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Abstract

This paper investigates the complexity of verifying livelock freedom and weak/strong self-stabilization
in parameterized unidirectional ring and bidirectional chain topologies. Specifically, we illustrate that
verifying livelock freedom of parameterized rings consisting of self-disabling and deterministic processes is
undecidable (specifically, Π0

1-complete). This result implies that verifying weak/strong self-stabilization
for parameterized rings of self-disabling processes is also undecidable. The results of this paper strengthen
previous work on the undecidability of verifying temporal logic properties in symmetric rings. The proof
of undecidability is based on a reduction from the periodic domino problem.
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1 Introduction

Verifying strong convergence is known to be a difficult task [17], where from any state, every execution of
a distributed system recovers to a set of legitimate states. From any state, a weakly converging system has
at least one execution that recovers to legitimate states. Designing and verifying convergence are important
problems as they have applications in several fields such as network protocols [7,19], multi-agent systems [16],
cloud computing [22], and equilibrium in socioeconomic systems [18]. A common feature of such systems
is that they comprise a finite but unbounded number of components/processes that communicate based on
a specific network topology; i.e., parameterized systems. Deadlock freedom and livelock freedom outside
legitimate states are necessary and sufficient conditions for strong convergence, whereas a system is weakly
converging if and only the system can reach the legitimate states from each illegitimate state via some
execution. There are numerous methods [6,11,14,15] for the verification of safety properties of parameterized
systems, where safety requires that nothing bad happens in system executions (e.g., no deadlock state is
reached). Apt and Kozen [3] illustrate that, in general, verifying Linear Temporal Logic (LTL) [8] properties
for parameterized systems is Π0

1-complete. Suzuki [24] shows that the verification problem remains Π0
1-

complete even for unidirectional rings where all processes have a similar code that is parameterized in the
number of nodes.
Contributions. In this paper, we extend this result for the special case where the property of interest is
livelock freedom, where every system state is under consideration. We make restrictive assumptions about
processes, that they are deterministic, have constant state spaces, and are self-disabling, i.e., no actions of
a process are enabled immediately after it acts. Specifically, we illustrate that, even when processes are
symmetric, deterministic, self-disabling, and have a constant state space, livelock detection is undecidable
(Σ0

1-complete) on unidirectional ring and bidirectional chain topologies. Further, we conclude that verifying
strong or weak convergence on these topologies is Π0

1-complete. The proof of undecidability in our work is
based on a reduction from the periodic domino problem.
Organization. Section 2 presents some basic concepts. Section 3 provides a formal characterization of
livelocks in unidirectional rings. Then, Section 4 represents a well-known undecidable problem, which we
will use to show the undecidability of verifying livelock freedom in rings. Section 5 illustrates that verifying
livelock freedom of unidirectional ring and bidirectional chain protocols is undecidable. Section 6 discusses
related work, and Section 7 summarizes our contributions and outlines some future work.

2 Basic Concepts

This section presents the definition of protocols and action graphs. A protocol p defines the behavior for
a network of N > 1 processes (finite-state machines), where each process Pi owns a set of variables whose
valuation determines its state. The state of the network/system is defined by the current states of all
processes. A process acts when it atomically changes its state based on its current state and the states of its
neighboring processes, where neighbors are defined by the network topology. For example, in a unidirectional
ring topology consisting of N processes, each process Pi (where 0 ≤ i ≤ N − 1) has a neighbor Pi−1, where
subtraction is modulo N . An execution of a protocol is a sequence of states C0, C1, . . . , Ck where there is a
transition from Ci to Ci+1 for every i ∈ Nk.

We consider symmetric protocols, where each process has identical rules for changing its state. Further-
more, we assume that the state space Σ and rules for each process are independent of the topology (e.g.,
number of processes).

Definition 2.1 (Transition Function). Let Pi be any process with a state variable xi in a unidirectional
ring protocol p. We define its transition function ξ : Σ × Σ → Σ as a partial function such that ξ(a, b) = c

if and only if Pi has an action (xi−1 = a ∧ xi = b −→ xi := c; ). In other words, ξ can be used to define all
actions of Pi in the form of a single parametric action:

((xi−1, xi) ∈ Pre(ξ)) −→ xi := ξ(xi−1, xi);

where (xi−1, xi) ∈ Pre(ξ) checks to see if the current xi−1 and xi values are in the preimage of ξ.
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We use triples of the form (a, b, c) to denote actions (xi−1 = a ∧ xi = b −→ xi := c; ) of any process Pi

in a unidirectional ring protocol. To visually represent the structure of a process, we depict a protocol by a
labeled directed multigraph where each action (a, b, c) in the protocol appears as an arc from node a to node
c labeled b in the graph. For example, consider the self-stabilizing sum-not-2 protocol given in [12]. Each
process Pi has a variable xi ∈ N3 and actions (xi−1 = 0∧xi = 2 −→ xi := 1), (xi−1 = 1∧xi = 1 −→ xi := 2),
and (xi−1 = 2∧xi = 0 −→ xi := 1). This protocol converges to a state where the sum of each two consecutive
x values does not equal 2 (i.e., the state predicate ∀i : (xi−1 + xi 6= 2)). We represent this protocol with a
graph containing arcs (0, 2, 1), (1, 1, 2), and (2, 0, 1) as shown in Figure 1.

0 1 2
2

1

0

Figure 1: Graph representing sum-not-2 protocol.

Since protocols consist of self-disabling processes, an action (a, b, c) cannot coexist with action (a, c, d)
for any d. Moreover, when the protocol is deterministic, a process cannot have two actions enabled at the
same time; i.e., an action (a, b, c) cannot coexist with an action (a, b, d) where d 6= c.
Livelock, deadlock, and closure. A legitimate state is a state which we want the system to be in. Let I
be a predicate representing the legitimate states for some protocol p. A livelock of p is an infinite execution
which never reaches I. When legitimate states are not specified, we assume a livelock is any infinite execution.
A deadlock of p is an state in ¬I which has no outgoing transition; i.e., no process is enabled to act. The
state predicate I is closed under p when no transition exists which brings the system from a state in I to a
state in ¬I. These concepts allow us to define weak and strong self-stabilization (adapted from [17]).

Definition 2.2 (Strong Stabilization). A protocol p is (strongly) self-stabilizing with respect to its legitimate
state predicate I if and only if from each illegitimate state, all executions reach, and remain in, the set of
legitimate states. That is, p is livelock-free and deadlock-free, and I is closed under p.

Definition 2.3 (Weak Stabilization). A protocol p is weakly self-stabilizing with respect to its legitimate
state predicate I if and only if from each illegitimate state, an execution exists to a legitimate state, and I is
closed under p. Notice that deploying a weakly stabilizing protocol under a strongly fair scheduler guarantees
convergence to I, even if there are livelocks in ¬I. Strong fairness ensures that any process that is infinitely
often enabled will act infinitely often.

3 Livelock Characterization

This section presents a formal characterization of livelocks in parameterized rings. This characterization
is based on a notion of sequences of actions that are propagated in a ring, called propagations and a leads
relation between the propagations. We shall use propagations and the leads relation to specify necessary and
sufficient conditions for the existence of livelocks in symmetric unidirectional ring protocols of self-disabling
processes.
Propagations. When a process acts and enables its successor, it propagates its ability to act. The
successor may enable its own successor by acting, and the pattern may continue indefinitely. This behavior
is called a propagation and is represented by a sequence of parameterized actions. Consider a propagation
〈(a, b, c), (d, e, f)〉 of length 2 which says a state exists which allows some Pi to perform action (a, b, c) which
enables Pi+1 to perform (d, e, f). Since Pi assigns its variable xi to c and Pi+1 is then enabled to perform
(d, e, f) which relies on xi = d and xi+1 = e, we know c = d. We therefore write the jth action of a
propagation as (aj−1, bj , aj). It follows that a propagation is a walk through the protocol’s graph. For
example, the sum-not-2 protocol has a propagation 〈(0, 2, 1), (1, 1, 2), (2, 0, 1), (1, 1, 2)〉 whose actions can be
executed in order by processes Pi, Pi+1, Pi+2, and Pi+3 from a state (xi−1, xi, xi+1, xi+2, xi+3) = (0, 2, 1, 0,
1). A propagation is periodic with period m if its jth action and (j +m)th action are the same for every
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index j. A periodic propagation corresponds to a closed walk of length m in the graph. The sum-not-2
protocol has such a propagation of period 2: 〈(1, 1, 2), (2, 0, 1)〉.
“Leads” relation. An action leads another action if and only if the value of a process’s variable after
executing the first action is the same as the value required for the process to execute the second action.
Formally, this means an action (a, b, c) leads (d, e, f) if and only if e = c. Similarly, a propagation leads
another if and only if, for every index j, its jth action leads the jth action of the other propagation. Therefore
if we have a propagation whose jth action is (aj−1, bj , aj) which leads another propagation whose jth action
is (dj−1, ej , dj), then we know ej = aj and write the led action as (dj−1, aj , dj). In the context of the protocol
graph, this corresponds to two walks (representing propagations) where the jth destination node label of the
first walk matches the jth arc label of the second walk for each index j. After some first propagation executes
through a ring segment Pq, . . . , Pq+m−1, a second propagation can execute through the same segment only
if the first propagation leads the second. This is true since each process Pq+j performs the jth action of the
first propagation, assigning its variable xq+j to some value aj . If the second propagation executes through
the segment, each Pq+j must perform the jth action of the second propagation from a state where xq+j = aj .
As such, each jth action of the first propagation must lead the jth action of the second propagation. Thus,
the first propagation itself must lead the second.

We focus on scenarios where for some positive integers m and n, there are m periodic propagations with
period n where the ith propagation leads the (i + 1)th propagation for each i (and the last propagation
leads the first). This case can be represented succinctly. Using X as a wildcard value (i.e., any value, do not
assume X = X), recall that if action is defined to lead another action (X, a, X) when it has the form (X, X, a).
Also recall that a propagation of period n has the form 〈(an−1, X, a0), (a0, X, a1), . . . , (an−2, X, an−1)〉. Thus,
if we write each ith propagation as 〈(ain−1, X, a

i
0), (a

i
0, X, a

i
1), . . . , (a

i
n−2, X, a

i
n−1)〉, then we can determine the

X values as 〈(ain−1, a
i−1
0 , ai0), (a

i
0, a

i−1
1 , ai1), . . . , (a

i
n−2, a

i−1
n−1, a

i
n−1)〉. This case is succinctly visualized by an

m × n matrix as shown in Remark 3.1 where for each row i and column j, the triple (aij−1, a
i−1
j , aij) is an

action in the protocol.

Remark 3.1. Consider the following m× n matrix M whose element at row i and column j is denoted as
M [i, j] = aij .

M =











a00 a01 · · · a0n−1

a10 a11 · · · a1n−1

...
...

...
...

am−1
0 am−1

1 · · · am−1
n−1











Assuming a unidirectional ring protocol of self-disabling, symmetric processes, the following statements are
equivalent:

• The triple (aij−1, a
i−1
j , aij) is an action in the protocol for every row i ∈ Nm and column j ∈ Nn.

• The protocol contains m propagations of period n where each ith propagation leads the (i + 1)th
propagation for each i ∈ Nm. For each i ∈ Nm and j ∈ Nn, the jth action of the ith propagation is
(aij−1, a

i−1
j , aij).

Example 3.2. Livelock freedom of the sum-not-2 protocol.

Recall from Figure 1 that the sum-not-2 protocol consists of three parameterized actions (0, 2, 1), (1, 1, 2),
and (2, 0, 1). Every periodic propagation in this protocol alternates between actions (2, 0, 1) and (1, 1, 2).
These propagations require xi values to alternate between 0 and 1 for each subsequent i. However, these
propagations assign xi values alternating between 1 and 2 for each subsequent i. Clearly no periodic prop-
agation can execute through a ring segment of alternating 1 and 2 values, therefore no propagation leads
another in this protocol. For any ring size, an infinite execution requires that actions propagate around the
ring. This is not possible since no propagation leads another, therefore the protocol is livelock-free.

We form the same argument in terms of walks in the protocol’s graph. Every closed walk in the graph
alternates between visiting node 1 and node 2 indefinitely. No closed walk exists which alternates between
visiting arcs labeled 1 and 2, therefore no periodic propagation leads another in the this protocol. As such,
no livelock exists.
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Lemma 3.3. Assume a ring protocol where processes are symmetric. Let C = (c0, . . . , cN−1) and C ′ =
(c′0, . . . , c

′
N−1) be state of a ring of size N such that ∃k : ∀i : c′i = ci+k. In other words, if C is rotated

clockwise by k positions, then it equals C ′. If an execution exists from C to C ′, then an infinite execution
exists.

Proof. Since processes are symmetric, we know a second execution exists from C ′ to a state C ′′ = (c′′0 , . . . , c
′′
N−1)

where c′′i = c′i+k = ci+2k for each i. States C ′ and C ′′ meet the same respective conditions as C and C ′,
therefore an infinite execution exists. Emerson and Namjoshi [10] similarly use this notion of rotational
symmetry to reason about rings of symmetric processes.

Example 3.4. 3-coloring unidirectional ring protocol with a livelock.

Consider a unidirectional ring protocol where each process Pi has a variable xi ∈ N3 whose value repre-
sents a color. Our goal is to reach a state where no two consecutive colors are equal. As such, a process Pi

must act when xi−1 = xi. Give each process an action (xi−1 = xi −→ xi := xi − 1; ) where subtraction is
modulo 3. In our triple notation, there are 3 actions (0, 0, 2), (1, 1, 0), and (2, 2, 1), one for each possible x
value. Figure 2 illustrates the protocol as a graph.

0 1 2

0

1 2

Figure 2: Graph representing the 3-coloring protocol.

Clearly this graph contains a closed walk starting at node 1 and visiting nodes 0, 2, and 1.
1. We can find a closed walk through arcs labeled 0, 2, and 1 by starting at node 0 and visiting nodes 2,

1, and 0. This walk corresponds to the periodic propagation 〈(0, 0, 2), (2, 2, 1), (1, 1, 0)〉.
2. We now look for a closed walk through arcs labeled 2, 1, and 0 by starting at node 2 and visiting nodes

1, 0, and 2. This corresponds to the periodic propagation 〈(2, 2, 1), (1, 1, 0), (0, 0, 2)〉.
3. Finally, we find a closed walk through arcs labeled 1, 0, and 2 by starting at node 1 and visiting 0, 2,

and 1. We started with this same sequence of nodes, therefore we are done and have found the first
periodic propagation to be 〈(1, 1, 0), (0, 0, 2), (2, 2, 1)〉.

Indeed, we have found three periodic propagations which lead each other in order (first leads second, second
leads third, third leads first):

〈(1, 1, 0), (0, 0, 2), (2, 2, 1)〉

〈(0, 0, 2), (2, 2, 1), (1, 1, 0)〉

〈(2, 2, 1), (1, 1, 0), (0, 0, 2)〉

We can use Remark 3.1 to view these compactly as a matrix of elements aij where (a
i
j−1, a

i−1
j , aij) denotes

the jth action of the ith propagation.





a00 a01 a02
a10 a11 a12
a20 a21 a22



 =





0 2 1
2 1 0
1 0 2





We can explicitly construct a ring of 9 processes whose initial state admits a livelock. Let the initial state
be as follows.

(x0, x1, . . . , x8) = (a20, a
2
1, . . . , a

0
2) = (1, 0, 2, 2, 1, 0, 0, 2, 1)

From this state, processes P0, P3, and P6 can act to reach (0, 0, 2, 1, 1, 0, 2, 2, 1) which has the same values
as the initial state but rotated by 4 positions to the right (each new xi value is equal to the original value
of xi−4). By Lemma 3.3, a livelock exists.
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Lemma 3.5. Assume a unidirectional ring protocol of symmetric, self-disabling processes. Given m prop-
agations with period n, where the (i − 1)th propagation leads the ith propagation for each index i (note:
(n− 1)th leads 0th when i = 0), the protocol contains a livelock for some ring size.

Proof. Write the ith propagation as

〈

(ain−1, a
i−1
0 , ai0), (a

i
0, a

i−1
1 , ai1), . . . , (a

i
n−2, a

i−1
n−1, a

i
n−1)

〉

Construct a ring of mn processes with an initial state

(

am−1
0 , am−1

1 , . . . , am−1
n−1 , . . . , a

1
0, a

1
1, . . . , a

1
n−1, a

0
0, a

0
1, . . . , a

0
n−1

)

In this state, every process whose index is a multiple of n is enabled. If each process executes its enabled
action, we obtain the following state.

(

a00, a
m−1
1 , . . . , am−1

n−1 , . . . , a
2
0, a

1
1, . . . , a

1
n−1, a

1
0, a

0
1, . . . , a

0
n−1

)

If each propagation executes n− 1 more times, we reach the following state.

(

a00, a
0
1, . . . , a

0
n−1, . . . , a

2
0, a

2
1, . . . , a

2
n−1, a

1
0, a

1
1, . . . , a

1
n−1

)

Every xi now holds the initial value of xi−n, therefore a livelock exists by Lemma 3.3.

Lemma 3.6. Assume a unidirectional ring protocol of symmetric, self-disabling processes. The protocol has
a livelock if and only if there exist some m propagations with some period n, where the (i− 1)th propagation
leads the ith propagation for each index i.

Proof. Consider a fixed state C in the livelock wherem processes are enabled at indices i0, . . . , im−1. Between
two visitations of C, the propagation which started at index ij has shifted to index ij+k for some k ∈ Nm.
Regardless of the value of k, we know that if C is visited m times after the initial visitation, the propagation
which started at index ij will be at ij+mk = ij . Thus, each of the m propagations will repeat at least every
mth time the system reaches C. Such a list of propagations is necessary to form a livelock, and Lemma 3.5
shows it is sufficient, thus completing the proof.

4 Tiling

With our new characterization of livelocks in a unidirectional ring protocol from Lemma 3.6, we can explore
the difficulty of livelock detection. We use the protocol graph as an intuitive bridge between problems. To
complete the bridge, we introduce a well-studied undecidable problem, the domino problem, and reduce
livelock detection to one of its variants.

4.1 Variants of the Domino Problem

Problem 4.1 (The Domino Problem).
• Input: A set of square tiles with a color (label) on each edge. All tiles are the same size.
• Question: Can copies of these tiles cover an infinite plane by placing them side-by-side, without
changing tile orientations, such that edge colors match where tiles meet? In other words, can the
following be satisfied for each tile T [i, j] on the plane?

(T [i, j].N = T [i− 1, j].S) ∧ (T [i, j].W = T [i, j − 1].E)

where T [i, j].N is the color on the north edge of tile T [i, j]. Similarly, the .S, .W , and .E suffixes refer
to south, west, and east edge colors of their respective tiles.
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The domino problem was introduced by Wang [26], and the square tiles are commonly referred to as
Wang tiles. Berger showed the problem to be undecidable [4]. Specifically, the problem is co-semi-decidable,
also written as Π0

1-complete using the arithmetical hierarchy notation of Rogers [23].
A tile set is NW-deterministic when each tile in the set can be identified uniquely by its north and west

edge colors. In this case, if a tile meets another at its southwest (resp. northeast) corner, then the tile to its
south (resp east) side is uniquely determined. Kari proved that the domino problem remains undecidable
for NW-deterministic tile sets [21].

Problem 4.2 (The Periodic Domino Problem). This domino problem asks whether an infinite plane can
be covered by placing copies of a fixed rectangular arrangement of tiles side-by-side such that a repeating
pattern forms. In other words, can Problem 4.1 be solved such that there exist m and n such that the
following be satisfied for each tile T [i, j] on the plane?

(T [i, j] = T [i+m, j]) ∧ (T [i, j] = T [i, j + n])

Problem 4.2 is equivalent to asking whether a torus can be completely covered using the same tiling rules.
Gurevich and Koriakov [20] give a semi-algorithm which terminates if the given tile set can periodically tile
the plane or cannot tile the plane, otherwise it does not halt and the plane can be tiled, but not periodically.
It follows that this problem is semi-decidable, also written as Σ0

1-complete using notation of Rogers [23].
Action tiles. A tile is SE-identical when it has identical south and east edge colors. For such sets, we
refer to the south and east edge colors as of a tile T [i, j] as T [i, j].SE . We write (a, b, c) to denote such a
tile with colors a, b, c, and c on its west, north, east, and south edges respectively. A set of SE-identical
tiles is W-disabling when no two tiles which have the same west color have matching north and south colors
respectively. In other words, a SE-identical tile set is W-disabling if and only if for every tile (a, b, c) in the
set, no color d exists such that (a, c, d) is also in the set. Due to the following lemma, we use the term action
tile strictly to denote tiles in a SE-identical W-disabling tile set and action tile set to denote the set itself.

The triples that we use to represent tiles in an action tile set are subject to the same constraints as actions
in a unidirectional ring protocol of symmetric, self-disabling processes. That is, the W-disabling constraint
for tiles is equivalent to the self-disabling constraint for actions. It states that, for every triple (a, b, c) in the
set, no d exists such that (a, c, d) is also in the set. As such, we have a bijection between these kinds of tile
sets and protocols.

4.2 Equivalence to Livelock Detection

Lemma 4.3. There is a bijective function which maps a unidirectional ring protocol of self-disabling processes
to an action tile set such that the protocol contains a livelock if and only if the tile set admits a periodic
tiling. The mapping preserves determinism (resp. NW-determinism) in the protocol (resp. tile set).

Proof. Recall that a livelock can be characterized by a list of m periodic propagations of length n where
each propagation leads the next one in the list (and the last leads the first). From Remark 3.1, we know
that this is equivalent to an m × n matrix where for each row i and column j, the element aij forms an

action (aij−1, a
i−1
j , aij) in the protocol with the help of its west and north neighbors aij−1 and ai−1

j (with
indices computed modulo the matrix bounds). It is straightforward to see that satisfying these constraints
is equivalent to solving the periodic domino problem, where each action (aij−1, a

i−1
j , aij) must exist as a tile

in the action tile set as shown in Figure 3.

ai
j−1

a
i−1

j

ai
j

ai
j

(a) Wang Tile

ai
j−1

a
i−1

j

aij

(b) Simplified

Figure 3: Tile for action (aij−1, a
i−1
j , aij).
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We already know that there is a bijection between action tile sets and unidirectional ring protocols of
symmetric, self-disabling processes since the tiles and actions respectively are triples conforming to the same
conditions. Therefore, the periodic tiling problem for action tile sets is equivalent to the livelock detection
problem for unidirectional ring protocols of symmetric, self-disabling processes.

Similarly, an action tile set is NW-deterministic if and only if its corresponding protocol is deterministic.
That is, for each triple (a, b, c) in the set, no triple (a, b, d) exists in the set where c 6= d. Thus, our bijection
function (the identity) preserves determinism.

Example 4.4. Fictional “a-b-c” protocol with a livelock.

Figure 4 shows the graph of our example unidirectional ring protocol where each arc corresponds to
an action. Note that the labels a0, . . . , c4 are constants which could equivalently be changed to numbers
0, . . . , 13. The protocol does not attempt to function in any meaningful way, but it does provide an interesting
livelock. First, propagations which characterize the livelock do not correspond to simple cycles in the
protocol’s graph. Secondly, 3 of these 6 propagations correspond to walks which are unique regardless of the
starting node. The 3-coloring protocol of Example 3.4 has a rather boring livelock by comparison since all
propagations form walks which are simple cycles in its graph. Further, these closed walks are identical if we
disregard the starting node.

a0

a1

a2

a3

b0

b1

b2

b3b4

c0

c1 c2

c3c4

c3

c1

c4

c0

c2

a0

a1 a2

a3

a2

a0

b1

b3

b0

b2

b4

b0

Figure 4: “A-b-c” protocol graph.

A livelock can be found by taking a walk through the graph. We start by choosing a closed walk starting
with node a2 and visiting nodes a0, a1, a2, a0, a3, and a2 without considering which arcs were taken.

1. Using the previous nodes as arc labels a0, a1, a2, a0, a3, and a2, start from node b4 to form a closed
walk visiting nodes b0, b1, b0, b2, b3, and b4. This corresponds to the periodic propagation:
〈(b4, a0, b0), (b0, a1, b1), (b1, a2, b0), (b0, a0, b2), (b2, a3, b3), (b3, a2, b4)〉

2. Using the previous nodes as arc labels b0, b1, b0, b2, b3, and b4, start from node c4 to form a closed
walk visiting nodes c0, c1, c2, c0, c3, and c4. This corresponds to the periodic propagation:
〈(c4, b0, c0), (c0, b1, c1), (c1, b0, c2), (c2, b2, c0), (c0, b3, c3), (c3, b4, c4)〉

3. Use previous nodes as arc labels, start at node a2, etc.
4. Use previous nodes as arc labels, start at node b0, etc.
5. Use previous nodes as arc labels, start at node c2, etc.
6. Using the previous nodes as arc labels c0, c3, c4, c0, c1, and c2, start from node a2 to form a closed

walk visiting nodes a0, a1, a2, a0, a3, and a2. We started with this same sequence of nodes, therefore
we are done and have found the first periodic propagation to be:
〈(a2, c0, a0), (a0, c3, a1), (a1, c4, a2), (a2, c0, a0), (a0, c1, a3), (a3, c2, a2)〉

To compactly illustrate all 6 propagations, follow the method of Remark 3.1 and construct a matrix M
where, for each row i and column j, the elements (M [i, j − 1],M [i− 1, j],M [i, j]) form the jth action of the
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ith propagation of our livelock.

M =

















a0 a1 a2 a0 a3 a2
b0 b1 b0 b2 b3 b4
c0 c1 c2 c0 c3 c4
a0 a3 a2 a0 a1 a2
b2 b3 b4 b0 b1 b0
c0 c3 c4 c0 c1 c2

















The equivalent periodic tiling problem has an input tile set and solution shown in Figure 5. Recall that
the solution is a block of tiles which can have a copy of itself placed on any side without breaking the tiling
rules, therefore it can be used to periodically tile the infinite plane.
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(b) Periodic Block

Figure 5: Instance and solution for the periodic domino problem which corresponds to finding a livelock in
the “a-b-c” protocol.

4.3 Equivalent Tile Sets

The remainder of this section shows how to transform a NW-deterministic Wang tile set into a NW-
deterministic action tile set which is equivalent with respect to the domino problems. This gives us the
tools to reduce the periodic domino problem to livelock detection in the next section which proves that
livelock detection is undecidable for unidirectional ring protocols of symmetric, deterministic, self-disabling
processes.

Lemma 4.5. For any set of SE-identical tiles which is not W-disabling, a W-disabling set of SE-identical
tiles (i.e., an action tile set) exists which gives the same result to Problem 4.1 and Problem 4.2 and preserves
NW-determinism.

Proof. Recall that if a SE-identical tile set is W-disabling, then for every tile (a, b, c), there exists no tile
(a, c, d) in the set for any d. If a tile set does contain such tiles, we can create a new tile set which is
W-disabling. The new tile set has colors: a→ and a↑ for every color a in the original tile set, abc for every
tile (a, b, c) in the original set, and a new color $. The new set has tiles (a→, b↑, abc), (abc, $, c→), ($, abc, c↑),
and (c↑, c→, $) for each tile (a, b, c) in the original set. This reduction is shown clearly in Figure 6.
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a

b

c

a→

b↑

abc
abc

$

c→

$

abc

c↑
c↑

c→

$

Figure 6: Transform (a, b, c) tile to 4 W-disabling tiles.

Tiling correspondence. Observe that if a tile with a color of the form abc is placed on the plane, we can
determine three other tiles which must be placed near it to form the 2× 2 arrangement shown in Figure 6.
Two of these are determined since the color abc appears on exactly three tiles in the set (for the W , N , and
SE edges). The third tile (c↑, c→, $) is determined since no other tile has a color c↑ on its west edge (or c→
on its north edge).

Conversely, if a tile of the form (c↑, c→, $) is placed on the plane, its west neighbor must have the form
($, abc, c↑) for some a and b corresponding to the original set of colors. After knowing these a and b, the two
tiles to the north are determined due to the reasoning in the previous paragraph. Thus, any valid tiling T ′

using the new tile set consists of 2 × 2 blocks corresponding to the tiles in the original set. Further, since
the $ colors must match across these 2× 2 blocks, the blocks must be aligned.

For correspondence, it remains to show that a valid tiling T exists using the original tile set if and only
if a valid tiling T ′ exists using the new set. This is easy to see since two tiles (a, b, c) and (x, y, z) in the
original set can border each other if and only if their corresponding 2× 2 blocks in the new set can border
each other.
The new tile set is W-disabling. We want to show that for every tile (a, b, c) in the new set, there does
not exist another tile (a, c, d) in the set for any d.

Partition the new tile set into four classes whose west edge colors have the form X→, XXX, X↑, and $
respectively. Note that the forms of the north and southeast edge colors are also the same across tiles of the
same class. Within each of these classes, the form of the north color differs from the form of the southeast
color. Thus, no tile has a north color which matches the southeast color of a tile in the same class. Since
tiles of different classes have different west colors, this implies that the new tile set is W-disabling.
The new tile set preserves NW-determinism. Recall that a tile set is NW-deterministic when for
every tile (a, b, c), there does not exist another tile (a, b, d) in the set for any d 6= c. If this is the case in the
original set, then any tile in the new set with a west color of a→ and a north color of b↑ for any a and b has
a uniquely determined southeast color.

Each other tile in the new set (those with $ on some edge) can be uniquely identified by its west or
north color. For any abc, a tile whose west color is abc uniquely has the form (abc, $, c→). Similarly, a tile
whose north color is abc uniquely has the form ($, abc, c↑). Lastly, for any c, a tile whose west color is c↑
uniquely has the form (c↑, c→, $). This covers all forms of tiles in the new set, therefore the new set preserves
NW-determinism.

Lemma 4.6. For any set of Wang tiles, an equivalent set of SE-identical tiles exists which gives the same
result to Problem 4.1 and Problem 4.2 and preserves NW-determinism.

Proof. For each tile
a

b
c

d in the set of Wang tiles, create a new color abcd. Next, for each color abcd in the
new tile set, construct an SE-identical tile (uvaw , xyzb, abcd) for every pair of colors uvaw and xyzb where a
as the third letter of uvaw and b is the fourth letter of xyzb.
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Figure 7: Transform Wang tiles to SE-identical tiles.

Recall from Problem 4.1 that a tiling is valid if and only if the following formula is satisfied for every tile
T [i, j].

(T [i, j].N = T [i− 1, j].S) ∧ (T [i, j].W = T [i, j − 1].E)

Consider a tiling T ′ using the new set of SE-identical tiles. For any T ′[i, j] = (uvaw , xyzb, abcd), we know
that T ′[i, j − 1].E = uvaw and T ′[i − 1, j].S = xyzb must hold. By the construction of the new set, this is
possible if and only if there are three Wang tiles from the original set whose edge colors correspond with
uvaw , xyzb, and abcd which can be placed on a plane at T [i, j − 1], T [i − 1, j], and T [i, j] respectively (as
illustrated on the left side of Figure 7). As such, a valid tiling T ′ exists using the new set if and only if a
valid tiling T exists using the original set.

This transformation also preserves NW-determinism. If the input tile set is NW-deterministic, then we
know a tile at T [i, j] is fully determined if we know both tiles T [i−1, j] and T [i, j−1]. Since one SE-identical
tile (uvaw , xyzb, abcd) is created for each of these cases where T [i, j − 1] = uvaw , T [i − 1, j] = xyzb, and
T [i, j] = abcd , the new tile set is NW-deterministic when the input tile set is NW-deterministic.

5 Decidability Results

This section presents the undecidability of verifying livelock freedom in symmetric unidirectional ring and
bidirectional chain protocols. The proofs of the theorems in this section heavily rely on the results of previous
sections. Moreover, the results of this section assume a locally-conjunctive invariant, which means that the
predicate defining legitimate states has the form (∀i : L(xi−1, xi)), where L(xi−1, xi) is a predicate checkable
by process Pi.

Theorem 5.1. Livelock detection on a unidirectional ring of symmetric, deterministic, finite-state, self-
disabling processes is undecidable (Σ0

1-complete).

Proof. Given a set of NW-deterministic Wang tiles, we can form a protocol which has a livelock on a
symmetric unidirectional ring if and only if the set can form a periodic tiling. We can transform a NW-
deterministic tile set to also be SE-identical by Lemma 4.6, then transformed to be W-disabling Lemma 4.5
(i.e, an action tile set), and finally transformed into a symmetric unidirectional ring protocol by Lemma 4.3.

Corollary 5.2. Detection of a livelock where exactly one process is enabled at all times on a unidirectional
ring of symmetric, deterministic, finite-state, self-disabling processes is undecidable (Σ0

1-complete).

Proof. For brevity, we use the term single-propagation livelock to denote an infinite execution which has
exactly one process enabled in all states. Our goal is, given a unidirectional ring protocol p, to construct
another protocol p′ such that p′ has a single-propagation livelock if and only if p has a livelock.

Without loss of generality, we can assume each process Pi acting under p has a single variable xi. Let
each Pi have transition function ξ, and recall from Definition 2.1 that we can define all actions of Pi as:

((xi−1, xi) ∈ Pre(ξ)) −→ xi := ξ(xi−1, xi);
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For the reduction, we are only interested in single-propagation livelocks of p′ and therefore ignore its
other behaviors. In doing so, we find that all such livelocks of p′ require that its c variables form a 2-coloring
and that its e variables are used to circulate a token much like a binary token ring. Since no distinguished
process exists for token circulation, we use a variable d to mark processes which are acting as a distinguished
process. When a process Pi in p

′ acts, and ci = ei, it will change its xi variable if a process under p would
also change its xi variable given the current values of xi−1 and xi. Since ci−1 6= ci, we simulate p in a way
which prevents one propagation from catching up to, and colliding with, another. Finally, a distinguished
process Pi (marked by di = 1) stops circulating the token when no p action is enabled, which is flagged by
the gi−1 variable. Thus, p′ will have a single-propagation livelock if and only if some execution of p does not
terminate.

Let each process Pi in p
′ have a variable xi with the same domain as in p and four boolean variables ci,

di, ei, and gi. The p′ protocol is defined as follows, where di = (ei−1 = ei) is equivalent to (di ∧ (ei−1 =
ei)) ∨ (¬di ∧ (ei−1 6= ei)).

(ci−1 6= ci) ∧ (di = (ei−1 = ei)) ∧ (di =⇒ ¬gi−1)
−→ gi := (di ∨ gi−1) ∧ ((xi−1, xi) ∈ Pre(ξ));

xi :=

{

ξ(xi−1, xi); if (ci = ei) ∧ ((xi−1, xi) ∈ Pre(ξ))

xi; otherwise

ei := ¬ei;

A livelock of p′ simulates some maximal execution (either terminating or infinite) of p. In other
words, a livelock of p′ will change some x value if and only if that x value could be changed (in the same
way) under p. It is sufficient to show that the following two statement hold: (1) If some Pi changes its xi
under p′, then Pi could also change its xi the same way under p. (2) In a p′ livelock, if some process Pi

would be enabled to under p given its current xi−1 and xi values, then some (possibly different) process Pj

will eventually change its xj value.
Statement (1) trivially holds since each process Pi can change xi by assigning xi := ξ((, x)i−1, xi) under

both p and p′. This is also the only way that xi can change under either protocol.
Statement (2) holds since every other time a process Pi acts under p′, it will change xi if (xi−1, xi) ∈

Pre(ξ). This can be seen since Pi flips its ei bit every time it acts, yet only can change xi when ci = ei.
Each process acts infinitely often in a livelock of p′. Therefore, some xi which can change under p (i.e., if
(xi−1, xi) ∈ Pre(ξ)) will eventually be changed under a livelock of p′.
A single-propagation livelock of p′ requires some d value to be true. Let N equal the number of
processes in the ring. Since all actions of a process Pi in p

′ require ci−1 6= ci, and c values do not change,
the c values must form a 2-coloring. This also means that N is even.

Some d value must be true in (all states of) a single-propagation livelock. For a contradiction, assume a
livelock of p′ exists where di = 0 for all i. We know that ci−1 6= ci for all i, therefore a process Pi is enabled
when ei−1 6= ei. If all e values are the same, then no process is enabled, otherwise at least two processes are
enabled. Thus, at least one d value must be true for the livelock to exist.
If p is livelock-free, then p′ does not have a single-propagation livelock. To show this by contra-
diction, assume p is livelock-free and p′ has a single-propagation livelock. We know that some d value must
be true, therefore let Pq have this dq = 1 value. Let Ps be a process for which ds = 1 and the processes
between Pq and Ps have dq+1 = · · · = ds−1 = 0. Note that Pq and Ps are the same process when only one d
value in the ring is true.

Consider a state of the p′ livelock where Pq is enabled to act and (xi−1, xi) 6∈ Pre(ξ) for all i. This state
will eventually be reached since p′ simulates an execution of p, and all executions of p are terminating. From
this state, we will show that Ps cannot eventually act, thereby contradicting the assumption.

When Pq acts, it assigns gq := 1 since (xq−1, xq) 6∈ Pre(ξ). Next, Pq+1 assigns gq+1 := 1 since gq ∧
((xq, xq+1) 6∈ Pre(ξ)). Likewise, each subsequent Pi assigns gi := 1 for i ∈ {q+2, . . . , s− 1}. Since gs−1 = 1
after Ps−1 acts, and ds = 1, we know that Ps does not become enabled. No process is enabled at this point,
thus a single-propagation livelock does not exist in p′. Our assumption is contradicted, therefore p′ does not
have a single-propagation livelock when p is livelock-free.
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If p has a livelock, then p′ has a single-propagation livelock. By Lemma 3.6 we know that a livelock
of p is characterized by m propagations of period n (for some m and n) where the (i − 1)th propagation
leads the ith propagation for all i. Assume we have such a livelock, we want to find a single-propagation
livelock of p′ on a ring of size N = mn. We are able to assume n is even since the propagations are periodic
and we can simply double their periods if n were odd.

We wish to find a predicate ψ such that, from an initial state satisfying ψ, any execution of p′ will return
to ψ after N actions. If states satisfying ψ have exactly one process enabled to act, and ψ is satisfiable, then
p′ has a single-propagation livelock. Let ψ be defined by a conjunction of the following constraints:

• ci = i mod 2 for each i.
• d0 = 1 and all other d values are d1 = · · · = dN−1 = 0.
• e0 = · · · = eN−1.
• gN−1 = 0.
• The x values form a state which exists in a livelock under p.
• For some k, for each i, the inequality (xi−1, xi) ∈ Pre(ξ) holds if and only if k = i mod n.

Clearly the first four constraints can be satisfied, but the remaining two constraints rely on the p protocol.
Since p has such a livelock characterized by m propagations of period n, we can use the proof of Lemma 3.5
to find some x values to satisfy these two constraints. Thus ψ is satisfiable. Notice that the only enabled
process is P0 when ψ is satisfied, therefore it remains to show that any execution from ψ will return to ψ
after N steps.

Each of the N processes P0, . . . , PN−1 will act. We know P0 acts first and assigns e0 := ¬e0. Each other
process Pi has di = 0 and therefore become enabled when ei−1 6= ei. Since P0 assigns e0 to be different from
all other e values, P1 is the next to act and assigns e1 := e0. By the same reasoning, processes P2, . . . , PN−1

are guaranteed to act next in order.
After N actions from a state satisfying φ, we know gN−1 = 0 since (xi−1, xi) ∈ Pre(ξ) for some i. To

elaborate, a process Pi assigns gi := (di ∨ gi−1) ∧ ((xi−1, xi) 6∈ Pre(ξ)) when it acts. Since only d0 = 1, this
means gN−1 = 1 after the actions of P0, . . . , PN−1 only if (xi−1, xi) 6∈ Pre(ξ) for each index i.

When P0, . . . , PN−1 act, either all or none of the processes Pi which initially (before P0 acts) have
(xi−1, xi) ∈ Pre(ξ) will change their xi values, and no other process Pj will change its xj value. Since all
e values are the same in states satisfying ψ, when P0, . . . , PN−1 act in order, either all of the even-indexed
or all of the odd-indexed processes Pi have ei = ci when they act. As such, either all even-indexed or
all odd-indexed processes are eligible to change their x values. Therefore, a process Pj which initially has
(xj−1, xj) 6∈ Pre(ξ) will not change its xj value even if Pj−1 changes xj−1 to satisfy (xj−1, xj) 6∈ Pre(ξ).
Since n is even, all processes Pi which initially have (xi−1, xi) ∈ Pre(ξ) have even indices, or they all have
odd indices. Thus, either all or none of the processes Pi which initially have (xi−1, xi) ∈ Pre(ξ) will change
their xi values.

After P0, . . . , PN−1 act, the x values form a state which exists in a livelock under p, and processes Pi for
which (xi−1, xi) ∈ Pre(ξ) will be spaced equally around the ring at every nth position (i.e., the last two
conditions of ψ will be satisfied). We have seen that either all or none of the processes Pi which initially have
(xi−1, xi) ∈ Pre(ξ) will act. When each of these processes Pi acts to change its xi value, it also changes
(xi, xi+1) ∈ Pre(ξ) from false to true for Pi+1 since we started in a state where x values form a state in a
p livelock. As such, after P0, . . . , PN−1 act, processes Pi for which (xi−1, xi) ∈ Pre(ξ) will still be spaced
equally around the ring at every nth position. Further, the x values still form a state which exists in a
livelock under p.

We have shown that if P0, . . . , PN−1 act in order from a state in ψ, then the system reaches a state
where all e values are equal, gN−1 = 0, and every nth process Pi has (xi−1, xi) ∈ Pre(ξ). Since the c and d
variables do not change under p′, the system returns to ψ after N actions. Thus, p′ has a single-propagation
livelock when p has a livelock.

It has been shown that p has a livelock if and only if p′ has a single-propagation livelock. It is therefore
undecidable (Σ0

1-complete) whether a single-propagation livelock exists in a unidirectional ring protocol of
symmetric, deterministic, finite-state, self-disabling processes.

Corollary 5.3. Verifying strong or weak stabilization on a unidirectional ring is undecidable (Π0
1-complete).
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Proof. Given a unidirectional ring protocol p, we can define a locally-conjunctive invariant such that p is
self-stabilizing if and only if p does not contain a livelock. This invariant is simply (∀i : Li) where Li is any
state where process Pi is disabled, which means a state is legitimate if and only if process is not enabled to
act. Obviously closure holds since the system has no action enabled in a legitimate state. Convergence of p
holds if and only if no infinite execution (i.e., livelock) exists. Thus, p is strongly stabilizing if and only if it
does not contain a livelock.

For weak stabilization [17], convergence is satisfied if, for every illegitimate state, there exists some
execution which reaches a legitimate one. In other words, even if there are livelocks in illegitimate states
(assuming the reachability of legitimate states), a strongly fair scheduler would guarantee the reachability
of some legitimate state. We know that no action can increase the number of enabled processes due to the
self-disabling property, but strong fairness can reliably bring any state to one with either zero or one enabled
processes. Thus, p is weakly stabilizing if and only if it does not contain a livelock where exactly one process
is enabled.

Verifying if p is not strongly or weakly stabilizing is therefore Σ0
1-complete (semi-decidable) due to

Theorem 5.1 and Corollary 5.2 respectively. Thus, deciding either type of stabilization for p is Π0
1-complete

(co-semi-decidable). We know Π0
1 is also an upper bound due to Apt and Kozen [3] who show that verifying

temporal properties of finite-state concurrent systems is Π0
1-complete in general. Verifying either type of

stabilization is therefore Π0
1-complete.

Corollary 5.4. Verifying strong or weak stabilization on a segment of a bidirectional chain of symmetric,
deterministic, self-disabling processes is undecidable (Π0

1-complete).

Proof. Given a unidirectional ring protocol p, we can construct a bidirectional chain protocol p′ which has
a livelock if and only if p has a livelock where exactly one process is enabled at all times. Like in the proof
of Corollary 5.2, we call this kind of p livelock a single-propagation livelock. Using the same approach as
Corollary 5.3, we reduce our problem of verifying stabilization to verifying livelock freedom (of p′) by defin
ing a state of p′ to be legitimate when no process is enabled to act.

We construct p′ by a modification of Dijkstra’s four-state token passing protocol [7] which operates on
a chain topology. Dijkstra’s protocol relies on distinguished bottom and top processes (the first and last
processes). It ensures that eventually exactly one process has the token (is enabled to act) which is passed
along the chain from the bottom to top and top to bottom indefinitely.

Though we leverage Dijkstra’s protocol, the end processes of p′ do not act as the bottom and top processes.
In fact, they are defined to have no actions and therefore do not contribute to livelocks at all. We give each
process Pi three new variables wall i, xi, and yi in addition to the two boolean variables upi and zi used by
Dijkstra’s protocol. The wall i variable is boolean, and if it is true, then Pi acts as either the bottom or top
process in Dijkstra’s protocol when upi is true or false respectively. In this way, the initial state determines
which processes act as bottom and top processes in Dijkstra’s protocol.

We show that if processes in a segment Pq, . . . , Ps are executing Dijkstra’s protocol (where Pq and Ps

behave as bottom and top processes respectively), then they can simulate the p protocol on a unidirectional
ring by using their x and y variables. When a token is being passed from Pq up to Ps, each process Pi where
i ∈ {q + 1, . . . , s − 1} can only act if it would also be enabled under p with its current xi−1 and xi values.
Similarly, the top process Ps acts when it has the token and would be enabled under p with its current xs−1

and ys values (where ys in p′ stands for xs in p). When the token is being passed from Ps down to Pq,
the y variables are used to copy the current state of Ps, allowing Pq to assign its xq value as if Ps were its
predecessor in a unidirectional ring executing protocol p.

Without loss of generality, we can assume each process Pi acting under p has a single variable xi. Let
each Pi have transition function ξ, and recall from Definition 2.1 that we can define all actions of Pi as:

((xi−1, xi) ∈ Pre(ξ)) −→ xi := ξ(xi−1, xi);

Let the end processes of p′ have no actions, therefore they cannot contribute to a livelock. Define the
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actions of each other process Pi in p
′ as follows.

Bot : ¬upi+1 ∧ (zi = zi+1) ∧ φBot(i) −→ xi := ξ(yi+1, xi); zi := ¬zi;

Rise : (zi−1 6= zi) ∧ (upi+1 ∨ (zi−1 6= zi+1)) ∧ φRise(i) −→ xi := ξ(xi−1, xi); zi := zi−1; upi := 1;

Top : (zi−1 6= zi) ∧ φTop(i) −→ yi := ξ(xi−1, yi); zi := zi−1;

Fall : (zi−1 = zi) ∧ upi ∧ ¬upi+1 ∧ (zi−1 = zi+1) ∧ φFall(i) −→ yi := yi+1; upi := 0;

Disregarding the φ formulas and the x and y variables, these four actions make a version Dijkstra’s token
passing protocol which is modified to be deterministic and have self-disabling processes. The Bot and Top
actions correspond to the bottom and top processes of that protocol, which are assumed to have constant upi

values of true and false respectively. The Rise and Fall actions are executed by the intermediate processes
to pass the token up and down the chain respectively.

The φ predicates strengthen the guards of Dijkstra’s token passing protocol. First, they ensure a process
Pi acts as a bottom or top process when its wall i variable is true. When wall i is true, the value of upi

determines whether Pi acts as a bottom or top process. Next, there are conditions on the x and y variables
which correspond to guards of actions in the p protocol. Lastly, the SegCheck(i) predicate ensures that a
process Pi will not act when Pi−1 is a top process or when Pi+1 is a bottom process. As such it is defined
as: SegCheck(i) = ¬(wall i−1 ∧ ¬upi−1) ∧ ¬(wall i+1 ∧ upi+1). Define the φ predicates as follows.

φBot(i) = wall i ∧ upi ∧ ((yi+1, xi) ∈ Pre(ξ)) ∧ SegCheck(i)

φRise(i) = ¬wall i ∧ ((xi−1, xi) ∈ Pre(ξ)) ∧ SegCheck(i)

φTop(i) = wall i ∧ ¬upi ∧ ((xi−1, yi) ∈ Pre(ξ)) ∧ SegCheck(i)

φFall(i) = ¬wall i ∧ SegCheck(i)

In a livelock of p′, some segment Pq, . . . , Ps executes Dijkstra’s four-state token passing protocol
on the z and up variables. Assume p′ has a livelock. Let Pq, . . . , Ps be a segment of the chain such that
all processes in that segment act infinitely often, but Pq−1 and Ps+1 (eventually) never act. Obviously some
segment Pq, . . . , Ps which acts infinitely often must exist in a livelock of p′. Processes Pq−1 and Ps+1 are
also guaranteed to exist since, even if all other processes act infinitely often, the end processes of the chain
are defined to never act.

It is the case that Pq acts as the bottom process and Ps acts as the top. For a contradiction, assume Pq

does not act as the bottom process or Ps does not act as the top. By the properties of Dijkstra’s protocol,
if Pq acts infinitely often and is not the bottom process, then it will pass its token to Pq−1 infinitely often.
Likewise, if Ps acts infinitely often and is not the top process, then it will pass its token to Ps+1 infinitely
often. Since Pq−1 and Ps+1 do not act in this livelock, passing a token to either of them will destroy it. We
clearly cannot destroy tokens infinitely often in a livelock of p′, therefore by contradiction, Pq must act as
the bottom process and Ps must act as the top.

Recall that, due to SegCheck , if a process acts as the bottom or top, one of its neighbors will never act.
Therefore, since each process in the segment Pq, . . . , Ps acts infinitely often, none of Pq+1, . . . , Ps−1 can act
as a bottom or top process. Thus, in any livelock of p′, some segment Pq, . . . , Ps of the chain is executing
Dijkstra’s token passing protocol.
If p′ has a livelock, then p has a single-propagation livelock. Assume p′ has a livelock. We know
that a chain segment Pq, . . . , Ps exists which executes Dijkstra’s token passing protocol on the z and up
variables.

Eventually, one token will exist in this segment and process Ps obtains it. Since we know the segment
Pq, . . . , Ps is executing Dijkstra’s token passing protocol, the following actions are performed in order. We
only show the constraints and effects that each action has on the x and y variables since we have already
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reasoned about the other variables.

Process Action Guard Assignment
Ps Top (xs−1, ys) ∈ Pre(ξ) −→ ys := ξ(xs−1, ys);
Ps−1 Fall true −→ ys−1 := ys;
...

...
...

Pq+1 Fall true −→ yq+1 := yq+2;
Pq Bot (yq+1, xq) ∈ Pre(ξ) −→ xq := ξ(yq+1, xq);
Pq+1 Rise (xq, xq+1) ∈ Pre(ξ) −→ xq+1 := ξ(xq, xq+1);
...

...
...

Ps−1 Rise (xs−2, xs−1) ∈ Pre(ξ) −→ xs−1 := ξ(xs−2, xs−1);

Notice that the sequence of Fall actions executed by Ps−1, . . . , Pq+1 simply copy the value of ys down to
yq+1. Thus, yq+1 = ys when Pq acts.

Consider a unidirectional ring of size N = s− q where each process P0, . . . , PN−2, PN−1 around the ring
has a variable whose current value is xq, . . . , xs−1, ys respectively (taken from our state of the chain). It is
easy to see that processes PN−1, P0, . . . , PN−2 can act in order from this state under protocol p if and only
if the sequence of actions above can be performed under p′. Since we have assumed p′ has a livelock, this
sequence of actions continues indefinitely, thus p has a single-propagation livelock.
If p has a single-propagation livelock, then p′ has a livelock. With respect to the x and y vari-
ables, our reasoning above shows equivalence between a livelock of p′ and a single-propagation livelock of p.
However, we assumed that the wall , z, and up variables could be assigned to admit such a livelock.

Such an assignment is already known which admits some chain segment Pq, . . . , Ps to execute Dijkstra’s
token passing protocol on the z and up variables under the rules of p′. For the bottom process Pq, let
wallq = 1 and upq = 1. For the top process Ps, let walls = 1 and ups = 0. For the other processes, let
wallq+1 = · · · = walls−1 = 0.

Thus, we see a livelock of p′ exists if and only if a single-propagation livelock of p exists. Determining if
the p protocol has a single-propagation livelock is Σ0

1-complete by Corollary 5.2, therefore determining if p′

is livelock-free is at least Π0
1. Fairness clearly does not affect the livelocks of p′, thus the result holds for any

fairness assumption. As stated previously, Π0
1 is an upper bound due to Apt and Kozen [3], thus verifying

strong or weak stabilization on a bidirectional chain segment of symmetric, deterministic, self-disabling
processes is Π0

1-complete (co-semi-decidable).

6 Related Work

This section discusses related work regarding necessary and/or sufficient conditions for livelock freedom
and decidability of livelock freedom in parameterized systems. Specifically, Farahat and Ebnenasir inves-
tigate sufficient conditions for livelock freedom in symmetric unidirectional ring protocols of self-disabling
processes [14]. They also present necessary and sufficient conditions for deadlock detection in symmetric
unidirectional and bidirectional ring protocols. This paper complements their work by showing that, even
when assuming deterministic and self-disabling properties, livelock freedom on ring and chain topologies is
undecidable in general.
Decidability. In [3], Apt and Kozen prove that verifying an LTL formula holds for a parameterized
system is Π0

1-complete. Suzuki [24] builds on this result, showing that the problem remains Π0
1-complete on

symmetric unidirectional ring protocols where only the number of processes is parameterized. Emerson and
Namjoshi [11] show that the result holds even when a token which can take two different values is passed
around such a ring.

Abello and Dolev [2] show that any Turing machine can be simulated on a bidirectional chain topology
in a self-stabilizing manner. Among other variables in their protocol, each process has variables to represent
an input tape cell, a working tape cell, and an output. When the Turing machine accepts, rejects, or fails
to compute a result (due to cycles or insufficient tape cells) for the given input, the output value of each
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process will eventually be 1, 0, or ⊥ respectively. Once a simulation of the Turing machine finishes, it begins
again in case some fault corrupts an output value or the input is changed. It is reasonable to say that this
protocol implies our Corollary 5.4, though a proof would be complicated by the fact that the protocol relies
on distinguished end processes and all executions are infinite.
Regular Model Checking. In regular model checking [1, 5], system states are represented by strings of
arbitrary length, and a protocol is represented by a transducer. Let R be the relation of this transducer
and let R+ be its transitive closure. A livelock can then be detected by checking if R+ maps some string to
itself, or in other words, checking if R+ ∩Rid is non-empty, where Rid is the identity relation. Of course no
algorithm computes R+ in all cases, therefore heuristic acceleration techniques are used such as widening [25].

Our reasoning strongly resembles that of regular model checking. Briefly, we can interpret the graph of a
protocol p as a transducer, where arc and node labels denote input and output symbols respectively (i.e., a
Moore machine). Further, let each state of this transducer be both initial and accepting (without generating
initial output). A periodic propagation is a closed walk in the graph, or equivalently, it is some strings s and
w such that the transducer accepts wk and outputs sk for all k ∈ N. The protocol p therefore has a livelock
if and only if some string w exists such that (∀k : (wk, wk) ∈ R+), where R is the transducer’s relation and
R+ is its transitive closure. We can check if such a string w exists by (1) computing R+ ∩ Rid , (2) finding
the minimal DFA of its input language, and (3) checking if the initial state of the DFA (which will also be
an accepting state) takes part in a cycle. While this formulation is interesting, it only applies to finding
livelocks in symmetric unidirectional ring protocols, whereas regular model checking can be used with other
topologies and LTL properties.
Cutoff Theorems. Emerson et al. [9, 10] present cutoff theorems for the verification of temporal logic
properties in parameterized systems, where a property P holds for a parameterized protocol p if and only
if P holds for an instantiation of p with a fixed number of processes k, called the cutoff. This method is
mainly applicable for properties that are specified in terms of the locality of each process.

7 Conclusions and Future Work

We illustrated that verifying livelock freedom is undecidable for parameterized unidirectional ring and bidi-
rectional chain protocols, where every process has similar code up to variable renaming. While Suzuki [24]
shows that the verification of general case temporal logic properties is undecidable for symmetric unidirec-
tional ring protocols, this paper illustrates that the verification problem remains undecidable even if processes
are self-disabling; i.e., a process is disabled after acting. The proof of undecidability presented in this paper
is based on a reduction from the periodic domino problem [26]. We also showed that verifying weak/strong
self-stabilization is undecidable for these parameterized unidirectional ring and bidirectional chain protocols.
As an extension of this work, we will investigate the design of a framework that will be an integration of
our automated synthesis tools [13] and theorem proving. In this framework, we will first synthesize small
instances of parameterized systems that are self-stabilizing for a specific number of processes. Then, we will
use theorem proving techniques to generalize the synthesized systems for an arbitrary number of processes.
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