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Abstract

This paper investigates the problem of synthesizing parameterized systems that are self-stabilizing
by construction. To this end, we present several significant results. First, we show a counterintuitive
result that despite the undecidability of verifying self-stabilization for parameterized unidirectional rings,
synthesizing self-stabilizing unidirectional rings is decidable! This is surprising because it is known that,
in general, the synthesis of distributed systems is harder than their verification. Second, we present
a topology-specific synthesis method (derived from our proof of decidability) that generates the state
transition system of template processes of parameterized self-stabilizing systems with elementary uni-
directional topologies (e.g., rings, chains, trees). We also provide a software tool that implements our
synthesis algorithms and generates interesting self-stabilizing parameterized unidirectional rings in less
than 50 microseconds on a regular laptop. We validate the proposed synthesis algorithms for decid-
able cases in the context of several interesting distributed protocols. Third, we show that synthesis of
self-stabilizing bidirectional rings remains undecidable.
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1 Introduction

Developing parameterized Self-Stabilizing (SS) distributed systems is an important and challenging problem
since a parameterized SS system must be self-stabilizing regardless of the number of processes. An SS
system must have two properties, namely convergence and closure. Closure stipulates that, starting from
any legitimate state, system executions remain in the set of legitimate states (a.k.a. invariant) — that
captures the desired behaviors of a system'. Convergence requires that from any configuration/state, every
system execution recovers to some invariant state in a finite amount of time. Such a global recovery must be
achieved solely by the local actions of processes (without any central point of coordination). Designing self-
stabilization becomes even more challenging for parameterized systems that include families of unbounded
number of symmetric processes. Two processes are symmetric if the code of one can be obtained from another
by a simple variable renaming. Each family may include an unbounded (but finite) number of symmetric
processes that can be represented by a template process (a.k.a. representative process) from which the code
of each process is instantiated. As the verification of SS parameterized unidirectional rings (a.k.a. uni-rings)
is known to be undecidable [26], the common understanding has been that synthesizing such systems should
also be undecidable. In this paper, we prove otherwise! We show that synthesizing self-stabilization is
actually decidable for parameterized uni-rings.

Numerous approaches exist for the synthesis of parameterized systems, most of which focus on synthesis
from temporal logic specifications while assuming some sort of fairness. For example, Finkbeiner and Schewe
[16] present bounded synthesis where they formulate the synthesis of fixed-size systems as a constraint solving
problem, and use Satisfiability Modulo Theory (SMT) solvers [8] to search for a program that is accepted by
a Universal Co-Buchi Tree (UCT) automaton generated from temporal logic specifications. Such a search is
conducted up to a specific bound on the size of the state spaces of processes (and/or their automata-theoretic
product). Jacobs and Bloem [23] extend the approach in [16] to parameterized systems by reducing the
synthesis of parameterized systems (a.k.a. parameterized synthesis) to bounded synthesis of a small network
of symmetric processes (under the assumption of fair token passing). They enable a semi-decision procedure
that will eventually find a solution if one exists. Additionally, some researchers have investigated the synthesis
of parameterized SS systems in a problem-specific context. For instance, Dolev et al. [11] present a method
for generating synchronous and constant-space counting algorithms where processes should implement a
distributed finite counter. They provide an SS and Byzantine-tolerant parameterized protocol for clique
topologies where all processes increment their value synchronously. Bloem et al. [5] use bounded synthesis
and parameterized synthesis to extend Dolev et al.’s approach for other problems. Lenzen and Rybicki
[31] provide an SS and Byzantine-tolerant solution for the counting problem with near-optimal stabilization
time and message sizes. What the aforementioned methods have in common is that they are based on
bounded/parameterized synthesis from temporal logic specifications (using SMT solvers), and they make
assumptions about synchrony, fairness and complete knowledge of the network for each process. Moreover,
bounded and parameterized synthesis suffer from the following drawbacks: (i) formulation of constraints and
the generation of the UCT from temporal logic specifications are computationally expensive tasks; (i) SMT
solvers are sensitive to small changes in their inputs and take a major chunk of time/resources needed for
synthesis, and (iii) the iterative nature of bounded synthesis makes it costly since every time the constraints
are deemed unsatisfiable for a specific bound, the bound is increased and the entire process of constraint
generation and SMT solving must be repeated.

In this paper, we take a topology and property-specific approach where we focus on self-stabilization,
and start with a first-order logic formula representing the invariant to which self-stabilization should be
synthesized (instead of synthesis from temporal logic specifications). For simplicity and practical reasons,
we consider formulas that are conjunctive; i.e., the global invariant is specified as the conjunction of local
invariants of processes. While our assumption about the form of the invariant may seem restrictive, there
are important applications for such systems [41, 20]. In our previous work [26], we have shown that veri-
fying self-stabilization to conjunctive invariants for symmetric uni-rings is undecidable. That is, given the
parameterized code of a fully symmetric uni-ring and a conjunctive invariant Z, it is undecidable to verify

1In this paper, we use the terms invariant and legitimate states interchangeably.



whether the instantiation of the parameterized code for individual processes would result in a system that is
SS to Z for arbitrary ring sizes. By contrast, the synthesis problem takes 7 and generates the parameterized
code of a symmetric uni-ring such that the instantiation of that code for any ring size will provide a system
that is SS to Z by construction.

We show that synthesizing SS symmetric uni-rings of constant-space processes is actually decidable. This
is surprising because it is known [34] that, in general, the synthesis of distributed systems is harder than
their verification. We first present a necessary and sufficient condition for the existence of a symmetric SS
uni-ring. Our necessary and sufficient condition states that an SS symmetric uni-ring exists if and only if
(iff) there is a value to which both a process and its predecessor can recover. Intuitively, we show that,
the existence of a simple solution where global convergence is achieved by just setting the local variables of
processes to a specific value is necessary and sufficient for the existence of an SS solution for an invariant.
By contrast, in the case of verification of self-stabilization for uni-rings, one has to investigate an intractable
number of scenarios to ensure the correctness of stabilization for all ring sizes.

Using our proof of decidability, we devise a sound and complete algorithm for the synthesis of symmetric
SS uni-rings. The input to our algorithm includes a conjunctive invariant and the size of the state space
of processes. The output of the proposed algorithm is the parameterized code of the template process so
that the entire ring becomes SS for an arbitrary (but finite) number of processes. We extend our results on
uni-rings to parameterized chains and trees. Specifically, we perform the synthesis in a bottom-up fashion by
systematically constructing a directed graph, called the legitimacy graph, that captures the local invariant
that a process and its neighbors can have. Fach vertex of the legitimacy graph captures a specific value
in the state space of each process, and each arc denotes whether the source and the target vertices/values
meet the constraints of the local invariant. This makes the legitimacy graph different from a state machine
as the arcs are not transitions. The proposed synthesis algorithm then transforms the legitimacy graph into
a finite state automaton representing the local actions of the template process. In this sense, our proposed
synthesis method is graph-theoretic. We also investigate the synthesis of SS bidirectional rings, and show
that this problem remains undecidable.

We have implemented and integrated the proposed algorithms in the Protocon framework [25]. Using
Protocon, we have automatically synthesized several SS uni-rings in less than a 50 micro seconds on a regular
MacBook Air laptop. More importantly, this work is the first step in the context of a broader synthesize-and-
compose initiative, where (in our future work) we will develop rules for composing parameterized systems
with elementary topologies to generate more sophisticated topologies while preserving self-stabilization.
Contributions. This paper

e presents a surprising result that synthesizing symmetric SS uni-rings under the interleaving seman-
tics and no fairness assumption is decidable (even though verifying self-stabilization of uni-rings is
undecidable);

e puts forward a novel synthesis method, where instead of synthesis from temporal logic specifications
we characterize local invariants as legitimacy graphs and automatically transform them to the state
transition system of template processes;

e provides synthesis algorithms for elementary unidirectional topologies such as chains and trees (in
addition to rings), and

e proves that synthesizing SS bidirectional rings is undecidable.

Organization. Section 2 presents basic concepts. Section 3 shows that synthesizing SS uni-rings is de-
cidable. Section 4 investigates the synthesis of parameterized SS top-down trees, and Section 5 studies SS
bottom-up trees. Section 6 investigates the synthesis of SS bidirectional rings and proves that this problem is
undecidable. Section 7 presents our experimental results. Section 8 examines related work. Finally, Section 9
makes concluding remarks and discusses future extensions of this work.



2 Basic Concepts

This section presents the definition of parameterized systems, their representation as action graphs, and self-
stabilization. Wlog, we use the term protocol to refer to finite-state parameterized systems as we conduct
our investigation in the context of network coordination protocols.

Definition 2.1 (Template Process). Intuitively, a template process captures the functionalities of each
individual process in a set of N > 1 symmetric processes parameterized by i € Zy, ie., 0 <7 < N — 1.
Formally, a template process P; is a tuple (R;, x;, M;, d;), where R; represents the set of variables that P;
can read, x; is the variable P; can write (which is an abstraction of all writable variables), M; is the domain
size of z; (i.e., ®; € Zpy,), and §; denotes P;’s transition function. We assume x; C R;; i.e., no variable can
be written blindly. The variables in R; define the locality/neighborhood of P; which includes the processes
whose state P; can read.

Definition 2.2 (State Space and State Predicate). A unique valuation of all variables in R; is a local state
of P;. We use v(s) to denote the value of a variable v in a state s. The local state space of P;, denoted X;,
includes all possible local states of P;. A local state predicate is a set of local states.

Definition 2.3 (Instantiation of Template Processes). An instantiation of a template process P; =
(Ri, i, M;,0;) is a process (Rj,xj, M;,0;), where j is a fixed integer and R;,x;, M, and §; are obtained
from P; by substituting ¢ with j everywhere; i.e., state space and transition function are obtained from those
of P; by a simple variable re-indexing. (Note that, M; = M;.) Each template process can be instantiated for
an arbitrary number of times N > 1 in a network. For example, in a fully symmetric uni-ring consisting of
N > 1 processes, we have only one template process since all processes are symmetric, and each instantiated
process P; (where j € Zy, ie., 0 < j < N — 1) has a predecessor neighbor P;_;, where subtraction and
addition are done in modulo N. In this case, R; = {x;_1,z;}.

Definition 2.4 (Parameterized Protocol). A parameterized protocol p = (P,7T,) for a computer network
includes k > 1 template processes P = {P1,P2,---, P}, and a topology 7, that defines the underlying
communication graph of p through variables each process can read/write. A global state of p is a unique
valuation to all instantiated processes from any template process. The projection of a global state s on a
process P; is the value of x; in state s; i.e., z;(s). The global state space of p, denoted ¥,, includes all
possible states.

Definition 2.5 (Transition Function). Let P; = (R;, x;, M;,d;) be a template process. A local transition
is an ordered pair (s,s’) from a local state s to another local state s’ as a result of an atomic update
on z;. Formally, §; : ¥; — ¥, is a partial function from 3; to ¥;. Since in each valid transition, P;
updates z;, we can rewrite 0; as a partial function from 3; to Zy;,. That is, in a transition (s,s’), we
have Vv : v € R; Av # x; : v(s) = v(s’). Notice that, the transition function of P; is deterministic; i.e.,
from any state s € X;, a transition can change the state of P; to at most one other state s’. The function
Pre(d;) : 0; — X; returns the set of states from where §; has some transition, called the pre-image of §;.
Likewise, we define the function Post(d;) : d; — X; that returns the set of states to which §; has some
transition, called the post-image of §;. We assume that Pre(d;) N Post(d;) = (. That is, when a process
executes, it disables itself; i.e., the processes are self-disabling®. To simplify reasoning in terms of process
behaviors, we rewrite §; in the form of a parametric action:

R; € Pre(0;) — x; = 6;(Ry);

where (R; € Pre(d;)) checks to see if the current values of variables in R; are in the preimage of §;. An action
(a.k.a. guarded command) is an atomic “if-then” statement; i.e., if the condition on the lefthand side of —
holds (i.e., action is enabled) then the statements on the righthand side of — are executed atomically.

2We have shown [28] that a self-stabilizing solution exists for a problem if and only if there is a self-stabilizing solution for
that problem with deterministic and self-disabling processes.



Example 2.6 (Transition Function of Symmetric Uni-Rings). Let P; = (R;,x;, M;,0;) be the template
process of a fully symmetric uni-ring, and P; is instantiated N > 1 times, forming a Ting of size N. Notice

that, in this case, there is only one template process (k = 1) since the ring is fully symmetric. Each
instantiated process P; (1 < j < N) has a predecessor, where R; = {x;j_1,x;}. Let a,b and c be three values
in Zyg,. Then, there is a parametric action (x;—1 = a Nx; = b — x; = ¢;) corresponding to the triple

(a,b,¢) iff (a,b) € Pre(d;), the transition ((a,b) — (a,c)) € 0;, and (a,c) ¢ Pre(d;). Thus, actions can also be
represented as triples (a,b, c) in uni-rings.

For other topologies, the same definition of transition function holds except that the preimage of § might
be specified differently depending on the locality of each process.

Definition 2.7 (Computation and Closure). We assume an interleaving execution semantics for protocols,
where processes act one at a time non-deterministically. That is, if there are some enabled actions (poten-
tially belonging to different processes), then one will be executed non-deterministically. Thus, each global
transition (so, s1) is actually a local transition of some process P; starting at the projection of so on P;. An
execution/computation of a protocol is a sequence of states Cy, Cq, ..., Cy where there is a transition from
C; to Ciyq for every i € Zy. A state predicate Z is closed under/in p iff any computation of p that starts in
7 remains in Z, in the absence of faults.

Definition 2.8 (Fairness). Weak (respectively, strong) fairness policy ensures that any action that is
continuously (respectively, infinitely often) enabled, will be executed infinitely often. We have shown [27] that
synthesizing self-stabilization under weak fairness or no fairness assumptions is an NP-hard problem, whereas
it is polynomially solvable under strong fairness [19] (because a strongly fair scheduler ensures recovery from
lovelocks). In this paper, we make no assumption on fairness. Since actions are self-disabling, once an action
executes it will be disabled until it is enabled again by either its predecessor (in a unidirectional network)
or the occurrence of faults. An enabled action may then be selected for execution non-deterministically.

Definition 2.9 (Legitimate States/Invariant). Intuitively, a set of legitimate states (a.k.a. Invariant) rep-
resents the states from where a protocol behaves normally and remains in that set. Formally, an invariant
is a state predicate Z that is closed in a protocol p to which convergence is required. Our definition of an
invariant is more relaxed in comparison to other researchers [2, 29] as in the synthesis of SS protocols we are
mainly concerned with ensuring the closure of the invariant without adding new computations in it while
designing convergence. We focus on conjunctive invariants in the form of Vi : i € Zy : L;(R;), where L;(R;)
denotes a local state predicate that must hold in the locality of each process. Varghese [41, 42] presents
methods for specifying some global state predicates as conjunctive predicates.

In the rest of this paper up to Section 4, we shall focus on symmetric uni-rings only. Let P; =
(R;,x;, M;,6;) be the template process of a symmetric uni-ring. To ease the presentation, we define the
notion of action graphs.

Definition 2.10 (Action Graph of Uni-Rings). An action graph is a labeled directed multigraph G = (V, A),
where each vertex v € V represents a value in Zyy,, and each arc (a,c) € A with a label b captures an action
ri1=alANx; =b— x; :=c.

For example, consider the self-stabilizing Sum-Not-2 protocol given in [14]. The template process P; =
(R;,x;,3,0;) has a variable x; € Zs and actions (z;—1 = 0Az; =2 — 2, :=1), (.1 =1Az; =1 —
x; = 2), and (z;j—1 = 2Ax; =0 — x; := 1). This protocol converges to a state where the sum of each
two consecutive x values does not equal 2. The set of such states is formally specified as the state predicate
Vi : (x;—1 + x; # 2). We represent this protocol with a graph containing arcs (0,2,1), (1,1,2), and (2,0, 1)
as shown in Figure 1.

Since protocols consist of self-disabling processes, an action (a, b, c¢) cannot coexist with action (a,c,d)
for any d. Moreover, a deterministic process cannot have two actions (a,b,c) and (a, b, d) where d # c.
Livelock, deadlock, and closure. A livelock of p is an infinite execution (s;, s;y1,- - , Sk, s;) that never
reaches Z. When no invariant is specified, we assume a livelock is any infinite execution. A deadlock of p is
a state in —=Z that has no outgoing transition; i.e., no process is enabled to act.



Definition 2.11 (Transient Faults). Let p be a parameterized protocol. We model transient faults as a set
of transitions in 3, x ¥,. Such transition can occur non-deterministically for a finite amount of time. Thus,
transient faults may perturb the state of a protocol to any state in its state space.

In practice, transient faults may occur due to a variety of reasons (e.g., loss of coordination, bad ini-
tialization, soft errors) and manifest themselves as state perturbations, but they do not cause permanent
damage.

Definition 2.12 (Self-Stabilization). A protocol p is self-stabilizing [10] to an invariant Z iff from each
illegitimate state in —I, all executions reach a state in Z (i.e., convergence) and remain in Z (i.e., closure).
That is, p is livelock-free and deadlock-free in =Z, and Z is closed under p.

Definition 2.13 (Weak Stabilization). A protocol p is weakly stabilizing to an invariant Z iff from each
state in —Z, there is some execution that reaches a state in Z (i.e., reachability) and remains in Z.

Notice that, any SS protocol is also weakly stabilizing but the reverse is not true.

Definition 2.14 (Silent Stabilization). A protocol p is silent stabilizing to T iff p is self-stabilizing to Z but
executes no actions from any state in Z.

Definition 2.15 (Legitimacy Graphs). Consider an invariant Z = Vi : L;(x;_1, ;) for a uni-ring. The local
state predicate L; can be represented as a digraph G = (V, A), called the legitimacy graph, such that each
vertex v € V represents a value in Zjs, and each arc (a,b) is in A iff L;(a,b) is true.

Next, we represent some of our previous result (from [14, 26]) that we shall use in this paper.
Propagations and Collisions. When a process acts and en-
ables its successor in a uni-ring, it propagates its ability to act. 2 !

The successor may enable its own successor by acting, and the @—'@C@
pattern may continue indefinitely. Such behaviors can be rep- 0
resented as sequences of actions that are propagated in a ring,
called propagations. A propagation is a walk through the action
graph. For example, the Sum-Not-2 protocol has a propagation
((0,2,1),(1,1,2),(2,0,1),(1,1,2)) whose actions can be executed in order by processes P;, P;y1, Pit2, and
P35 from a state (z;—1,x;, Tit1, Tive, Tivs) = (0,2,1,0,1). A propagation is periodic with period n iff its j-
th action and (j +n)-th action are the same for every index j. A propagation with period n > 1 corresponds
to a closed walk of length n in the graph. The Sum-Not-2 protocol has such a propagation of period 2:
((1,1,2),(2,0,1)). A collision occurs when two consecutive processes, say P; and P;1, have enabled actions;
e.g., (a,b,¢) and (b, e, f), where b # ¢. In such a scenario, x;_1=a,x;=b,x,11=e. A collision occurs when P;
executes and assigns ¢ to ;. If that occurs, P; will be disabled (because processes are self-disabling), and
P; 11 becomes disabled too because x; is no longer equal to b. As a result, two enabled processes become
disabled by one action.

“Leads” Relation. Consider two actions A; and As in a process P;. We say the action Ay leads Ay iff the
value of the variable z; after executing A; is the same as the value required for P; to execute A,. Formally,
this means an action (a, b, c) leads (d,e, f) iff e = c. Similarly, a propagation leads another iff for every
index j, its j-th action leads the j-th action of the other propagation. In the action graph, this corresponds
to two walks where the label of the destination node of the j-th arc in the first walk matches the arc label
of the j-th arc in the second walk (for each index j). In [26], we prove the following theorem:

Figure 1: Graph representing Sum-Not-
2 protocol.

Theorem 2.16. A uni-ring protocol of symmetric, deterministic and self-disabling processes has a livelock
for some ring size iff there exist some m propagations with some period n, where the (i — 1)-th propagation
leads the i-th propagation for each index i modulo m; i.e., the propagations successively lead each other
modulo m.

Undecidability of Verification. We have shown [14] that verifying deadlock-freedom in uni-rings is
decidable. However, checking livelock-freedom is an undecidable problem (specifically I19-complete) for uni-
ring protocols (with self-disabling and deterministic processes) [26]. The following results hold for cases
where the invariant Z is a conjunctive predicate; i.e., Z = Vi : L;(x;—1, ;).



Theorem 2.17. Verifying livelock-freedom in a parameterized uni-ring protocol (with self-disabling and
deterministic processes) is undecidable [26].

We have also shown that verifying livelock-freedom remains undecidable even for a special type of live-
locks, where exactly one process is enabled in every state of the livelocked computation; i.e., deterministic
livelocks [26].

Theorem 2.18. Verifying livelock-freedom in a parameterized uni-ring protocol (with self-disabling and
deterministic processes) remains undecidable even for deterministic livelocks [26].

The above results imply the undecidability of verifying self-stabilization for parameterized uni-rings.

Theorem 2.19. Verifying self-stabilization for a parameterized uni-ring protocol (with self-disabling and
deterministic processes) is undecidable [20].

3 Decidability of Synthesizing Unidirectional Rings

In this section, we show that synthesizing SS uni-rings of deterministic, self-disabling and constant-space
processes is decidable. First, we formulate the synthesis problem. Let P; = (R;, x;, M;, d;) be the template
process of a fully symmetric uni-ring p, and P; is instantiated N > 1 times, forming a uni-ring of size N,
where N is an unbounded (but finite) positive integer. Moreover, let Z =Vj : 1 < j < N : L;(z;—1,2;)
represent an invariant of the ring.

Problem 3.1 (Synthesis of Unidirectional Rings). We state the synthesis problem as follows:

e Input: L;(x;—1,x;), Ri,x;, M; and an integer k¥ > 2. Note that, R; defines the topology of the
protocol modulo ring size N; i.e., when i = 0, Lo(zny—1,Z0)-

e Output: The transition function J; (represented as an action graph) such that the entire ring is SS to
I=Vj:1<j<N:Lj(xj_1,z;) for any ring size N > k.

Remark 1. Considering L;(z;—1,x;) as an input would suffice for synthesis since if L; holds for all processes,
then a global state in Z is reached. Moreover, J; can be represented as an action graph whose every arc can
be specified as a parametric action of the template process P;.
Remark 2. A straightforward solution of Problem 3.1 may seem like a simple parametric action
—Li(zi—1,2;) = x; = ¢, where ¢ € Zy;, and L;(z;—1,c¢) holds. This simply means that every process
updates its x value such that L; holds. However, such updates on x; may further perturb the state of the
successor of each process and destabilize the entire ring. That is, the resulting parameterized protocol may
include livelocks; hence weakly stabilizing. This means that we need a systematic approach for local recovery
to Li(x;—1,x;) such that the correction of the locality of one process will not negatively impact its successor.
Now, we represent a result due to Bernard et al. [3] on the impossibility of solving graph coloring on
uni-rings as we refer to their results in our proofs. A valid coloring of the ring assigns colors to processes
such that no two neighboring processes have similar colors.

Lemma 3.2. Let P; = (R;,x;, M;,8;) be the template process of a symmetric uni-ring. It is impossible to
have a self-stabilizing graph coloring protocol p for rings of size N > M;.

Proof. Bernard et al. [3] show that if the ring has at most M; processes, then assigning unique values to
processes modulo M; will provide an acceptable coloring. Otherwise, there is no valid coloring of the rings
of sizes N > M; (as there would always be two neighbors with similar colors). O

We also represent one of our previous results as the following lemma since we shall use it in subsequent
proofs.
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Figure 2: Synthesis of stabilization to Vi : L(z;_1, z;), where

L(zi—1,2;) = (v, +2}) mod 7 = 3) and z;€Z7.

Lemma 3.3. A closed walk of length | > 1 in the legitimacy graph of a symmetric uni-ring characterizes
the global states of uni-rings of sizes k x I, where k > 1. (Proof in [1}].)

Theorem 3.4. Let P; = (R;, x;, M;,0;) be the template process of a parameterized symmetric uni-ring, and

the state predicate T S (Vi : Li(x;—1,2;)) capture its invariant. There exists a parameterized protocol that
stabilizes to T if and only if L;i(vy,7) is true for some v € M;.

Proof. Assume that no « exists in M; such that L;(vy,7) is true. This implies that Vi : x;—1 # z; in Z. In
this case, a stabilizing protocol would be a coloring protocol, which is impossible by Lemma 3.2 for ring sizes
greater than M;. This means if we check the entire domain Zj,, and find no value that makes L; true, then
using Lemma 3.2, we can decide that no solution exists for ring sizes greater than M;. That is, the problem
is decidable when L; (v, ) is false for all v € Z,;,. We are left to show how to construct a stabilizing protocol
p when some 7 can make L;(7,~) true.

= Find a v such that L;(y,) is true Assuming such a +y exists, it is trivial to find it by trying each value
in Zyy,. Intuitively, we will make the stabilizing protocol p converge to (Vi : z; = ) unless it reaches some
other state that satisfies Z. To illustrate the proof strategy and ease its understanding, Figure 2 provides an
example where L;(z;_1,2;) = ((#2_, +2?) mod 7 = 3) and variables have domain size M; = 7. We arbitrarily
choose v = 5 to satisfy L;(y,7); i.e., the solution is not unique.

Construct relation L) from arcs that form cycles in the legitimacy graph of L;. Let G be the
legitimacy graph of L; (e.g., the graph formed by both solid and dashed lines in Figure 2a). By Lemma
3.3, closed walks in G characterize states in (Vi : L;j(z;—-1,;)). Derive a sub-graph G’ (and corresponding
relation L) from G by removing all arcs that are not part of a cycle (e.g., arcs (4,1), (3,1), (2,6), and (5, 6)
in Figure 2a). We know that for every arc (a,b) in G that is not part of a cycle, no legitimate state contains

z;_1=a Az;=b at any index i. All closed walks of G are retained by G’, which means Z = (Vi : Li(zi—1, ;).
Construct a bottom-up spanning tree © with v at the root. To ensure that no global livelocks will
occur in any instance of the protocol, we must guarantee that no periodic propagations exist that lead each
other successively (see Theorem 2.16). To this end, we construct a spanning tree of G’ with the root of .
Let 7 be a function that returns the parent of a node in a tree; i.e, 7(a) = ¢ means that ¢ is the parent of a.
First, let 7() £ ~ represent the root of the tree. Next, create a tree by backward reachability from v in G,
and assign 7(a) = ¢ for each a that has a path a,c,...,~ in G’. Finally, let 7(a) L 5 for each node a that
has no path to v in G’. These extra arcs of 7 create no cycles. Thus, (Vi : (L}(z;—1,2;) V T(2—1)=x;)) is
yet another equivalent way to write Z.

Construct each action (a,b,c¢) of p by labeling each arc (a,c¢) of 7 with all b values where
(=Li(a,b) A 7(a)#b) holds. In this way, 7 defines how a process P; in p will assign z; when it detects an



illegitimate state. Figure 2b illustrates the solution protocol for our example, as well as 7 if we ignore the
arc labels. The protocol p is written succinctly by the following action for each process P;.

_‘L;;(l'ifl,xi) A\ T(xi,l)séxi — T = T("Eifl);

This protocol p stabilizes to Z. Deadlock-freedom in —=Z and closure of Z hold because each process
P; is enabled to act iff (—L}(z;—1,%;) A 7(x;—1)7#x;) holds. Livelock-freedom holds because all periodic
propagations of p consist of actions of the form (v,b,~y) where L;(y,b) is false (e.g., the self-loops of Node
5 in Figure 2b). Obviously none of these (v,b,7) actions lead each other since b # ~; i.e., no periodic
propagations exist. Thus, based on Theorem 2.16, no livelocks exist in =Z for any ring size greater than M;.
Therefore, the parameterized protocol p stabilizes to Z.
Proof <: Let p be a parameterized protocol p that stabilizes to Z on a uni-ring. Thus, closure of Z in p,
deadlock-freedom and livelock-freedom of p in —=Z must hold. Since processes are deterministic and self-
disabling, each process P; contains some actions that are enabled in —L;(x;_1, ;). After the execution of a
sequence of such actions L;(x;—1,x;) holds by setting z; to some value A € M;, and P; becomes disabled.
Due to livelock-freedom of p and Theorem 2.16, no periodic propagations should exists in p. That is, there
cannot be any closed walks in the action graph of p other than self-loops over A. The existence of such
self-loops means L;(A, A) holds. O

Using the proof of Theorem 3.4, we present Algorithm 1. Since this algorithm is self-explanatory, we just
prove its soundness and completeness.

Theorem 3.5 (Soundness). Algorithm 1 is sound; i.e., every parameterized protocol generated by Algorithm 1
for an invariant I, upholds closure of T and converges to Z from any state.

Proof. The proof of soundness includes two parts, namely proof of closure of Z and convergence to Z, where
T =Vi: Li(x;—1,x;). Step 7 of the algorithm guarantees closure because once the protocol reaches a global
state where all z; are equal to 7 no more actions will be taken; i.e., silent stabilization. Steps 4 to 7 ensure
that the legitimacy graph does not include any periodic propagations (i.e., closed walks) that lead each other
in a circular fashion (Theorem 2.16). As a result, the resulting protocol will be livelock-free. Moreover, each
process eventually sets the value of z; to v by taking the actions in a path of the spanning tree towards its
root; hence evaluating L;(z;—1, ;) to true. Further, starting from any state where L;(z;_1, ;) does not hold
(i.e., states in —Z), there is at least one action that each process P; can execute because its local state is in a
state other than the root of the spanning tree. Thus, there are no deadlock states in —=Z. Deadlock-freedom
and livelock-freedom guarantee convergence to Z. O

Theorem 3.6 (Completeness). Algorithm 1 is complete; i.e., Algorithm 1 finds a self-stabilizing protocol if
one exists.

Proof. This algorithm declares failure only in Step 2, where no value 7 exists that can satisfy L;(x;—1,;),
implying that no process can recover to its local invariant. O

Theorem 3.7. The asymptotic time complexity of Algorithm 1 is polynomial (specifically quadratic) in the
domain size M; (proof straightforward; hence omitted).

3.1 Case Studies

We now present some case studies for the synthesis of parameterized symmetric uni-rings using Algorithm 1.
Sum-Not-2 protocol. The Sum-Not-2 protocol (taken from [13]) is a simple but interesting protocol that
illustrates the complexities of designing self-stabilizing systems. This is again a protocol on parameterized
uni-rings with a domain size M = 3; i.e., values {0, 1,2}. The invariant of Sum-Not-2 contains states where

Vi : (z;—1 + ;) # 2 holds, where addition and subtraction are in modulo 3. Thus, for each process P;, we
def

have L;(z;—1,x;)=(x;—1 + ;) # 2. Figure 3a illustrates the legitimacy graph representing L; in the locality
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Algorithm 1 Synthesizing self-stabilizing uni-rings.

SynUniRing(L;(x;—1,x;): state predicate, M;: domain size)
1: Check if a value v € Z)y, exists such that L;(vy,7) = true.
If no such ~ exists, then return @) and declare that no solution exists.
Construct the legitimacy graph G = (V, A) of L;(x;—1, ;).
Induce a subgraph G’ = (V’/, E’) that contains all arcs of G that participate in cycles involving .
Compute a spanning tree of G’ rooted at +.
For each node v € G that is absent from G’, include an arc from v to the root of the spanning tree of
G’. The resulting graph would still be a tree, denoted T
Include a self-loop (7,7) at the root of T.
8: Transform T into an action graph of a protocol by the following step:

-

For each arc (a,c) in T, where a, ¢ € Zyy,, label (a, ¢) with every value b for which L;(a,b) =
false and b # c.

9: Return the actions represented by the arcs of T

i : a 1 a
0

(a) Legitimacy graph representing predicate (b) Action graph of the self-stabilizing protocol.
Li(zi—1,2;) = ((xs—1 + x;) # 2) where each x; € Z3

Ti—1=0 A\ x;=2 — x; := 0;
‘fCi,l:l A .’)31:1 — T = O;
Ti_1=2\Nx;=0 — x; :=1;

(c) Actions of each process P;.

Figure 3: Synthesis of parameterized Sum-Not-2 on uni-rings.

of a process. In this case, there are two candidate values for v, where L(v,~) holds; i.e., values of 0 and 2.
Wlog, we choose v = 0 and form the spanning tree of the graph G with the root of 0. Stripping the graph
in Figure 3b from the labels on its arcs would give us the spanning tree of G, and the graph with the labels
is the action graph of the synthesized self-stabilizing protocol (in Figure 3c).

Parity. The Parity protocol specifies the local invariant of each process P; as Li(xi,l,xi)d:d((mi,l —

x;) mod 2) = 0, where M; = 4. Thus, the invariant is Vi : ((2,—1 — #;) mod 2) = 0. Notice that if there
is an even (respectively, odd) value in the ring, then all values will be even (respectively, odd) in a legitimate
state. Thus, from any state, Parity will converge to either an all-odd or an all-even state. This protocol has
applications in choosing a common parity policy in a distributed system, where from an arbitrary state all
nodes will agree on a common parity policy. Figure 4a represents the legitimacy graph corresponding to the
predicate L;. All four values in the domain M; are candidate values for y. We choose v = 1, and generate
the action graph of Figure 4b. Figure 4c illustrates the actions of the self-stabilizing protocol. Please notice
that this protocol would recover to global states where all values are odd. Symmetrically, one could generate
a protocol that would stabilize to states where all values are even. This could be achieved by strengthening
L;(x;—1,z;) by an additional constraint (z; mod 2 = 0).

11



(a) Legitimacy graph representing predicate (b) Action graph of the self-stabilizing protocol.
Li(zi—1,z;) = ((zi—1—z;)mod2 = 0) where each
x; € Ly4.

(xi—1=1Vx;_1=3) A (x;=0V 2;=2) — z; := 1;
(l‘i_lzo V .Z‘i_1:2) Nx;=3 —rx; = 1;

(c) Actions of each process P;.

Figure 4: Synthesis of parameterized Parity on uni-rings.

4 Synthesizing Self-Stabilizing Top-Down Trees

In this section, we investigate the synthesis of parameterized self-stabilizing top-down trees, where each node
can read its own state and its parent’s. First, we make note that top-down trees are not fully symmetric
because the root does not have a parent; every other node does. That is, there are two template processes,
one for the root and one for non-root processes. We specify the template process of the non-root processes
as P; = (R, x;, M;,0;), where R; = {xp;,z;}, and z,; denotes the parent’s = value. The template process
of the root is specified as Proot = (Rroot, Lroots MiyOroot), Where Ryoot = {Troot} because the root does
not have a parent node. Notice that, the root process cannot be enabled by any process. Since processes
are self-disabling, once the root process takes an action it will be disabled until it is enabled again by the
occurrence of transient faults.

Problem 4.1 (Synthesis of Top-Down Trees). We state the synthesis problem as follows:

e Input: L, o0t(Zro0t) for the root process, L;(xp;,x;) for non-root processes of a top-down tree,
R; = {xpi,x;},z;, M; and an integer k > 2. Note that, M; = M, 4.

e Output: The transition functions d,,,; and J; respectively for the root process and the template
process of non-root processes (represented as action graphs) such that the entire tree is SS to Z = Vj :
1<j <N :Lj(zp;,x;) for any tree size N > k.

Lemma 4.2 (Periodic Propagations in Acyclic Unidirectional Topologies). In any acyclic unidirectional
topology of self-disabling and deterministic processes with constant state space, no periodic propagations exist
that lead each other successively/circularly.

Proof. To prove this lemma, we show that the execution of a process cannot enable its predecessors (similar
to what may happen in cyclic topologies like rings). Consider a process P;. The set of immediate predecessors
of P; includes those processes from which P; can read and the set of immediate successors of P; consists of
processes that read from P;. Let Succ; denote the set that includes any process reachable from P; in the
underlying topology graph of the protocol (i.e., transitive closure of the ‘successor’ relation). Likewise, let
Pred; represent the set that includes any process from which P; can be reached (i.e., transitive closure of
the ‘predecessor’ relation). Notice that, in unidirectional topologies the intersection of Succ; and Pred; is
empty because the topology is acyclic. Due to the self-disabling nature of processes, the actions of a process
can only enable its successors. This means the actions of a process cannot generate a wave of enablements
that come back to itself. Further, no new values can appear in processes because they have constant state
spaces. Therefore, periodic propagations cannot lead each other in a circular fashion. O

12



Lemma 4.3 (Livelock-freedom of Acyclic Unidirectional Topologies). Any acyclic unidirectional topology of
self-disabling and deterministic processes with constant state space is livelock-free.

Proof. Proof follows from Lemma 4.2 and Theorem 2.16.
O

Legitimacy graphs for top-down trees. The notion of legitimacy graph introduced in Section 2 can be
directly used for top-down trees as each non-root process can read only the state of its parent/predecessor
and its own.

Theorem 4.4 (Decidable Synthesis for Top-Down Unidirectional Trees). Let P; = (R;, x;, M;,d;) be the

template process of non-root nodes in a top-down unidirectional tree, and the state predicate T o (Vi :
Li(zpi,z;)) capture the invariant of the tree. A protocol that stabilizes to I exists iff the legitimacy graph
corresponding to L; is cyclic.

Proof. < There are two cases depending on the existence of values that make L;(zp;, x;) true. For simplicity,
we present this proof in the same spirit as that of Theorem 3.4.

e Case 1: If there is a single value v € Zy, that makes L;(xp;,x;) true, then the legitimacy graph
G = (V,A) must have a self-loop on the vertex corresponding to . In this case, the stabilizing
protocol includes an action for the root that sets its x value to v and all other processes will have the
action xp; = YA X ¥ = Ty =1

e Case 2. (G has no self-loop, but includes a cycle. As such, there must exist a fi-
nite sequence of distinct values vy, va,---, v, such that {vi,ve, -+ ,vx} € Zp, and L;(v1,v2),
L;(va,v3),- -+, Li(vg—1,v%), Li(vg,v1) hold, where k > 2. If k = M;, then it is possible to design
an M;-coloring protocol on the top-down tree, where the root sets its value to v; and the subsequent
levels of the tree respectively choose the colors vg,--- ,var, (by assigning x,; & 1 to x; where @ de-
notes addition modulo M;), and the whole pattern gets repeated, thereby meeting the global invariant
Z =Vi: Li(xp;, z;). Even if the state of the tree is perturbed to an arbitrary state, the invariant Z will
eventually be met since a wave of stabilization will eventually propagate to all levels from the root.
If 1 < k < M;, then the length of the cycle is k£ and some vertices of G do not participate in this
cycle. In this case, from each vertex v outside of the cycle, we build a path to some vertex u in the
cycle. Afterwards, we create the action graph of the self-stabilizing protocol by an arc-labeling method
similar to the one we use in the proof of Theorem 3.4. An alternative approach would use only the &
values in the cycle to design a parameterized SS protocol. To elaborate on this, let Vi, = {co, - ,cx—1}
be the values in the cycle of length k£ in G. We first assign the action oot # co — Troot := Co to the
root.Then, each non-root process P; will have the action z,; = ¢; A x; # f(¢;) = z; := f(c;), where
Jj € Zy, and f is a permutation function that maps c; to the next value cjg1 and @ denotes addition
modulo k.

= We prove the contrapositive of this part and assume that the legitimacy graph G is acyclic. Thus,
G has a vertex from where no outgoing arcs exist. That is, there is a value v € Zj, for which there is no
value © € Zjy, that makes L;(v,z) true. This means that if a process P; in the top-down tree takes the
value v (due to state perturbations), then there is no way for its children to correct their locality. This will
cause a global deadlock in =7 because children of P; cannot recover. Therefore, there is no self-stabilizing
solution. O

Observe that, given the state predicate L;(zpi,z;) and M;, the proof of Theorem 4.4 provides a graph-
theoretic algorithm (Algorithm 2) for deciding the existence and synthesis of a self-stabilizing protocol for

the top-down tree that converges to Z = Vi : L;(xp;, ;) from any state.

Theorem 4.5. Algorithm 2 is sound and complete. (Proof follows from Theorem 4.4.)
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Algorithm 2 Synthesizing self-stabilizing top-down trees.

SynTopDownTrees(L;(zp;, z;): state predicate, M;: domain size)

1: Construct the legitimacy graph G = (V, A), where each vertex v € V represents a value v in Zyy,, and
each arc (v,v’) captures the fact that L;(v,v") holds.

2: If G is acyclic, then return and declare that no solution exists.

3: If G has a self-loop on some vertex v € V', then include the action T,oot # ¥ = Troot := 7y for the root,
and the action z,; = v A x; # v — x; := 7y for non-root nodes. exit;

4: For a cycle in G on vertices Dy, = {co,---,cp—1} (where 2 < k < M), design a permutation function
f : Dy — Dy, where f includes an ordered pair (¢;, ¢;g1) iff there is a corresponding arc (¢;, ¢;g1) in the
cycle. (@ denotes addition modulo k)

5: Assign the action Z,oot # Co — Troot := Co to the root, and include the following action in each non-root
process P; which is located in j x ¢ steps from the root, where 1 < j < k and ¢ is a positive integer:

Tpi = Cj—1 AN @i # flcj-1) =z == f(cj-1).

® @0 c®  @o

(a) Legitimacy graph representing predicate L;(zp;,x;) = (b) Action graph of self-stabilizing broadcast.
((xpi = x;)) where each x; € Zo.

(Tpi 7# @) —> Tj 1= Ty

(c) Actions of each process P;.

Figure 5: Synthesis of parameterized Broadcast on top-down trees.

Theorem 4.6. The asymptotic time complexity of Algorithm 2 is polynomial (specifically quadratic) in the
domain size M;. (Proof straightforward, hence omitted.)

Corollary 4.7 (Decidability of Synthesis for Unidirectional Chains). Let P; = (R;, x;, M;, d;) be the template
process of the non-root processes of a unidirectional chain of disabling, constant-space and deterministic
processes, and the state predicate T = (Vi : Li(x;_1,%;)) capture its invariant. A protocol that stabilizes to T
exists iff the legitimacy graph corresponding to L; is cyclic.

Proof. Each unidirectional chain is a special case of a top-down tree. Proof follows by applying Theorem
4.4. O

Example: Broadcast. Consider a top-down tree that forms the spanning tree of the nodes in a network
and the root is the leader that broadcasts global information. The root simply casts its vote on an issue by
setting its binary variable to 0 or 1. Root’s decision is required to be propagated throughout the network;
i.e., eventually, every node has the same vote as the root’s. Nonetheless, transient faults may perturb
the vote of some nodes, thereby making their vote inconsistent with root’s. The objective is to design a
self-stabilizing protocol that ensures every node will eventually receive the vote of the root. The predicate
L;(zp;, ;) is defined as x; = Tyeot, however, since each node can just read the state of its parent, we can
rewrite L; as xp; = x;, where z; are binary variables. This specification of L; implies z; = 2,50+ Whenever
the tree stabilizes. Figure 5a illustrates the legitimacy graph of L;, its action graph and the actions of the
self-stabilizing protocol. In this case, the value of v is actually equal to the root’s vote (i.e., Case 1 of
Theorem 4.4). As such, the action of every non-root node will be x,; # x; — x; = zp;.

Example: 2-coloring. The graph coloring problem has applications in scheduling, register allocation,
frequency band allocation, etc. The 2-coloring on a top-down tree uses only 2 colors such that no two
neighboring nodes have similar colors. As an application, consider the spanning tree of a sensor network
where sensor motes are spread in a field in specific distances. The root of the spanning tree determines how
frequency bands are allocated such that no two neighboring nodes have the same carrier frequency (hence
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(a) Legitimacy graph representing predicate L;(zp;, z;) = (b) Action graph of self-stabilizing 2-coloring.
((zpi # x;)) where each x; € Zo.

(Tpi = @) —> T 1= "Xp;;

(c) Actions of each process P;.

Figure 6: Synthesis of parameterized 2-coloring on top-down trees.

avoiding potential for overhearing). We consider a binary variable x for each node of the tree. The value
of z signifies which frequency band the node should use. Thus, we have L;(xp;, ;) = (xpi # ;). Observe
that, in this case there is no ~ for which L; (v, v) holds. However, both L;(0,1) and L;(1,0) hold®. Following
the algorithm in the proof of Theorem 4.4, the root has an action that sets its = variable to 0 or 1; e.g.,
Troot 7 0 = Zyroor := 0. Every other node will have the following action: zp; = x; — ; := —Tp;.

5 Synthesizing Self-Stabilizing Bottom-UP Trees

In this section, we discuss the synthesis of parameterized self-stabilizing bottom-up trees. Consider a bottom-
up tree topology, processes are the nodes of the tree and each process P; has a variable z;. Each node can
read its children’s and its own z values, and can write only its own x value. Note that, in bottom-up trees the
locality of non-leaf nodes may include more than two processes. For simplicity, we investigate the synthesis
of binary bottom-up trees. As a result, the local invariant of a process P;, denoted L;(zy;,x;,2r;), should
be specified as a state predicate in terms of its variable x; and the variables of its left and right children,
respectively denoted x); and x,;. The global invariant of the tree is specified as Z = Vi :: L;(zy;, T4, Tri)-

A bottom-up tree is not fully symmetric because the leaves have no children. Thus, we specify the
template process of non-leaf processes as P; = (R;,x;, M;,8;), where R; = {xy;,z;,x;}. The template
process of leaves is specified as Piear = (Ricafs Ticafs Micaf,Oteaf), Where Ricar = Tieas and M; = Mieqy.
Wlog, we consider complete bottom-up binary trees. An incomplete tree can have two types of nodes with
less than two children; leaves that are not at the lowest level and nodes with one children. For the first type,
we can include dummy nodes as children of leaves that copy the actions of their cousins. If a node has just
one child, we consider the child as being both the left and right children. We also make two assumptions
about the kind of leaves a bottom-up tree can have: (1) leaves have no actions to correct themselves and
cannot be perturbed by transient faults, called shielded /hardened leaves, or (2) each leaf process can have a
fixed action that sets its x value to a particular value cg € Zys if © # ¢o.

Problem 5.1 (Synthesis of Bottom-UP Trees). We state the synthesis problem as follows:

e Input: Ljcq;(Zieqy) for the leaf processes, L;(xyi, x;, xr;) for non-leaf processes of a bottom-up tree,
R; = {zyi, i, xri }, xi, M; and an integer k > 2. Note that, M; = Mjeqy.

e Output: The transition functions djeq.y and §; respectively for the leaf processes and the template
process of non-leaf processes (represented as action graphs) such that the entire tree is SS to Z = Vj :
1<j<N:Lj(xy,xj,xr;) for any tree size N > k.

Definition 5.2. A binary tree has left-symmetric (respectively, right-symmetric) leaves if all left (respec-
tively, right) leaves have a symmetric action setting their local x variable to a specific value. Two symmetric
actions can be obtained from each other by a simple variable renaming/re-indexing.

3Please see Case 2 in the proof of Theorem 4.4.
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Theorem 5.3. There is a parameterized self-stabilizing protocol for a bottom-up binary tree iff there is a
parameterized self-stabilizing protocol for a bottom-up binary tree where leaves have left and right-symmetric
actions.

Proof. Proof of right to left is trivial, hence omitted. Let p be a parameterized self-stabilizing protocol for a
bottom-up tree 7. Thus, p should self-stabilize no matter what values the leaves have. We simply replace the
actions of the leaves of T in a left and right-symmetric fashion such that left (respectively, right) leaves are
set to a specific value ¢; (respectively, ¢;.) if their x value is different from ¢; (respectively, ¢,.). Observe that
the resulting protocol will also stabilize because it simulates a special scenario under which p stabilizes. [

Consider a process P; whose L;(xy;, 2, ;) is false. For P; to recover, it should set x; to some value
¢ € Zy, such that L;(zy;, ¢, 2;) holds. Let Par(P;) denote the parent of P; and L;(zl,, 2, 2?,) represent the
local invariant of Par(P;). Notice that P; may be a left child or a right child of Par(F;), but there is no way
for P; to figure out which child of its parent it is. Wlog, assume that P; is the left child of Par(P;). Now, if
x; is set to ¢, there should be some value ¢’ € Zy, that Par(P;) can assign to z¥ such that L;(c, ¢, 2%,) holds
for any value of z¥,. This means the decision of each process in the value it chooses to correct its locality
affects the ability of its parent node to correct itself. Thus, each process P; should correct its locality by
some value ¢ such that Par(P;) can also correct its locality regardless of the value that the sibling of P; takes.
Such a reasoning percolates up the tree at all levels, which means the ability of correcting locality must be
propagated to all levels of the tree in a circular fashion.

Theorem 5.4. Let P; = (R;,x;, M;, ;) be the template process of the non-leaf processes of a bottom-up
binary tree protocol p with left and right symmetric leaves. p is self-stabilizing iff there exists a set of values
Vi = {coy - ,cp—1} C Zpy, (where 0 < k < M; — 1) such that these values circularly satisfy L; in the
following fashion L;(co,c1,¢0), Li(c1,c2,¢1), -, Li(ck—2, ck—1, ck—2), Li(cr—1,C0, Ck—1)-

Proof. <: To design a parameterized SS protocol, we assign a symmetric action z; # cg — x; = o
to all leaves. Since all other processes are self-disabling, they will eventually be disabled and any leaf
action that is enabled will be forced to execute. Then, we give each non-leaf process of the tree the action
(x1; = i) A (T = ¢5) AT # Cjo1 — T := Cje1, where ¢; € Vi, and & denotes addition modulo k. Notice
that, while transient faults could make the non-leaf processes disabled (due to z;; # x,;), after faults stop
occurring, a correction wave will propagate from the leaves up to the root. Since leaves will eventually
execute, L; will eventually hold for each process P;.

=-: Let there be a parameterized SS solution that is symmetric on non-leaf processes of the tree, and left
and right symmetric on its leaves. Let Level 0 processes include the leaves. We increment the level number
as we move upward. As such, for processes in Level 1, there must be some value ¢y such that L;(zo, co, yo),
where xg and y are respectively the values of the left and right leaves. Notice that, in this proof, o may
not necessarily be equal to yo; however, we use the existence of a value ¢¢ that makes L;(zg, co,yo) true to
show that the circular dependency starts at some level, which could have been started from the leaves. The
non-existence of ¢y would be in contradiction with the assumption of self-stabilization. Then, the siblings
of processes in Level 1 all have the value ¢y due to symmetry. At Level 2, there must be some value y that
makes L;(co,y,co) true. Now, let y be some value ¢; € M;. As a result, all processes in Level 2 would
take value ¢; due to symmetry. A similar reasoning holds for higher level processes. In the worst case,
this reasoning can be repeated M; times. Due to the pigeon hole principle, in Level M; + 1, the y value
that would be selected should be one of the previously used values; otherwise, no value can be assigned to
processes in level M; + 1, which is a contradiction with the tree being self-stabilizing. Thus, if there is a

symmetric SS solution for non-leaf processes of the tree, then there must be a set of values {co, - ,cr—1},
where 1 < k < M; — 1, such that these values circularly satisfy L;; i.e., the following conditions hold
Li(co,c1,¢0), Lier, ea,¢1), -+ Li(ck—2, k1, ck—2), Li(ck—1, o, Cr—1)- O

Corollary 5.5. Let P; = (R;,x;, M;,8;) be the template process of the non-leaf processes of a bottom-

up binary tree protocol p. p is self-stabilizing iff there exists a set of values Vi, = {co, - ,cx-1} C
Zy, (where 0 < k < M; — 1) such that these wvalues circularly satisfy L; in the following fashion
Li(co, c1,¢0), Lier, ca,e1), -+, Li(cr—2, ck—1, ck—2), Li(ck—1,¢0,Cr—1)-
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Proof. The proof follows from Theorems 5.3 and 5.4. O

Example: LessThan protocol. Consider a bottom-up tree with an invariant Z = Vi : L;(zy, x4, Tri),
where L;(21;, i, 2ri )= (215 + x;) > @p4) and M; = 3. We apply Theorem 5.4 and look for the set of values
Vi. Let ¢g = 2. Thus, we should find a value for z in L;(2, x,2) such that L; holds. No value in the domain
Z3 can be substituted for x to make L;(2,x,2) true. This means that L;(2,x,2) cannot participate in any
cyclic satisfaction of L;. If ¢g = 0, then to satisfy L;(0,z,0), = can be either 1 or 2 (but not 0). If we
assign 2 to = in L;(0,x,0), then in the next level, we should satisfy L;(2,z,2), which we already showed is
impossible. Thus, only 1 can be substituted for = in L;(0,x,0). The third possible scenario is where ¢y = 1;
ie., L;i(1,z,1) should be satisfied for some value of x. The only possibility in this case is x = 1. We can
see that L;(1,1,1) holds, and the nodes in the next level of the tree will have their values equal to 1. Thus,
Vi, = {1} and the cyclic satisfaction of L; occurs just by propagation of L;(1,1,1). A self-stabilizing protocol
would be a left and right symmetric protocol that assigns the action (zy; = 2, = 1) A (2; 1) = x;:=1 to
all non-leaf nodes, and the action x; # 1 — z; := 1 to the leaves.

Example: Maximal Independent Set (MIS). A set of vertices V' C V in a graph G = (V,E) is
independent iff there are no edges between any pair of vertices in V. Such a set is maximal if no vertex
can be added to it without breaking its independence property. The Maximal Independent Set problem has
applications in several domains (e.g., scheduling, map labeling, largest correcting code, etc.). Consider the
problem of finding an MIS of a bottom-up tree. Depending on the domain of application, a bottom-up tree
could represent different problems (e.g., a set of prioritized tasks where the leaves hold higher priority tasks).
Let each process P; have a binary variable z; such that P; is in an MIS iff z; is true. Moreover, a process
P; is in an MIS iff neither of its children are in the MIS of their own subtrees. In other words, any one of
the children of P; is in an MIS iff P; itself is not in that MIS. This in turn means that the local invariant for
each process P; is Li(xy;, i, i) = (—x; < 213 V xr). Now, applying Theorem 5.4, we can find the following
cycle: L;(true, false,true), L;(false, true, false), which implies V;, = {true, false}. The resulting protocol
will have the action = # true — x := true for leaves, and the action x; = (zy; V i) = 23 := = (233 V 24) for
non-leaf processes.

Example: Min/Max protocol. Consider a protocol in a bottom-up tree where the global invariant includes
states where the root of the tree includes the minimum of all values in the tree. (A symmetric protocol can be
considered for the maximum value.) The objective is to design a self-stabilizing protocol that works for any
tree size. Each process has a variable x with a domain of modulo M; (i.e., Zyy,). The local invariant of each
node states that L;(zy;, x4, ;) S (x; = Min(zy;, x4, xr;)), where Min is a function that returns the minimum
of three values. Formally, the global invariant is Z = Vi : L;(2y;, 2, ;). Now, using Theorem 5.4, we look
for a set Vi, C Zyy, that includes values that circularly satisfy L;. For L;(0,z,y) to hold, x must be set to
0, where y € Zjpy,. This would result in ensuring that L;(0,z,y) and L;(y, x,0) hold at the next level of the
tree. Thus, in this case V;, = {0}, which implies the existence of a left-right symmetric solution. The action
(z; #0) — x; := 0 for leaves, and the parameterized action (z; # Min(zy;, iy i) = x; = Min(xy, 4, ;)
for non-leaf processes would provide us a self-stabilizing protocol.

5.1 Synthesis Algorithm

This section presents an algorithm for synthesizing self-stabilizing parameterized protocols in bottom-up
binary trees. Specifically, the objective is to determine if for a specific predicate L;(xy;, x;, ©,;) a parame-
terized self-stabilizing protocol exists for a bottom-up tree. If such a protocol exists, we generate its action
graph. We first extend the notion of legitimacy graphs for bottom-up trees. Notice that, the semantics of
vertices and arcs of the legitimacy graph might differ from one topology to another. Then, we provide a
graph-theoretic characterization of Theorem 5.4.

Definition 5.6 (Legitimacy graph for bottom-up trees). Let G = (V, A) be the legitimacy graph corre-
sponding to L;(xy;, x;, 2,;) for a parameterized bottom-up tree. A vertex s € V captures a local legitimate
state of the template process of the non-leaf nodes of a bottom-up tree; i.e., L; holds in s. An arc (s,s’)
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connects two legitimate states s and s’ in G iff (1) s’ is a state of the parent of a process in state s, and (2)
zy(s") = @ (s').

The second constraint is enforced by Theorem 5.4 as we are looking for a sequence of values that propagate
through the tree in a cyclic fashion. Figure 7-(a) illustrates the legitimacy graph of the LessThan protocol
presented in this section. If a process P; in the bottom-up tree is in a legitimate state s = (2,1,0), then
we connect s to a legitimate state s’ = (x],2’,x.), where z; = /. = 1. The only legitimate states of the
LessThan protocol that meet the condition z; = 2] = 1 include (1,1,1) and (1,2,1). Thus, we include two
arcs from (2,1,0) to (1,1,1) and (1,2,1). The gray states in Figure 7-(a) are the ones that have no outgoing
arcs; i.e., deadlock states. Such states represent the locality of a process whose parent cannot correct its own
local state under Constraint (2) of Definition 5.6. Figure 7-(b) demonstrates a subgraph of the legitimacy
graph G, denoted G, that excludes any arc reaching a deadlock state. Now, the interpretation of Theorem
5.4 in the context of the legitimacy graph is as follows:

Corollary 5.7. A parameterized protocol exists for a bottom-up binary tree with left and right symmetric
leaves, and symmetric non-leaf processes that self-stabilizes to T Vo Li(xy, xi,x0) iff the deadlock-free
legitimacy graph G’ of L; has a simple cycle.

Notice how legitimacy graphs simplify reasoning about global behaviors in comparison with the proof of
Theorem 5.4. The following theorem provides a sufficient condition for unsolvability.

Theorem 5.8. For a parameterized bottom-up binary tree and a predicate T = (Vi =2 Li(wyi, i x0i)), of Ls
includes a conjunct that is specified only in terms of x;; and x,;, then no protocol that stabilizes to I exists.

Proof. Let L; XA Ci(xyi, xri), where C;(xy;, ;) is a predicate specified only in terms of x;; and ;. For

a process P; to correct its locality when L; is false, P; should ensure that C;(xy;, ;) holds too. Since P; can
write only x;, it has no way to update variables x;; and x,;. Moreover, the children of P; cannot read/write
each other’s state. O

def

For example, let L; = X A (z; # x). In this case, we have C;(xy;, zri) = (z1; # xpi). Obviously, if
Ci(xyi, xp;) is false (i.e., (x;; = xr)), then process P; can detect it but cannot take any action to ensure
C;(x1;,xr;) becomes true; nor can any one of P;’s children.

Example: 2-coloring. Consider the case where we design a 2-coloring self-stabilizing protocol on a complete
bottom-up tree. The objective of a 2-coloring protocol is to ensure stabilization to a state where the entire
tree has been colored by two colors in such a way that the color of each process differs from that of its
parent. Formally, we have L; = ((x; # ) A (z; # #,4)). Since z; are binary variables, the inequality
of x; to x;; and x,; implies x;; = x,;. First, we create the legitimacy graph of this protocol (see Figure
8) to determine if a solution exists at all. Notice that there are only two legitimate states for which L,
holds. Corollary 5.7 implies that a 2-coloring self-stabilizing solution exists. Observe that, for 2-coloring
on a bottom-up tree, if the leaves are not symmetric, then no solution exists. For instance, if two sibling
leaves take different values, then there is no value that their parent can take towards satisfying the constraint
((x; # x13) A (i # ®ri)). This means that in the case of 2-coloring on a bottom-up tree, no solution exists
if the leaves are not symmetric.

Synthesizing a protocol. In order to synthesize a self-stabilizing protocol on a bottom-up binary tree, we
present Algorithm 3. The input to the algorithm includes L; and the domain size of z;, and the output
contains the parametric actions of the template processes. Due to its simplicity, we present this algorithm
in plain English as a stepwise process.

Theorem 5.9. Algorithm 3 is sound and complete. (Proof follows from Theorem 5.4.)

Theorem 5.10. The asymptotic time complexity of Algorithm 3 is polynomial in Mib'H, where M; 1is the
domain size and b denotes the branching factor of the bottom-up tree. (Proof follows from Theorem 5.4.)

Proof. Every step of Algorithm 3 takes polynomial time in the size of the legitimacy graph of the bottom-up
tree. However, the size of the legitimacy graph in this case depends on the maximum number of children; i.e.,
the branching factor of the tree. The deadlock-free legitimacy graph can have at most M f +1 vertices. O
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(a) Legitimacy graph for predicate L;(z;, ©i, Tri) = (@14
;) > xr;) where each xz; € Zs3. Values “abc” in states
represent a local state where z;; = a,x; = b, x,; = c.

(b) Legitimacy graph after eliminating arcs that reach
deadlocks.

Figure 7: Legitimacy graph of the LessThan protocol on a bottom-up binary tree.

(a) Legitimacy graph for predicate L;(z;,xi,ri) &f
((zi # @) A (x4 # i) where each x; € Zo.

Figure 8: Legitimacy graph of the 2-coloring protocol on a bottom-up binary tree.
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Algorithm 3 Synthesizing self-stabilizing bottom-up trees.

SynBottomUpTrees(L; (x;, ;, x;): state predicate, M;: domain size)

1: Construct the deadlock-free legitimacy graph G’ = (V, A), where each vertex s € V represents a legiti-
mate state that satisfies L;, and each arc (s, s’) captures the possibility of a parent process being in the
legitimate state s’ while its child is in the legitimate state s.

If there are no simple cycles in G’, then return and declare that no solution exists.
Consider one of the simple cycles of G.

Select a state (a’,¢/,b") in the cycle.

Extract the left and right symmetric actions of the leaves out of {a’, ;') as follows:

AN A o

Action assigned to left leaves: z; # a’ — z; := d’.
Action assigned to right leaves: z; # b — z; :=b'.

6: For each arc to a state (a, ¢, b) in the cycle, consider the action x;; = a Axp; =bAx; #c— ;= c.

Examples. Using Algorithm 3, we synthesize the following parameterized actions for the 2-coloring protocol
on the bottom-up tree:

e Use action z; # 0 — z; := 0 (respectively, x; # 1 — z; := 1) for all leaves.

e The actions of each non-leaf node of the tree are as follows: (z;; = 1) A (2y; = 1) A(2; #0) = 2;:=0
and (27; = 0) A (2 =0) A (x; #1) = 2 := 1.

In the case of the LessThan protocol, we have only one simple cycle as a self-loop on the state (1,1,1) in
Figure 7-(b). Applying the proposed synthesis algorithm to this cycle, we get the following actions:

e All leaves have the action z; #1 — x; := 1.

e Each non-leaf node of the tree has the action (x;; = 1) A (2 = 1) A (z; #1) = x; := 1.

6 Undecidability of Synthesizing Bidirectional Rings

While synthesizing parameterized self-stabilizing protocols is decidable for uni-rings, we show that synthesis
is undecidable for bidirectional rings.

Theorem 6.1. Let T & (Vi : L(xi—1, %, 241)) be an invariant for a bi-directional ring, where each process

P; can read the variables of its left and right neighbors; i.e., R; = {x;—1,%;, i+1}. It is undecidable whether
there is a parameterized symmetric protocol p that is self-stabilizing to Z.

Proof. To show undecidability, we reduce the problem of verifying livelock freedom of a uni-ring protocol p
to the problem of synthesizing a bidirectional ring protocol p’ that stabilizes to Z’, where Z’ has some form
determined by p. We construct Z’ such that exactly one bidirectional ring protocol p’ resolves all deadlocks
without breaking closure, but it only stabilizes to Z’ if p is livelock-free. Thus, p’ is the only candidate
solution for the synthesis procedure, and the synthesis succeeds iff p is livelock-free. Our reduction is broken
into two parts: (1) showing that exactly one particular p’ resolves all deadlocks without breaking closure,
and (2) showing that p’ is livelock-free iff p is livelock-free.

Assumptions about p. We assume that p (1) has a deterministic livelock that (2) involves all actions and
(3) includes all values. These assumptions do not affect the undecidability of verifying livelock freedom in p.
First, by Theorem 2.18, deterministic livelock detection is undecidable in uni-rings. Second, deterministic
livelock detection remains undecidable when the livelock involves all actions; otherwise, we could detect de-
terministic livelocks by checking each subset of actions. Third, deterministic livelock detection is undecidable
even when the livelock involves all values; otherwise, we could detect deterministic livelocks by checking each
subset of values. Thus, verifying livelock-freedom under our assumptions for p remains undecidable.
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Figure 9: Topology for bidirectional ring protocol p’ in Theorem 6.1. Each process P; owns z;_; and z;.

Forming 7’ from p. To form 7', we augment each process P; with a new variable z}_; € Zjy,, which
is a local copy of z;_1, along with its x; € Zy,, making its effective domain size M] o M?. Since p' is a
bidirectional ring, P; can read x;—1 and x}_, from P,_; and can read z;41 and z} from P, ;. For each action
(a,b,c) € 6;, we use z;_1 = a and x, = b to encode the precondition of a P; action (a,b,c), and z; = ¢ to
encode its assignment. Notice that, ¢ denotes the transition function of p, and } is from P;1; as depicted
in Figure 9 (for an example ring of 5 processes). Thus, we must ensure that z/ eventually obtains a copy of
z;. The resulting 7/ < (Vi : Li(xi—1,x;)) is as follows with instances of z; replaced with 2/ and a condition
that 2}_, is a copy of x;_1.

Lé(mi,l,xi) «f (($i,1,$;) € Pre(é)
= 7| =z Ax; = 0(xi1,2)))

Forming p’ and §} from Z’. We want to show that a particular p’ stabilizes to Z' when p is livelock-free,
and it is the only bidirectional ring protocol that resolves deadlocks without breaking closure. This p’ has
the following action for each P;.

(zi—1,2}) € Pre(8) A (z)_y # zi1 V a; # 8(zi-1,2}))
— T =xoq; mi=0(Tm1, T);

Notice that p’ is deadlock-free and preserves closure since a process P; can act iff its Lj(x;—1,2;) is
unsatisfied. We now show that this p’ is the only such protocol. That is, each process P; of p’ must have
the above action to ensure z}_; = z;_1 and z; = §(z;-1,2}) when (z;_1,}) € Pre(d). To this end, we show
that if there is only one process enabled in the entire ring, that process must execute an action as above.
Our proof strategy is based on picking values for variables to make the neighboring processes of a specific
process disabled. Consider a process P; in a ring of N processes, and let its readable variables from Pj_;
and P;4; have arbitrary values. By our earlier assumptions about p, P; has an action (a, b, ¢) for any given
a or ¢ (not both), and (a,c) & Pre(d) because processes of p are self-disabling. Thus, we can choose z;_o of
Pj_3 to make (z;_2,2_;) ¢ Pre(d) for P;_1, and we can choose z}; of Pji2 to make (z;,2},,) & Pre(d)
for Pjy1. We have satisfied L);_; and L, and we can likewise satisfy L’ , and L', by choosing values
of x;12 and x;+2 respectively. By a similar method, we can ensure that any other process Py (k # j) in the
ring has L satisfied. Thus, p’ is in a legitimate state iff L’ is satisfied. Therefore, if L is satisfied, then P;
cannot act without adding a transition within I’ (i.e., breaking closure). As a consequence, no other process
but P; can act if L;- is not satisfied. Since processes are symmetric, each Py of p’ must have the above action
to ensure zj,_; = xx—1 and xp = 0(zx_1,2)) when (z5_1,z)) € Pre().

If p has a livelock, then p’ has a livelock. Assume p has a livelock. We show that p’ has a livelock
too. We prove this by showing that p’ can simulate the livelock of p. By assumption, p has a deterministic
livelock from some state C' = (c¢p,...,cny—1) on a ring of size N where only the first process is enabled; i.e.,
(ci—1,¢i) € Pre(d) only for i = 0. Let C' = (cg, ..., y_,) be the state of this system after all processes act
once. That is, ¢f = d(en—1,¢c0) and ¢, = §(¢;_4,¢;) for all other ¢ > 0. We can construct a livelock state of
p’ from the same x; = ¢; values for all ¢ and 2} = ¢; for all i < N — 1. The value of z/y_; can be c¢y_1,
but can be anything else such that (xy_2,2%_;) & Pre(d). In this state of p’, only Py is enabled since we
assumed that (¢;—1,¢;) € Pre(d) only holds for ¢ = 0. Py then performs zg := ¢, and z/y_, := c¢y—1. This
does not enable Py_1, but does enable P; to perform z; := ¢} and z{, := ¢{. The execution continues for
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Py, ..., Py_1 to assign z; := ¢, and x}_, := ¢}_; for all i > 1. At this point the system is in a state where

x; = ¢ for all i and z} = ¢ for all § < N — 1. The value of 2y_; is ey—1, which leaves it disabled. This
state of p’ matches the state C’ of p using the same constraints as we used to match the initial state C.
Therefore, p’ can continue to simulate p, showing that it has a livelock.

If p is livelock-free, then p’ is livelock-free. Assume p is livelock-free. We show that p’ is livelock-free
too. First, notice that if P, acts immediately after P; in p’, then P; will not become enabled because
x; = x; and self-disabling processes of p ensure that (a,c) € Pre(d) for every action (a,b,c). This means
that in a livelock, if an action of P;;; enables P;, then P;_; must have acted since the last action of P;.
As such, an action of P;_; must occur between every two actions of P; in a livelock of p’. The number of
such propagations clearly cannot increase, and thus must remain constant in a livelock. In order to avoid
collisions, an action of P;;; must occur between every two actions of P;. Since P;;1 always acts before P;
in a livelock of p’, it ensures that z; = x; when P, acts. By making this substitution, we see that P; is
only enabled when (z;_1,;) € Pre(d), and assigns z; := §(x;_1,x;), which is equivalent to the behavior of
protocol p. Since p is livelock-free, p’ must also be livelock-free. Thus, p is livelock-free iff p’ is livelock-free.
Therefore, synthesizing stabilization on bidirectional rings is undecidable. O

7 Experimental Results

This section presents our experimental results on automatic synthesis of several self-stabilizing parameterized
uni-rings. We have integrated Algorithm 1 in a framework for automated synthesis of SS systems available
at http://asd.cs.mtu.edu/projects/protocon/. The platform of experiments is a regular MacBook Air
laptop with an Intel Core i7 2.2 GHz processor, 8 GB RAM and OS X El Capitan 10.11.6. For the examples
in this section, we first present L;(x;_1,x;) and the domain M; of z; as they are the main inputs to our
synthesis tool. We also re-run the synthesis for domain sizes in the range of 2 to 11; i.e., 2 < M; < 11 to
study the impact of domain size on the time efficiency of synthesis. Figure 10 illustrates how synthesis time
grows as we increase the domain size from 2 to 11 (see the horizontal axis). The vertical axis represents the
average synthesis time over 1000 runs.

Agreement. Agreement is a fundamental problem in distributed computing where processes in a network
should agree on a specific value. Achieving agreement becomes more difficult in the presence of transient
faults where the values of processes can be perturbed arbitrarily. For the processes in a uni-ring to agree on
the same value, we specify the global invariant as Vi : ¢ € Zy : L;(x;-1,2;), where N denotes the number
of processes and L;(x;_1,x;) B (x;—1 = x;). The synthesized action for the agreement protocol for rings of
size N > 21is (zj—1 # ;) A\ (x; # 0) = x; := 0. (See Figure 10 for average synthesis time.)

Odd Parity. The Parity protocol in Section 3.1 ensures the adoption of a common parity (odd or even) in
uni-rings. We can strengthen its invariant and require odd parity in the ring; i.e., L;(z;i—1,2;) = (((zi_1 —
x;) mod 2) = 0) A (z; mod 2 # 0). The resulting synthesized actions for uni-rings of size N > 2 are as follows:

(x; mod 2 =0) —x; =1
(im1mod2=0)A(z;mod 2 #0) A (z; #1) — z; =1,

Sorting. Recovery to a global configuration where the values of processes adhere to the constraints of
the sorting problem (a.k.a. sorted configuration) has applications in several distributed algorithms such
as distributed hashing. On a ring though the first and the last processes are neighbors and this can im-
pact recovery to a sorted configuration. To investigate this, we specify L;(z;—1,x;) &t (i—1 < x;), and
automatically synthesize the following action: (x;—1 > x;) A (z; # 0) = x; := 0 for ring sizes N > 2.
SumNotThree. We extend the SumNotTwo protocol of Section 2 to SumNotThree, where L;(x;_1, ;) &
((x;—1 + ;) mod M;) # 3. We synthesize this protocol for 4 < M; < 11 because if M; = 3, then 3 ¢ Zyy,.

({L‘ifl = 3) A (LL'Z = 0) — T; = 1;
((xi—1 + ;) mod M; = 3) A (x; #0) — x; = 0;
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SumNotOdd and SumNotEven. To study the general case of SumNotTwo and SumNotThree protocols,
we investigate the cases where the summation of the z values of two neighboring processes must not be odd
(respectively, even). That is, Li(z;i_1,2;) = (((zi_1 + ;) mod M;) mod 2 = 0) (respectively, L;(z;_1,z;) =
(((xi—1 + x;) mod M;) mod 2 # 0)). For the SumNotOdd protocol, we synthesize the following action for the
case where M; is odd.

(((wi—1 + ;) mod M;) mod 2) #0 — x; := (M; — x;_1) mod M;;

If M; is even, we automatically synthesize the following action:
((((wi—1 + x;) mod M;) mod 2) # 0) A (z; #0) — =z; :=0;

In the case of the SumNotEven protocol, there are no solutions for cases where M; is even because there
is no v € M; for which L;(y, ) holds.
Summary. First, we would like to emphasize that average synthesis time for SS uni-rings is in the scale
of micro seconds, which is the most efficient to the best of our knowledge. Second, while the asymptotic
time complexity of Algorithm 1 is quadratic (in domain size), in our case studies, the average synthesis time
increases almost linearly.

Average Synthesis Time (microsec) vs. Domain Size
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Figure 10: Average synthesis time vs. domain size.

8 Related Work

Most existing approaches [16, 8, 23, 11, 31, 5] for the synthesis of Parameterized Systems (PSs) synthesize
from temporal logic specifications and/or make assumptions about synchrony, fairness and complete knowl-
edge of the network for each process. Moreover, most existing methods focus on synthesis for either safety
properties or local liveness properties (e.g., progress of a thread); they do not address self-stabilization under
asynchronous semantics with no fairness where convergence (i.e., recovery from any state) should be achieved
through the collaboration of all processes. A different line of work [30] focuses on sketch-based synthesis
of fault-tolerant distributed algorithms, where designers provide the control flow/structure of processes as
a sketch automaton. The transitions of the sketch automaton are guarded by conditions that contain un-
known parameters. Then, they generate the values of threshold parameters using a counterexample-guided
refinement method such that specific safety/liveness properties are met. By contrast, the proposed approach
in this paper generates the entire control structure of the processes of a parameterized protocol. While
the actions of processes in our model lack explicit threshold guards, such kind of guards can be captured
as state predicates specified on the locality of each process. The closest work to ours includes r-operators
for self-stabilization [9] where the authors present an algebraic method for the design of SS protocols that
compute static tasks (e.g., shortest path from a specific process, DFS trees, etc.) and are parameterized
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in terms of the type of the operators used in each process. Nonetheless, their approach differs from ours
in several directions. First, they consider a message passing model of computation on arbitrary topologies.
Second, in their proof of correctness they assume global weak fairness. Third, they assume some degree of
synchrony implemented by time-out events that trigger each process for execution, whereas our approach
is fully asynchronous. Fourth, r-operators define a total order over variable domains. Such total orders
along with time-outs ensure livelock-freedom. Finally, their approach is mostly geared towards value-based
problems where the legitimate state of each process is determined by the final value it computes (e.g., its
distance from source). By contrast, our approach is more general in that a state predicate must hold in the
locality /neighborhood of each process.

There is a rich body of work on the verification of PSs whose objective is to take an existing design of
a PS and verify if some safety/liveness properties hold for the PS. Such verification methods can hardly be
used for our purpose due to the requirements that (1) convergence must be met from any state and not just
a proper subset of the state space, (2) convergence is a global liveness property rather than local liveness
properties, and (3) convergence should be synthesized rather than verified after the fact. Nonetheless, we
discuss their relevance to our work as follows. Techniques for the verification of PSs can be classified into
several major methods. Abstraction methods [4, 22, 35, 12] generate a finite-state model of a PS and
then reduce the verification of the PS to the verification of its finite model. SMT-based verification
[18, 7] is an example of such abstraction methods where SMT solvers are used to verify safety and inclusion
properties in a reachability analysis phase. Parameterized Visual Diagrams (PVDs) [39] model a PS and
its required properties in terms of visual abstractions (e.g., predicate automata); however, they assume weak
fairness and generate a large number of verification conditions that should be verified by model checking.
Network invariant approaches [43, 24, 21] find a process that satisfies the property of interest and is
invariant to parallel composition; i.e., composing it with itself for an arbitrary number of times will create
a system that still satisfies the property of interest. The network invariant method is mostly used for
the verification of safety properties, whereas self-stabilization includes a global liveness property, namely
convergence. Methods for compositional model checking of PSs (e.g., cache coherence [33]) use abstract
interpretation to reduce the verification of unbounded systems to finite-state model checking of a set of local
temporal properties. Such abstractions are too coarse for synthesizing self-stabilization because an SS system
must guarantee convergence from each concrete state. Logic program transformations and inductive
verification methods [36, 37, 38, 17] encode the verification of a PS as a constraint logic program and verify
the equivalence of goals in the logic program. In regular model checking [6, 40, 1], system states are
represented by grammars over strings of arbitrary length, and a protocol is represented by a transducer.
Proof spaces [15] enable a novel method for automated extraction of Hoare triples for unbounded multi-
threaded programs, where these verification conditions are used in a deductive reasoning system. Neo
[32] uses network invariants to identify architectures [32] with special topologies (e.g., trees) for which safety
properties are verifiable. Neo’s topology-specific verification has similarities to our topology-specific synthesis
method; nonetheless, the focus of this project is on synthesis rather then verification.

9 Conclusions and Future Work

In this paper, we investigated the problem of synthesizing parameterized systems that have the property
of self-stabilization. The system components/processes are deterministic and have constant state space.
Moreover, we consider self-disabling processes, where a process disables itself after executing an action until
it is enabled again by the actions of other processes (or by the occurrence of faults). While it is known that
verifying self-stabilization of unidirectional rings is undecidable [26], in this paper, we present a surprising
result that synthesizing self-stabilizing unidirectional rings is actually decidable. The intuition behind this
counterintuitive result is that, during synthesis, the existence of a simple solution (which can be found
algorithmically) is necessary and sufficient for the existence of self-stabilizing solutions, in general. However,
in the case of verification of self-stabilization, the verifier must examine an intractable number of scenarios.
We introduce the notion of legitimacy graphs and action graphs that greatly simplify local reasoning about
global properties of parameterized systems. We also present a family of sound and complete algorithms for the
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synthesis of self-stabilizing parameterized protocols in unidirectional topologies (e.g., uni-rings, chains, top-
down and bottom-up trees), and apply our algorithms to a few case studies. We have integrated our algorithm
for the synthesis of symmetric uni-rings in Protocon (http://asd.cs.mtu.edu/projects/protocon/), and
our experimental results demonstrate the extraordinary time efficiency of our method (in the scale of a few
tens of microseconds). Further, we show that the synthesis of parameterized rings becomes undecidable
if we assume bidirectional rings. Our results hold for the interleaving execution semantics and under no
fairness. As an extension to this work, we are investigating rules of composition where one can compose two
or more self-stabilizing parameterized systems with elementary topologies (e.g., uni-rings, chains and trees)
to generate more complicated topologies while preserving stabilization.
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