
collective function call, and

ALL the collective function may begin to read or write data only
after all threads have entered the collective function call

and if Y is

NO the collective function may read and write data until the
last thread has returned from the collective function call,

MY the collective function call may return in a thread only
after all reads and writes of data with affinity to the
thread are complete, and

ALL the collective function call may return only after all reads
and writes of data are complete.

The NOSYNC synchronization mode is intended to be used when the programmer knows that the
running threads are not dependent on the data being sent or received. This synchronization mode
should also be used if the programmer knows that there is more computation that can be done after
the collective operation that does not use the data being sent, and uses a notify wait split barrier, or
bundles

13

many exclusive collective operations together and begins and ends the sequence with a barrier.

The ALLSYNC synchronization mode is the easiest for the programmer because it provides ex-
plicit synchronization, and the programmer knows that no thread will interfere with the data being
sent or received.

It is the work of this thesis to show that the MYSYNC synchronization mode should be used when
the programmer knows that each thread will work on the data it has received and will not inter-
fere with any other threads data. Our interest is in the implementation and performance of the
MYSYNC synchronization mode compared to a barrier based implementation of the ALLSYNC
synchronization mode.

As the collective specification has developed there was a large amount of debate as to whether all
three synchronization modes were needed. There is currently a debate as to whether the MYSYNC
synchronization mode will be used at all and whether it promises any performance gain. The goal
of this project is to show that the MYSYNC synchronization does have its place in the collective
specification and will have better performance than the ALLSYNC synchronization mode in some
situations.

6 Pairwise synchronization

Pairwise synchronization is the process of having two threads synchronize with each other. Ideally
this operation will not have any impact on the other threads that are currently executing. This
enables us to use pairs of processors synchronizing as a stepping-stone to more complex and new
synchronization routines in UPC. More specifically we can use pairwise synchronization to create
the MYSYNC synchronization mode. We implemented pairwise synchronization by creating a
system of locks that performs a hand shaking procedure. The code that accomplishes this is seen
in Figure 11.

14

upc_lock_t *prlock[THREADS][THREADS];

pairsync(int other)
{
upc_unlock(prlock[other][MYTHREAD]) // line 1
upc_lock(prlock[MYTHREAD][other]) // line 2
upc_unlock(prlock[MYTHREAD][MYTHREAD]) // line 3
upc_lock(prlock[other][other]) // line 4
upc_unlock(prlock[MYTHREAD][other]) // line 5
upc_lock(prlock[other][MYTHREAD]) // line 6
upc_unlock(prlock[other][other]) // line 7
upc_lock(prlock[MYTHREAD][MYTHREAD]) // line 8
}

Figure 11: The pairwise synchronization function

The first line is the declaration of the lock structure, which would be placed before the main
function. To be able to have any thread synchronize with any other thread using pairwise synchro-
nization a THREADS x THREADS array of locks is used, where THREADS is the number of threads
in the system. Thus if thread 2 and thread 5 wanted to synchronize thread 2 would have to call
pairsync(5) and thread 5 would call pairsync(2).

Figure 12: State diagram of the pairwise synchronization function

15

Because locks in UPC are mutually exclusive, two threads that are executing the pairsync function
would have to navigate through the state diagram shown in Figure 12. Suppose threads 2 and 5
call the pairsync function, the numbers on the nodes represent what line of code each thread is
on in the pairsync function. Initially each thread has its own column of locks in the 2d grid of
locks. For example, thread 2 owns the 2nd column and thread 5 owns the 5th column of locks.
When the function begins each thread has not executed any of the code in the function and thus
start at the far left node of Figure 12 labeled 0,0. As thread 2 comes to its second line of code,
it is waiting for lock prlock[2][5] to be unlocked for it to progress. However as we see thread
5 unlocks prlock[2][5] as its first operation, and then it waits to lock prlock[5][2], which
thread 2 has already unlocked. After the two threads have reached the second line of code they are
synchronized and at node 2,2 of Figure 12. After both threads reach the fourth line of code they
are synchronized again. The remaining code is to return the locks to their initial state so they can
be re-used.

With the help of the verification tool SPIN [7] we have verified that the above code synchronizes
threads. SPIN is a software tool that can be used for formal verification of software systems. This
tool was developed at Bell Labs and is freely available. SPIN uses its own high-level language call
PROMELA in which the programmer models their software. SPIN uses an exhaustive technique
to make sure that the system is correct.

6.1 Applications of pairwise synchronization

Pairwise synchronization may be more efficient in some cases because it allows the faster threads
to synchronize first, allowing them to exit the synchronization step sooner, so they can keep execut-
ing. The faster threads would be able to synchronize with whatever threads they need to, provided
those other threads are ready, and not have to wait for all of the other threads in the system. Cer-
tain threads may be faster than others due to several factors, primarily the work environment as
other users of the computer may have jobs running taking up CPU cycles, also some algorithms
may have threads that perform different tasks than the other threads in the system. This type of
synchronization is desirable for types of algorithms where the processors only need to synchronize
with their immediate neighbors as some following examples illustrate.

By using pairwise synchronization we can construct routines that are capable of synchronizing
any given set of threads. Applications that are set up in a pipeline or ring fashion are able to
synchronize with their nearest neighbors without forcing all of the processors to synchronize at a
given point. Having thread 0 and thread 2 synchronize is not needed as thread 0 and thread 2 do
not have to communicate in a pipeline. Figure 13 illustrates these ideas. Each box represents a
thread and

16

the arrows represent the synchronization. The top figure is for pipelines and the bottom figure is
for ring structures.

Figure 13: A possible pipeline and ring configuration synchronization pattern

Pairwise synchronization is also applicable to grids. In grid algorithms where each thread only
synchronizes with its immediate neighbors there is no need for threads to synchronize threads that
are not its immediate neighbor. If we used the upc barrier then those threads would be synchro-
nized. This also applies to algorithms that use a torus arrangement.

Figure 14: A possible grid configurations synchronization pattern

Using pairwise synchronization we can also set up a routine to facilitate master/drone algorithms
such as the LU decomposition version of the matrix multiplication algorithm. This allows the mas-
ter to synchronize only with the drones that need more work, and not the entire system. Figure 15
illustrates a possible synchronization pattern.

17

Figure 15: A possible synchronization scheme for a master drone algorithm

7 Testbed

To measure and compare pairwise synchronization techniques with existing synchronization tech-
niques we believed that a tool with built in timing routines would be very helpful. This idea has
lead us to implement a tool we call the testbed where the user would first copy their code into a
specific location and then compile and execute it. The user would not have to put in their own tim-
ing metrics in the code, as the testbed would already have several timing metrics already. We also
wanted the testbed to be able to simulate a running environment close to how an actual run time
environment would behave. Thus allowing one thread to have an uneven workload is an option,
where uneven workload is defined as twice the amount of computation as the other threads. This is
a general tool. It was used in this project to measure how the pairwise synchronization implemen-
tation of the MYSYNC synchronization mode compares to the ALLSYNC synchronization mode
of the relocalization collectives.

The main body of the testbed is a loop where there will be a collective operation and a compu-
tation function, each timed separately. However to simulate an actual run time environment the
testbed has options to skew the running threads. This means that all of the threads will not arrive at
their respective collective operation or computational section of code at the same time. To do this
the testbed will have parameters that control the amount of skew. Additionally the testbed has a
parameter for the number of threads and for message length. The number of threads is for compar-
ison purposes to check the performance of the collective operation as we scale up the number of
threads in the system, and the message length parameter is provided so that a comparison of how
the collective operations perform for various message lengths.

The testbed is a UPC application, in which the user will supply the necessary parameters to test
exactly how they want their collective function to be tested. It is thought that with the testbed a
user will be able to compare the effectiveness of the different synchronization modes for certain
collective operations in various run time environments. In between each collective operation there
is significant computation to simulate a real application. We isolate the collective communication
time from the computation time and compare each run with either different synchronization modes
or different implementations of the collective methods.

18

For purposes of this thesis the runtimes that were generated are the total time a thread was in the
collective function for all the iterations. Thus the runtime for each collective call was added to-
gether for all of the iterations. Each thread recorded its own time, then only the thread that had the
largest total time outputs how long it took. Therefore the results show the slowest running thread.

To better simulate a running environment and to amortize the effect of an uneven workload the
thread that had the uneven workload was changed with each iteration. This was done in such a way
that thread zero was never the thread with the uneven workload. Thread zero was the source for the
relocalization collectives so if it had an uneven amount of work all of the other threads would have
to wait for it, this situation does not perform well for MYSYNC. Also each subsequent iteration
had the thread with the next higher MYTHREAD identifier be the thread which had the uneven
workload, wrapping back to thread one after the thread with the highest identifier was chosen. This
was done to test how any given thread with an uneven amount of computation performs instead of
just a specific thread always being the thread with an uneven amount of computation.

The goal of the testbed is not only to provide a useful tool for general use, but also to find out in
what situations the MYSYNC synchronization mode, which can be implemented using pairwise
synchronization, is more efficient than the ALLSYNC synchronization mode.

8 Description of algorithms

8.1 MYSYNC

Originally the idea to implement the MYSYNC synchronization mode for the collective operations
was to utilize a queue to keep track of what threads have entered the collective function. Then each
thread would then check the queue and be able to determine what threads have entered their collec-
tive function and in what order. It is assumed that the first thread to enter into the collective function
should be the first thread that should be read and or written to. In this way the first threads to enter
the collective function would be able to leave before the other threads because it would be done
reading and or writing all data that it has affinity to. To ensure that the threads know that all data
has been read and or written each thread would synchronize with whichever thread it was reading
and or writing to. Using pairwise synchronization seemed like a logical tool to use, however after
several implementations were created it was determined that using pairwise synchronization was
not a good general solution as it did not perform well when each thread had an even amount of
computation as can be seen in Section 8.

The techniques to insure the semantics of the MYSYNC synchronization mode depend on whether
the collective function is going to be a push or pull based copy and thus the queue may be un-
necessary. A push based implementation has each thread copy the data it has for other threads to
them, while a pull based implementation has each thread copy the data it needs from other threads
itself. For example, given a pull based upc all broadcast there is no need to keep track of what
thread entered the collective operation first. All that is needed is for all threads other than the

19

source to know when the source has entered its collective operation so it knows when it can begin
reading. Likewise, the source only needs to copy its own data and then check that all threads have
copied from it. At this point using pairwise synchronization can increase the amount of time that
other threads are waiting. If thread 1 is the source of the broadcast and there are 4 threads in the
system, thread 3 could be the first to copy the data from thread 1 and then synchronize with it, at
the same time threads 2 and 0 would have to wait for thread 0 to synchronize with thread 3 before
they could notify thread 1 that they have also received their data. So if all the threads enter the
collective function at nearly the same time, some threads will have to wait.

To to get a implementation of the MYSYNC synchronization mode that performs at least as good
as the ALLSYNC implementation a strict THREADS x THREADS array of integers was added and
the pairwise locking mechanism was entirely removed. This array is declared as strict so all read
and write references to it are ordered [9]. There is a unique location within the array for each
pairing of threads, and thus that particular location in the array can be checked to see if those two
threads have communicated. Going back to the example of the pull based upc all broadcast,
each thread needs to write to its location on the source’s row of the array after it copies the data
and it can then exit the collective function. The source needs to go through its row of the array and
wait until all threads have marked that they are done and then it can exit the collective function.
The upc all gather and upc all scatter are similar in implementation.

This method requires that the writes to the array be written back to memory and not just cached. If
the writes were only cached then the other threads would have to wait longer than necessary. All
run time systems that were used during this project did write backs of strict operations, however
the UPC specification does not require it [9].

The required synchronization to facilitate MYSYNC for upc all exchange is slightly differ-
ent. The push and pull based implementation are the same, except for the actual parameters to
upc memcpy(). However the queue is still used to keep track of what order the threads entered the
collective function. What is interesting, however, is the exit synchronization. Because all threads
need to read and write to all other threads no thread can leave until all other threads have entered
the collective function and have begun reading and writing. If there are 4 threads in the system
and thread 2 is late entering the collective, then threads 0, 1, and 3 have already finished reading
and writing to each other. Assuming a pull based implementation, once thread 2 finally enters the
collective all threads are able to read from it, however no thread is able to leave until thread 2 reads
from them. Thus the semantics of UPC OUT MYSYNC are not substantially different than those of
UPC OUT ALLSYNC. Similar observations apply to upc all gather all.

On the other hand upc all permute is able to take very good advantage of the MYSYNC seman-
tics. Given that each thread only needs to know if the thread that they need to read or write to has
entered the collective operation, a single late thread will adversely effect at most two other threads.
Once a thread knows that the thread it needs to read or write to has entered the collective, it can
proceed to read or write, and then it writes in the array notifying that thread that their data has been
received or sent. Then each thread needs to wait until it has been notified that it has received its
data or it has had its data read.
Table 1 shows the total number of communication steps necessary to facilitate the respective

20

Total Messages
Collective ALLSYNC MYSYNC
upc all broadcast THREADS-1 THREADS-1
upc all scatter THREADS-1 THREADS-1
upc all gather THREADS-1 THREADS-1
upc all exchange THREADS-1 THREADS*(THREADS-1)
upc all gather all THREADS-1 THREADS*(THREADS-1)
upc all permute THREADS-1 THREADS

Table 1: Communication steps to facilitate synchronization

synchronization mode. A communication step is defined as a request and a reply message. In
terms of the number of communication steps, the MYSYNC implementation is comparable for
upc all broadcast,
upc all scatter, upc all gather, and upc all permute. However
upc all exchange and upc all gather all have a factor of THREADS more synchronization
steps.

21

Maximum parallelism
Collective ALLSYNC MYSYNC
upc all broadcast 2*dlg(THREADS)e THREADS-1
upc all scatter 2*dlg(THREADS)e THREADS-1
upc all gather 2*dlg(THREADS)e THREADS-1
upc all exchange 2*dlg(THREADS)e THREADS-1
upc all gather all 2*dlg(THREADS)e THREADS-1
upc all permute 2*dlg(THREADS)e 2

Table 2: Minimum number of communication steps in parallel

Table 2 shows the number of communication steps required if all of the communication can be
done with maximum parallelism. It is assumed that the ALLSYNC implementation is based upon
a binary tree barrier. It is interesting that the MYSYNC implementation can simultaneously be
sending data and synchronizing with other threads. if upc all barrier is used to implement the
ALLSYNC mode, then data must be sent separately. In this way the MYSYNC implementation can
see better performance for the collectives because some of the synchronization messages can be
sent at the same time as data. Also, in the case of upc all permute the number of synchronization
steps that can be done in parallel is constant.

22 44 88 16
00

0.25

0.5

0.75

11

1.25

1.5

1.75

22

2.25

2.5

2.75

33

3.25

3.5

Figure 16: Flyer run times of a pull-based upc all broadcast for 1000 iterations.

As can be seen in Figure 16 the performance of the lock-based implementation of the MYSYNC
synchronization mode is worse than if all of the threads used a

22

barrier that would satisfy the ALLSYNC requirements. However the array-based implementation
of MYSYNC does improve performance compared to ALLSYNC.

22 44 88 16
00
11
22
33
44
55
66
77
88
99

10
11
12
13
14
15
16

Figure 17: Flyer run times of a pull-based upc all broadcast for 1000 iterations.

When one thread has twice as much work as the other threads in the system the lock-based im-
plementation of MYSYNC performs better than a barrier implementation of ALLSYNC as can be
seen in Figure 17. It should also be noted that the array-based implementation outperforms the
lock-based implementation. A more detailed overview of the results is presented in Section 9.

8.2 Pairwise synchronization

Although pairwise synchronization was not found to be a good general solution for MYSYNC it is
still useful for other algorithms. As covered in Section 6.1, pairwise synchronization can be used
to implement less stringent synchronization schemes than using the upc barrier. However it is
also interesting that a lock-based barrier can be implemented using pairwise synchronization.
This algorithm has all threads synchronize with thread 0 using pairwise synchronization, and then
synchronize again. Because thread 0 synchronizes with all threads in order, once a thread is able
to synchronize with thread 0 the second time it knows that all other threads have reached the
upc all pairwise barrier operation.

Similarly, a subset barrier can be created using pairwise synchronization. A subset barrier is one
in which only a specified subset of threads are synchronized. One way to implement this is to
have all threads send an array that contains all of the threads in the subset. However to ensure that
the threads will not dead lock in their pairwise synchronization calls the array has to be sorted.
Then, instead of going through a loop for all threads like the global barrier, each thread would loop

23

void upc_all_pairwise_barrier()
{
int i;

// thread 0 needs to synchronize with all other threads
if (MYTHREAD == 0)

{
for(i=1;i<THREADS;i++)

{
pairlock(i);
}

for(i=1;i<THREADS;i++)
{
pairlock(i);

}
}
// all threads synchronize with thread 0
else

{
pairlock(0);
pairlock(0);
}

}

Figure 18: A barrier implemented using pairwise synchronization

through the array that was passed and synchronize with those threads, excluding itself.

9 Results

9.1 Flyer

The majority of the work that was done for this project was done on Flyer. Flyer is a thirty-two pro-
cessor Compaq SC40 which consists of eight four processor Alpha SMP’s connected by a Quadrics
switch. Compaq’s UPC compiler, Field Test version 2.2 was used to compile the programs. The
test cases only tested for two, four, eight, and sixteen processors. Although Flyer has thirty-two
processors scaling the tests up to thirty-two would not have yielded good results because then all
four processors on each node would be used and the system processes would have interrupted the
testbed [8].

As was seen in section 8.1 the lock-based implementation of pairwise synchronization did not per-
form well in the case when all the threads in the system have the same amount of computation to

24

do between each collective call. The strict array implementation of the MYSYNC synchronization
mode was explored to see if its performance was better. The goal was to obtain approximately the
same performance as the ALLSYNC synchronization mode when there is approximately the same
amount of work, and to have improved performance when there is one slow thread.

The first collective operation to be implemented was upc all broadcast. It was used as a basis
of study until it was determined that the implementation of the MYSYNC synchronization mode
using a strict array was capable of delivering improved performance.

All tests were done where each thread executes its collective operation and then performs some
artificial computation. When there is an uneven workload, one thread does its artificial computa-
tion twice. This procedure was done in a loop for 1,000 iterations and the reported times are for
the slowest thread. Each thread keeps track of its total collective time by summing the time it has
spent in the collective each iteration. 1,000 iterations was chosen to insure the times were much
larger than the granularity of the system clock.

Using the MYSYNC synchronization mode for upc all broadcast provides better performance
than a barrier implementation of the ALLSYNC synchronization mode as can be seen in Figure 19.
Provided that the source thread is not the slow thread, the MYSYNC synchronization mode enables
threads to read from the source as soon as they enter the collective function. Once a thread has read
from the source it needs to notify the source that it has received its data and can then exit the col-
lective. An ALLSYNC synchronization implementation requires that all threads need to enter the
collective operation and then reading and writing can begin. Since the MYSYNC synchronization
mode is more relaxed when there is a slow thread, only the slow thread and the source are affected.
Under an even workload the strict array implementation of the MYSYNC synchronization mode
performs approximately as well as the barrier implementation of the ALLSYNC synchronization
mode. Similar results can be seen for upc all gather and upc all scatter. See Appendix A
for complete run times.

25

22 44 88 16
00
11
22
33
44
55
66
77
88
99

10
11
12
13
14
15
16

Figure 19: Flyer run times of pull-based upc all broadcast for 1000 iterations

The results for a pull-based implementation of upc all exchange show that when each thread
needs to communicate with all other threads in the system the performance of the strict array
implementation of the MYSYNC synchronization mode does not improve performance. This is
because if there is a slow thread in the system all threads need to wait for the slow thread so they
can copy their data from it. Figure 20 shows the run times of upc all exchange. Similar results
for upc all gather all are given in Appendix A.

22 44 88 16
00

0.25

0.5

0.75

11

1.25

1.5

1.75

22

2.25

2.5

2.75

33

3.25

3.5

Figure 20: Flyer run times of pull-based upc all exchange for 1000 iterations

26

A significant performance increase was achieved in the strict array implementation of the MYSYNC
synchronization mode for upc all permute. This is because upc all permute requires much
less communication among all the threads. Each thread has at most two other threads it needs
to communicate with, the thread it needs to send its data to and the thread it needs to receive
data from. So if there is one slow thread in the system it will affect at most two other threads
besides itself. In addition, even when there is a even workload the MYSYNC implementation of
upc all permute outperforms the ALLSYNC implementation. Figure 21 shows the performance
of upc all permute.

Push-based implementations of all of relocalization collective operations were implemented. They
show performance similar to the pull-based implementations. This data is given in Appendix A.

22 44 88 16
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

1.1

1.2

1.3

1.4

22 44 88 16
00
11
22
33
44
55
66
77
88
99

10
11
12
13
14
15
16

Figure 21: Flyer run times of pull-based upc all permute for 1000 iterations

27

9.2 Lionel

Although the majority of the testing was done on Flyer, Lionel was also used for testing purposes.
Lionel is a 16 node Beowulf cluster connected by a fiber optic Myrinet switch. Each node is a dual
processor 2GHz Pentium 4 with 2GB of memory. The MuPC compiler version number 1.0.7pre
and the GASNet compiler version number 1.1.1 were used. To conserve time on Lionel the number
of iterations was reduced. Also, at the time one node was unavailable so the implementations were
only tested up to fifteen processors.

The run times for MTU’s MuPC compiler were slightly different than the ones observed on Flyer.
Since MuPC treats local shared pointers the same as it does for remote shared pointers, the overall
times were much slower. The MYSYNC implementation of upc all broadcast showed good
performance compared to the ALLSYNC version for both the even workload and uneven work-
load. Also, the uneven workload did not skew the run times as much as it did on Flyer.

The results for upc all exchange were similar to that of Flyer. The MYSYNC implementation
was slower than the ALLSYNC implementation. However the uneven workload skewed the run
times on upc all exchange on Lionel much more than it did on Flyer.

For both an even and uneven workload the MYSYNC implementation of
upc all permute performed much better than that of the ALLSYNC implementation. Also, the
uneven workload did not skew the run times as much on Lionel as it did on Flyer, which can be
seen in Figure 24.

The following are run times using MTU’s MuPC compiler.

28

22 44 88 15
00

11

22

33

44

55

66

77

88

99

10

11

22 44 88 15
00

11

22

33

44

55

66

77

88

99

10

11

12

13

14

Figure 22: MuPC run times of pull-based upc all broadcast for 200 iterations.

29

22 44 88 15
00

11

22

33

44

55

66

77

88

99

10

11

12

13

14

22 44 88 15
00

22

44

66

88

10

12

14

16

18

20

Figure 23: MuPC run times of pull-based upc all exchange for 200 iterations.

30

22 44 88 15
00

0.2

0.4

0.6

0.8

11

1.2

1.4

1.6

1.8

22

22 44 88 15
00

0.25

0.5

0.75

11

1.25

1.5

1.75

22

2.25

Figure 24: MuPC run times of pull-based upc all permute for 200 iterations.

31

The following are run times using Berkeley’s GASNet compiler.

22 44 88 15
00

11

22

33

44

55

66

77

88

99

10

11

12

13

14

22 44 88 15
00

2.5

55

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

35

Figure 25: GASNet run times of pull-based upc all broadcast for 20 iterations.

32

22 44 88 15
00

0.5

11

1.5

22

2.5

33

3.5

44

4.5

55

5.5

66

6.5

22 44 88 15
00

2.5

55

7.5

10

12.5

15

17.5

20

22.5

25

27.5

Figure 26: GASNet run times of pull-based upc all permute for 20 iterations.

33

The run times for Berkley’s compiler on the cluster were much slower than that of HP’s compiler
on Flyer. However for upc all broadcast the trend of the MYSYNC implementation outper-
forming the ALLSYNC implementation continued. Also, similar to performance on Flyer, the
uneven workload skewed the run times significantly, as can be seen in Figure 25.

The performance of upc all permute using Berkley’s compiler on the cluster showed results
similar to Flyer as can be seen in Figure 26. The uneven workload skewed the run times for the
ALLSYNC implementation but did not effect the MYSYNC implementation nearly as much.

10 Future work

During the course of this work several questions were answered and several ideas about new work
arose. There are several other techniques that could have been used to implement the MYSYNC
synchronization mode for the collective operations that were not investigated. There may also be
techniques to improve the performance and functionality of pairwise synchronization. Some of
those questions and techniques are:

1. Explore if a queue is necessary. It was assumed that the queue was needed to facilitate
which order the threads entered the collective operation so that threads would be able to
read and/or write to the threads in the order they arrived so that the first threads could leave
sooner. However it may be possible that another scheme is more efficient.

2. Provided that the queue is necessary, determine another mechanism to facilitate it.
Currently the queue uses a lock to ensure that only one thread at a time is able to update the
queue. This system does not scale well and a better solution may be possible.

3. Maintaining a local bit vector of which threads have been read and or written to. This
may be more efficient. The existing system uses polling to read the remote values of the
strict array which can lead to poor performance [8].

4. Implement a back off scheme. The current implementation uses polling to determine if
other threads have read and or written their data. It may be possible to implement a back off
scheme in which a thread that detects that another thread is not ready goes into a wait loop
so it does not relentlessly poll the other thread and thereby degrade performance [8].

5. Compare combinations of synchronization modes. A complete comparison of all nine
combinations of synchronization modes would be useful for future programmers to deter-
mine which synchronization mode they wish to use for specific situations.

6. Explore platform specific implementations. The collective operations were written at the
UPC level. A lower level implementation, possibly even platform specific implementations,
would most likely yield improved performance.

34

7. Explore tree based implementation of the MYSYNC synchronization mode. It may be
possible to decrease the number of communication steps that can be done in parallel by
converting the existing algorithm to use a tree structure.

8. Explore tree based implementation of sub set barrier. The implementation of the pair-
wise barrier was done in a linear fashion. A tree implementation should prove to have much
better performance. A comparison between the existing upc barrier and the tree pairwise
barrier would be of interest.

11 Summary

Using pairwise synchronization through a handshaking procedure of locks opens the door to new
algorithm designs in UPC. Although pairwise synchronization could be used to implement the
MYSYNC synchronization mode of the collective operations it was found that a strict array im-
plementation was more efficient. In the case of upc all permute the MYSYNC synchronization
mode has proven to be much more efficient than the ALLSYNC synchronization mode. Similarly
when one thread has a larger workload than the other threads MYSYNC is efficient than ALL-
SYNC for upc all broadcast, upc all gather, and
upc all scatter. However, the results for upc all exchange and
upc all gather all show that the UPC OUT MYSYNC portion of the synchronization mode is sim-
ilar to the UPC OUT ALLSYNC synchronization mode when all threads need to read and write to all
other threads and therefore it does not improve performance when there is a slow thread.

35

Appendix A

Code base

This appendix includes the items that would need to be added to the reference implementation’s
upc collective.c file, and a complete implementation of the upc all broadcast.

#include <upc.h>
#include "upc_collective.h"

// The following was added to the original upc_collective.c

// struct to hold thread number and collective count
struct upc_first
{
int count;
int thread;
};

// queue to keep track of what thread arrives first in their collective call
shared [1] struct upc_first upc_order[THREADS];

// array for notification that data has been recieved
shared [1] strict int strict_upc_ready[THREADS][THREADS];

// array to keep track of collective count
shared [1] strict int strict_upc_count[THREADS];

int upc_coll_init_flag = 0;

// lock for the queue
upc_lock_t *readylock;

36

void upc_all_broadcast(shared void *dst,shared const void *src,size_t
nbytes, upc_flag_t sync_mode)

{
int i;
int initiator;
int local_count;
struct upc_first local_first;

if (!upc_coll_init_flag) {
upc_coll_init();
}

#ifdef _UPC_COLL_CHECK_ARGS
upc_coll_err(dst, src, NULL, nbytes, sync_mode, 0, 0, 0,

UPC_BRDCST);
#endif

#ifndef PULL
#ifndef PUSH
#define PULL TRUE
#endif
#endif

// increment the count of collectives
strict_upc_count[MYTHREAD]++;
local_count = strict_upc_count[MYTHREAD];

initiator = upc_threadof((shared char *) src);

// Synchronize using barriers in the case ALLSYNC.
if (˜(UPC_IN_NOSYNC & sync_mode)) {

upc_barrier;
}

#ifdef PULL

// Each thread "pulls" the data from the source thread.
if (UPC_IN_MYSYNC & sync_mode) {

while(1) {
if (local_count == strict_upc_count[initiator]) {

upc_memcpy((shared char *)dst + MYTHREAD,(shared char *)
src,nbytes);

break;
}

}

37

}
else {

upc_memcpy((shared char *)dst + MYTHREAD,(shared char *)src,
nbytes);

}

// wait for all threads to receive the data in the case of MYSYNC
if (UPC_OUT_MYSYNC & sync_mode) {

if (MYTHREAD == initiator) {
strict_upc_ready[initiator][MYTHREAD] = 1;
for(i = 0; i <THREADS;i++) {

if (strict_upc_ready[initiator][i] == 1) {
strict_upc_ready[initiator][i] = 0;
}

else {
i--;
}

}

}
else {

strict_upc_ready[initiator][MYTHREAD] = 1;
}

}

#endif

#ifdef PUSH

// The source thread "pushes" the data to each destination.
// Enter thread number into the queue in case of MYSYNC
if (UPC_IN_MYSYNC & sync_mode) {

upc_lock(readylock);
for(i = 0; i < THREADS; i++) {

local_first = upc_order[i];
upc_fence;
if (local_first.count < local_count) {

upc_order[i].thread = MYTHREAD;
upc_order[i].count = local_count;
upc_fence;
break;
}

}
upc_unlock(readylock);

38

if (initiator == MYTHREAD) {
for (i=0; i<THREADS; i++) {

local_first = upc_order[i];
if(local_first.count == local_count) {

upc_memcpy((shared char *)dst + local_first.thread,
(shared char *)src,nbytes);

// Notify thread that the data has been received
if (UPC_OUT_MYSYNC & sync_mode) {

strict_upc_ready[initiator][local_first.thread] = 1;
}

}
else {

i--;
}

}
}

}
else {

if (initiator == MYTHREAD) {
for (i=0; i<THREADS; ++i) {

upc_memcpy((shared char *)dst + i,(shared char *)src,nbytes);
if (UPC_OUT_MYSYNC & sync_mode) {

strict_upc_ready[initiator][i] = 1;
}

}
}

}
// wait for all threads to receive the data in the case of MYSYNC
if (UPC_OUT_MYSYNC & sync_mode) {

while(1) {
if (strict_upc_ready[initiator][MYTHREAD] == 1) {

strict_upc_ready[initiator][MYTHREAD] = 0;
break;
}

}
}

#endif

// Synchronize using barriers in the case of ALLSYNC.
if (˜(UPC_OUT_NOSYNC & sync_mode)) {

upc_barrier;
}

}

39

Appendix B

Run times

The following run times were generated using Field Test Version 2.2 of Compaq’s compiler on
Flyer. Additionally a comparison of the number of communication steps in the respective collec-
tive operations is presented.

Total Messages
Collective ALLSYNC MYSYNC
upc all broadcast THREADS-1 THREADS-1
upc all scatter THREADS-1 THREADS-1
upc all gather THREADS-1 THREADS-1
upc all exchange THREADS-1 THREADS*(THREADS-1)
upc all gather all THREADS-1 THREADS*(THREADS-1)
upc all permute THREADS-1 THREADS

Table 3: Communication steps to facilitate synchronization

Maximum parallelism
Collective ALLSYNC MYSYNC
upc all broadcast 2*dlg(THREADS)e THREADS-1
upc all scatter 2*dlg(THREADS)e THREADS-1
upc all gather 2*dlg(THREADS)e THREADS-1
upc all exchange 2*dlg(THREADS)e THREADS-1
upc all gather all 2*dlg(THREADS)e THREADS-1
upc all permute 2*dlg(THREADS)e 2

Table 4: Minimum number of communication steps in parallel

40

22 44 88 16
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

1.1

1.2

1.3

1.4

22 44 88 16
00
11
22
33
44
55
66
77
88
99

10
11
12
13
14
15
16

Figure 27: Flyer run times of pull-based upc all broadcast for 1000 iterations.

41

22 44 88 16
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

1.1

1.2

1.3

22 44 88 16
00
11
22
33
44
55
66
77
88
99

10
11
12
13
14
15

Figure 28: Flyer run times of a pull-based upc all scatter for 1000 iterations.

42

22 44 88 16
00

22

44

66

88

10

12

14

16

18

22 44 88 16
00

2.5

55

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

Figure 29: Flyer run times of pull-based upc all gather 1000 iterations.

43

22 44 88 16
00

0.5

11

1.5

22

2.5

33

3.5

44

4.5

55

22 44 88 16
00

0.5

11

1.5

22

2.5

33

3.5

44

4.5

55

5.5

Figure 30: Flyer run times of pull-based upc all gather all for 1000 iterations.

44

22 44 88 16
00

0.25

0.5

0.75

11

1.25

1.5

1.75

22

2.25

2.5

2.75

33

3.25

22 44 88 16
00

0.25

0.5

0.75

11

1.25

1.5

1.75

22

2.25

2.5

2.75

33

3.25

3.5

Figure 31: Flyer run times of a pull-based upc all exchange for 1000 iterations.

45

22 44 88 16
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

1.1

1.2

1.3

1.4

22 44 88 16
00
11
22
33
44
55
66
77
88
99

10
11
12
13
14
15
16

Figure 32: Flyer run times of a pull-based upc all permute for 1000 iterations.

46

22 44 88 16
00

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

11
1.1
1.2
1.3
1.4
1.5
1.6

22 44 88 16
00
11
22
33
44
55
66
77
88
99

10
11
12
13
14
15
16

Figure 33: Flyer run times of push-based upc all broadcast for 1000 iterations.

47

22 44 88 16
00

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

11
1.1
1.2
1.3
1.4
1.5
1.6

22 44 88 16
00

22

44

66

88

10

12

14

16

18

Figure 34: Flyer run times of push-based upc all scatter for 1000 iterations.

48

22 44 88 16
00
11
22
33
44
55
66
77
88
99

10
11
12
13
14
15

22 44 88 16
00

2.5

55

7.5

10

12.5

15

17.5

20

22.5

25

27.5

Figure 35: Flyer run times of a push-based upc all gather 1000 iterations.

49

22 44 88 16
00

0.25

0.5

0.75

11

1.25

1.5

1.75

22

2.25

2.5

2.75

33

3.25

22 44 88 16
00

0.25

0.5

0.75

11

1.25

1.5

1.75

22

2.25

2.5

2.75

33

3.25

3.5

Figure 36: Flyer run times of a push-based upc all gather all for 1000 iterations.

50

22 44 88 16
00

0.25

0.5

0.75

11

1.25

1.5

1.75

22

2.25

2.5

2.75

33

3.25

22 44 88 16
00

0.25

0.5

0.75

11

1.25

1.5

1.75

22

2.25

2.5

2.75

33

3.25

3.5

Figure 37: Flyer run times of a push-based upc all exchange for 1000 iterations.

51

22 44 88 16
00

0.2

0.4

0.6

0.8

11

1.2

1.4

1.6

1.8

22 44 88 16
00
11
22
33
44
55
66
77
88
99

10
11
12
13
14
15
16

Figure 38: Flyer run times of a push-based upc all permute for 1000 iterations.

52

References

[1] T. El-Ghazawi, W. Carlson, and J. Draper. UPC language specifications, V1.1. Technical
report, George Washington University and IDA Center for Computing Sciences, March 24,
2003. http://www.gwu.edu/ upc/docs/upc spec 1.1.1.pdf

[2] E. Wiebel, D. Greenberg and S. Seidel. UPC Collectives Operations Specifications, Dec 2003.
http://www.gwu.edu/ upc/docs/UPC Coll Spec V1.0.pdf

[3] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta,
T. von Eicken, and K. Yelick. Parallel Programming in Split-C 1993
http://www.cs.berkeley.edu/projects/parallel/castle/split-c/split-c.tr.html

[4] B. Gorda, K. Warren and E. D. Brooks III, Programming in PCP, June, 1991
http://citeseer.nj.nec.com/330095.html

[5] R.W. Numrich and J.K. Reid. Co-Array Fortran for parallel programming. Fortran Forum,
volume 17, no 2, section 3, 1998

[6] P. N. Hilfinger (editor), D. Bonachea, D. Gay, S. Graham, B. Liblit, G. Pike, and
K. Yelick, Titanium Language Reference Manual, Version 1.10, 4 November 2003
http://www.cs.berkeley.edu/Research/Projects/titanium/doc/lang-ref.pdf

[7] G. J. Holzman, The Model Checker Spin, IEEE Trans. on Software Engineering, Vol. 23, No.
5, May 1997, pp. 279-295.

[8] F. Petrini, D. J. Kerbyson, S. Pakin, The Case of the Missing Supercomputer Performance:
Achieving Optimal Performance on the 8,192 Processors of ASCI Q, 2004, http://www.sc-
conference.org/sc2003/paperpdfs/pap301.pdf

[9] T. A. El-Ghazawi, W. W. Carlson, J. M. Draper, UPC Language Specifications V1.1.1, Octo-
ber 7, 2003 http://www.gwu.edu/ upc/docs/upc spec 1.1.1.pdf

53

