
Computer Science Technical Report

Topology-Specific Synthesis of

Self-Stabilizing Parameterized Systems

With Constant-Space Processes
Ali Ebnenasir and Alex Klinkhamer

Michigan Technological University
Computer Science Technical Report

CS-TR-18-03
November 2018

Department of Computer Science
Houghton, MI 49931-1295

www.cs.mtu.edu

Topology-Specific Synthesis of Self-Stabilizing Parameterized

Systems With Constant-Space Processes

Ali Ebnenasir and Alex Klinkhamer

November 2018

Abstract

This paper investigates the problem of synthesizing parameterized systems that are self-stabilizing
by construction. To this end, we present several significant results. First, we show a counterintuitive
result that despite the undecidability of verifying self-stabilization for parameterized unidirectional rings,
synthesizing self-stabilizing unidirectional rings is decidable! This is surprising because it is known that,
in general, the synthesis of distributed systems is harder than their verification. Second, we present
a topology-specific synthesis method (derived from our proof of decidability) that generates the state
transition system of template processes of parameterized self-stabilizing systems with elementary uni-
directional topologies (e.g., rings, chains, trees). We also provide a software tool that implements our
synthesis algorithms and generates interesting self-stabilizing parameterized unidirectional rings in less
than 50 microseconds on a regular laptop. We validate the proposed synthesis algorithms for decid-
able cases in the context of several interesting distributed protocols. Third, we show that synthesis of
self-stabilizing bidirectional rings remains undecidable.

1

Contents

1 Introduction 3

2 Basic Concepts 5

3 Decidability of Synthesizing Unidirectional Rings 8
3.1 Case Studies . 10

4 Synthesizing Self-Stabilizing Top-Down Trees 12

5 Synthesizing Self-Stabilizing Bottom-UP Trees 15
5.1 Synthesis Algorithm . 17

6 Undecidability of Synthesizing Bidirectional Rings 20

7 Experimental Results 22

8 Related Work 23

9 Conclusions and Future Work 24

2

1 Introduction

Developing parameterized Self-Stabilizing (SS) distributed systems is an important and challenging problem
since a parameterized SS system must be self-stabilizing regardless of the number of processes. An SS
system must have two properties, namely convergence and closure. Closure stipulates that, starting from
any legitimate state, system executions remain in the set of legitimate states (a.k.a. invariant) – that
captures the desired behaviors of a system1. Convergence requires that from any configuration/state, every
system execution recovers to some invariant state in a finite amount of time. Such a global recovery must be
achieved solely by the local actions of processes (without any central point of coordination). Designing self-
stabilization becomes even more challenging for parameterized systems that include families of unbounded
number of symmetric processes. Two processes are symmetric if the code of one can be obtained from another
by a simple variable renaming. Each family may include an unbounded (but finite) number of symmetric
processes that can be represented by a template process (a.k.a. representative process) from which the code
of each process is instantiated. As the verification of SS parameterized unidirectional rings (a.k.a. uni-rings)
is known to be undecidable [26], the common understanding has been that synthesizing such systems should
also be undecidable. In this paper, we prove otherwise! We show that synthesizing self-stabilization is
actually decidable for parameterized uni-rings.

Numerous approaches exist for the synthesis of parameterized systems, most of which focus on synthesis
from temporal logic specifications while assuming some sort of fairness. For example, Finkbeiner and Schewe
[16] present bounded synthesis where they formulate the synthesis of fixed-size systems as a constraint solving
problem, and use Satisfiability Modulo Theory (SMT) solvers [8] to search for a program that is accepted by
a Universal Co-Buchi Tree (UCT) automaton generated from temporal logic specifications. Such a search is
conducted up to a specific bound on the size of the state spaces of processes (and/or their automata-theoretic
product). Jacobs and Bloem [23] extend the approach in [16] to parameterized systems by reducing the
synthesis of parameterized systems (a.k.a. parameterized synthesis) to bounded synthesis of a small network
of symmetric processes (under the assumption of fair token passing). They enable a semi-decision procedure
that will eventually find a solution if one exists. Additionally, some researchers have investigated the synthesis
of parameterized SS systems in a problem-specific context. For instance, Dolev et al. [11] present a method
for generating synchronous and constant-space counting algorithms where processes should implement a
distributed finite counter. They provide an SS and Byzantine-tolerant parameterized protocol for clique
topologies where all processes increment their value synchronously. Bloem et al. [5] use bounded synthesis
and parameterized synthesis to extend Dolev et al.’s approach for other problems. Lenzen and Rybicki
[31] provide an SS and Byzantine-tolerant solution for the counting problem with near-optimal stabilization
time and message sizes. What the aforementioned methods have in common is that they are based on
bounded/parameterized synthesis from temporal logic specifications (using SMT solvers), and they make
assumptions about synchrony, fairness and complete knowledge of the network for each process. Moreover,
bounded and parameterized synthesis suffer from the following drawbacks: (i) formulation of constraints and
the generation of the UCT from temporal logic specifications are computationally expensive tasks; (ii) SMT
solvers are sensitive to small changes in their inputs and take a major chunk of time/resources needed for
synthesis, and (iii) the iterative nature of bounded synthesis makes it costly since every time the constraints
are deemed unsatisfiable for a specific bound, the bound is increased and the entire process of constraint
generation and SMT solving must be repeated.

In this paper, we take a topology and property-specific approach where we focus on self-stabilization,
and start with a first-order logic formula representing the invariant to which self-stabilization should be
synthesized (instead of synthesis from temporal logic specifications). For simplicity and practical reasons,
we consider formulas that are conjunctive; i.e., the global invariant is specified as the conjunction of local
invariants of processes. While our assumption about the form of the invariant may seem restrictive, there
are important applications for such systems [41, 20]. In our previous work [26], we have shown that veri-
fying self-stabilization to conjunctive invariants for symmetric uni-rings is undecidable. That is, given the
parameterized code of a fully symmetric uni-ring and a conjunctive invariant I, it is undecidable to verify

1In this paper, we use the terms invariant and legitimate states interchangeably.

3

whether the instantiation of the parameterized code for individual processes would result in a system that is
SS to I for arbitrary ring sizes. By contrast, the synthesis problem takes I and generates the parameterized
code of a symmetric uni-ring such that the instantiation of that code for any ring size will provide a system
that is SS to I by construction.

We show that synthesizing SS symmetric uni-rings of constant-space processes is actually decidable. This
is surprising because it is known [34] that, in general, the synthesis of distributed systems is harder than
their verification. We first present a necessary and sufficient condition for the existence of a symmetric SS
uni-ring. Our necessary and sufficient condition states that an SS symmetric uni-ring exists if and only if
(iff) there is a value to which both a process and its predecessor can recover. Intuitively, we show that,
the existence of a simple solution where global convergence is achieved by just setting the local variables of
processes to a specific value is necessary and sufficient for the existence of an SS solution for an invariant.
By contrast, in the case of verification of self-stabilization for uni-rings, one has to investigate an intractable
number of scenarios to ensure the correctness of stabilization for all ring sizes.

Using our proof of decidability, we devise a sound and complete algorithm for the synthesis of symmetric
SS uni-rings. The input to our algorithm includes a conjunctive invariant and the size of the state space
of processes. The output of the proposed algorithm is the parameterized code of the template process so
that the entire ring becomes SS for an arbitrary (but finite) number of processes. We extend our results on
uni-rings to parameterized chains and trees. Specifically, we perform the synthesis in a bottom-up fashion by
systematically constructing a directed graph, called the legitimacy graph, that captures the local invariant
that a process and its neighbors can have. Each vertex of the legitimacy graph captures a specific value
in the state space of each process, and each arc denotes whether the source and the target vertices/values
meet the constraints of the local invariant. This makes the legitimacy graph different from a state machine
as the arcs are not transitions. The proposed synthesis algorithm then transforms the legitimacy graph into
a finite state automaton representing the local actions of the template process. In this sense, our proposed
synthesis method is graph-theoretic. We also investigate the synthesis of SS bidirectional rings, and show
that this problem remains undecidable.

We have implemented and integrated the proposed algorithms in the Protocon framework [25]. Using
Protocon, we have automatically synthesized several SS uni-rings in less than a 50 micro seconds on a regular
MacBook Air laptop. More importantly, this work is the first step in the context of a broader synthesize-and-
compose initiative, where (in our future work) we will develop rules for composing parameterized systems
with elementary topologies to generate more sophisticated topologies while preserving self-stabilization.
Contributions. This paper

• presents a surprising result that synthesizing symmetric SS uni-rings under the interleaving seman-
tics and no fairness assumption is decidable (even though verifying self-stabilization of uni-rings is
undecidable);

• puts forward a novel synthesis method, where instead of synthesis from temporal logic specifications
we characterize local invariants as legitimacy graphs and automatically transform them to the state
transition system of template processes;

• provides synthesis algorithms for elementary unidirectional topologies such as chains and trees (in
addition to rings), and

• proves that synthesizing SS bidirectional rings is undecidable.

Organization. Section 2 presents basic concepts. Section 3 shows that synthesizing SS uni-rings is de-
cidable. Section 4 investigates the synthesis of parameterized SS top-down trees, and Section 5 studies SS
bottom-up trees. Section 6 investigates the synthesis of SS bidirectional rings and proves that this problem is
undecidable. Section 7 presents our experimental results. Section 8 examines related work. Finally, Section 9
makes concluding remarks and discusses future extensions of this work.

4

2 Basic Concepts

This section presents the definition of parameterized systems, their representation as action graphs, and self-
stabilization. Wlog, we use the term protocol to refer to finite-state parameterized systems as we conduct
our investigation in the context of network coordination protocols.

Definition 2.1 (Template Process). Intuitively, a template process captures the functionalities of each
individual process in a set of N ≥ 1 symmetric processes parameterized by i ∈ ZN , i.e., 0 ≤ i ≤ N − 1.
Formally, a template process Pi is a tuple 〈Ri, xi,Mi, δi〉, where Ri represents the set of variables that Pi

can read, xi is the variable Pi can write (which is an abstraction of all writable variables), Mi is the domain
size of xi (i.e., xi ∈ ZMi

), and δi denotes Pi’s transition function. We assume xi ⊆ Ri; i.e., no variable can
be written blindly. The variables in Ri define the locality/neighborhood of Pi which includes the processes
whose state Pi can read.

Definition 2.2 (State Space and State Predicate). A unique valuation of all variables in Ri is a local state
of Pi. We use v(s) to denote the value of a variable v in a state s. The local state space of Pi, denoted Σi,
includes all possible local states of Pi. A local state predicate is a set of local states.

Definition 2.3 (Instantiation of Template Processes). An instantiation of a template process Pi =
〈Ri, xi,Mi, δi〉 is a process 〈Rj , xj ,Mj , δj〉, where j is a fixed integer and Rj , xj ,Mj and δj are obtained
from Pi by substituting i with j everywhere; i.e., state space and transition function are obtained from those
of Pi by a simple variable re-indexing. (Note that, Mi = Mj .) Each template process can be instantiated for
an arbitrary number of times N ≥ 1 in a network. For example, in a fully symmetric uni-ring consisting of
N ≥ 1 processes, we have only one template process since all processes are symmetric, and each instantiated
process Pj (where j ∈ ZN , i.e., 0 ≤ j ≤ N − 1) has a predecessor neighbor Pj−1, where subtraction and
addition are done in modulo N . In this case, Rj = {xj−1, xj}.

Definition 2.4 (Parameterized Protocol). A parameterized protocol p = 〈P, Tp〉 for a computer network
includes k ≥ 1 template processes P = {P1,P2, · · · ,Pk}, and a topology Tp that defines the underlying
communication graph of p through variables each process can read/write. A global state of p is a unique
valuation to all instantiated processes from any template process. The projection of a global state s on a
process Pj is the value of xj in state s; i.e., xj(s). The global state space of p, denoted Σp, includes all
possible states.

Definition 2.5 (Transition Function). Let Pi = 〈Ri, xi,Mi, δi〉 be a template process. A local transition
is an ordered pair (s, s′) from a local state s to another local state s′ as a result of an atomic update
on xi. Formally, δi : Σi → Σi is a partial function from Σi to Σi. Since in each valid transition, Pi

updates xi, we can rewrite δi as a partial function from Σi to ZMi
. That is, in a transition (s, s′), we

have ∀v : v ∈ Ri ∧ v 6= xi : v(s) = v(s′). Notice that, the transition function of Pi is deterministic; i.e.,
from any state s ∈ Σi, a transition can change the state of Pi to at most one other state s′. The function
Pre(δi) : δi → Σi returns the set of states from where δi has some transition, called the pre-image of δi.
Likewise, we define the function Post(δi) : δi → Σi that returns the set of states to which δi has some
transition, called the post-image of δi. We assume that Pre(δi) ∩ Post(δi) = ∅. That is, when a process
executes, it disables itself; i.e., the processes are self-disabling2. To simplify reasoning in terms of process
behaviors, we rewrite δi in the form of a parametric action:

Ri ∈ Pre(δi) −→ xi := δi(Ri);

where (Ri ∈ Pre(δi)) checks to see if the current values of variables in Ri are in the preimage of δi. An action
(a.k.a. guarded command) is an atomic “if-then” statement; i.e., if the condition on the lefthand side of −→
holds (i.e., action is enabled) then the statements on the righthand side of −→ are executed atomically.

2We have shown [28] that a self-stabilizing solution exists for a problem if and only if there is a self-stabilizing solution for
that problem with deterministic and self-disabling processes.

5

Example 2.6 (Transition Function of Symmetric Uni-Rings). Let Pi = 〈Ri, xi,Mi, δi〉 be the template
process of a fully symmetric uni-ring, and Pi is instantiated N ≥ 1 times, forming a ring of size N . Notice
that, in this case, there is only one template process (k = 1) since the ring is fully symmetric. Each
instantiated process Pj (1 ≤ j ≤ N) has a predecessor, where Rj = {xj−1, xj}. Let a, b and c be three values
in ZMj

. Then, there is a parametric action (xi−1 = a ∧ xi = b −→ xi := c;) corresponding to the triple
(a, b, c) iff (a, b) ∈ Pre(δi), the transition 〈(a, b)→ (a, c)〉 ∈ δi, and (a, c) /∈ Pre(δi). Thus, actions can also be
represented as triples (a, b, c) in uni-rings.

For other topologies, the same definition of transition function holds except that the preimage of δ might
be specified differently depending on the locality of each process.

Definition 2.7 (Computation and Closure). We assume an interleaving execution semantics for protocols,
where processes act one at a time non-deterministically. That is, if there are some enabled actions (poten-
tially belonging to different processes), then one will be executed non-deterministically. Thus, each global
transition (s0, s1) is actually a local transition of some process Pj starting at the projection of s0 on Pj . An
execution/computation of a protocol is a sequence of states C0, C1, . . . , Ck where there is a transition from
Ci to Ci+1 for every i ∈ Zk. A state predicate I is closed under/in p iff any computation of p that starts in
I remains in I, in the absence of faults.

Definition 2.8 (Fairness). Weak (respectively, strong) fairness policy ensures that any action that is
continuously (respectively, infinitely often) enabled, will be executed infinitely often. We have shown [27] that
synthesizing self-stabilization under weak fairness or no fairness assumptions is an NP-hard problem, whereas
it is polynomially solvable under strong fairness [19] (because a strongly fair scheduler ensures recovery from
lovelocks). In this paper, we make no assumption on fairness. Since actions are self-disabling, once an action
executes it will be disabled until it is enabled again by either its predecessor (in a unidirectional network)
or the occurrence of faults. An enabled action may then be selected for execution non-deterministically.

Definition 2.9 (Legitimate States/Invariant). Intuitively, a set of legitimate states (a.k.a. Invariant) rep-
resents the states from where a protocol behaves normally and remains in that set. Formally, an invariant
is a state predicate I that is closed in a protocol p to which convergence is required. Our definition of an
invariant is more relaxed in comparison to other researchers [2, 29] as in the synthesis of SS protocols we are
mainly concerned with ensuring the closure of the invariant without adding new computations in it while
designing convergence. We focus on conjunctive invariants in the form of ∀i : i ∈ ZN : Li(Ri), where Li(Ri)
denotes a local state predicate that must hold in the locality of each process. Varghese [41, 42] presents
methods for specifying some global state predicates as conjunctive predicates.

In the rest of this paper up to Section 4, we shall focus on symmetric uni-rings only. Let Pi =
〈Ri, xi,Mi, δi〉 be the template process of a symmetric uni-ring. To ease the presentation, we define the
notion of action graphs.

Definition 2.10 (Action Graph of Uni-Rings). An action graph is a labeled directed multigraph G = (V,A),
where each vertex v ∈ V represents a value in ZMi

, and each arc (a, c) ∈ A with a label b captures an action
xi−1 = a ∧ xi = b −→ xi := c.

For example, consider the self-stabilizing Sum-Not-2 protocol given in [14]. The template process Pi =
〈Ri, xi, 3, δi〉 has a variable xi ∈ Z3 and actions (xi−1 = 0 ∧ xi = 2 −→ xi := 1), (xi−1 = 1 ∧ xi = 1 −→
xi := 2), and (xi−1 = 2 ∧ xi = 0 −→ xi := 1). This protocol converges to a state where the sum of each
two consecutive x values does not equal 2. The set of such states is formally specified as the state predicate
∀i : (xi−1 + xi 6= 2). We represent this protocol with a graph containing arcs (0, 2, 1), (1, 1, 2), and (2, 0, 1)
as shown in Figure 1.

Since protocols consist of self-disabling processes, an action (a, b, c) cannot coexist with action (a, c, d)
for any d. Moreover, a deterministic process cannot have two actions (a, b, c) and (a, b, d) where d 6= c.
Livelock, deadlock, and closure. A livelock of p is an infinite execution 〈si, si+1, · · · , sk, si〉 that never
reaches I. When no invariant is specified, we assume a livelock is any infinite execution. A deadlock of p is
a state in ¬I that has no outgoing transition; i.e., no process is enabled to act.

6

Definition 2.11 (Transient Faults). Let p be a parameterized protocol. We model transient faults as a set
of transitions in Σp×Σp. Such transition can occur non-deterministically for a finite amount of time. Thus,
transient faults may perturb the state of a protocol to any state in its state space.

In practice, transient faults may occur due to a variety of reasons (e.g., loss of coordination, bad ini-
tialization, soft errors) and manifest themselves as state perturbations, but they do not cause permanent
damage.

Definition 2.12 (Self-Stabilization). A protocol p is self-stabilizing [10] to an invariant I iff from each
illegitimate state in ¬I, all executions reach a state in I (i.e., convergence) and remain in I (i.e., closure).
That is, p is livelock-free and deadlock-free in ¬I, and I is closed under p.

Definition 2.13 (Weak Stabilization). A protocol p is weakly stabilizing to an invariant I iff from each
state in ¬I, there is some execution that reaches a state in I (i.e., reachability) and remains in I.

Notice that, any SS protocol is also weakly stabilizing but the reverse is not true.

Definition 2.14 (Silent Stabilization). A protocol p is silent stabilizing to I iff p is self-stabilizing to I but
executes no actions from any state in I.

Definition 2.15 (Legitimacy Graphs). Consider an invariant I = ∀i : Li(xi−1, xi) for a uni-ring. The local
state predicate Li can be represented as a digraph G = (V,A), called the legitimacy graph, such that each
vertex v ∈ V represents a value in ZM , and each arc (a, b) is in A iff Li(a, b) is true.

Next, we represent some of our previous result (from [14, 26]) that we shall use in this paper.
Propagations and Collisions. When a process acts and en-

0 1 2
2

1

0

Figure 1: Graph representing Sum-Not-
2 protocol.

ables its successor in a uni-ring, it propagates its ability to act.
The successor may enable its own successor by acting, and the
pattern may continue indefinitely. Such behaviors can be rep-
resented as sequences of actions that are propagated in a ring,
called propagations. A propagation is a walk through the action
graph. For example, the Sum-Not-2 protocol has a propagation
〈(0, 2, 1), (1, 1, 2), (2, 0, 1), (1, 1, 2)〉 whose actions can be executed in order by processes Pi, Pi+1, Pi+2, and
Pi+3 from a state (xi−1, xi, xi+1, xi+2, xi+3) = (0, 2, 1, 0, 1). A propagation is periodic with period n iff its j-
th action and (j+n)-th action are the same for every index j. A propagation with period n > 1 corresponds
to a closed walk of length n in the graph. The Sum-Not-2 protocol has such a propagation of period 2:
〈(1, 1, 2), (2, 0, 1)〉. A collision occurs when two consecutive processes, say Pi and Pi+1, have enabled actions;
e.g., (a, b, c) and (b, e, f), where b 6= c. In such a scenario, xi−1=a, xi=b, xi+1=e. A collision occurs when Pi

executes and assigns c to xi. If that occurs, Pi will be disabled (because processes are self-disabling), and
Pi+1 becomes disabled too because xi is no longer equal to b. As a result, two enabled processes become
disabled by one action.
“Leads” Relation. Consider two actions A1 and A2 in a process Pi. We say the action A1 leads A2 iff the
value of the variable xi after executing A1 is the same as the value required for Pi to execute A2. Formally,
this means an action (a, b, c) leads (d, e, f) iff e = c. Similarly, a propagation leads another iff for every
index j, its j-th action leads the j-th action of the other propagation. In the action graph, this corresponds
to two walks where the label of the destination node of the j-th arc in the first walk matches the arc label
of the j-th arc in the second walk (for each index j). In [26], we prove the following theorem:

Theorem 2.16. A uni-ring protocol of symmetric, deterministic and self-disabling processes has a livelock
for some ring size iff there exist some m propagations with some period n, where the (i− 1)-th propagation
leads the i-th propagation for each index i modulo m; i.e., the propagations successively lead each other
modulo m.

Undecidability of Verification. We have shown [14] that verifying deadlock-freedom in uni-rings is
decidable. However, checking livelock-freedom is an undecidable problem (specifically Π0

1-complete) for uni-
ring protocols (with self-disabling and deterministic processes) [26]. The following results hold for cases
where the invariant I is a conjunctive predicate; i.e., I = ∀i : Li(xi−1, xi).

7

Theorem 2.17. Verifying livelock-freedom in a parameterized uni-ring protocol (with self-disabling and
deterministic processes) is undecidable [26].

We have also shown that verifying livelock-freedom remains undecidable even for a special type of live-
locks, where exactly one process is enabled in every state of the livelocked computation; i.e., deterministic
livelocks [26].

Theorem 2.18. Verifying livelock-freedom in a parameterized uni-ring protocol (with self-disabling and
deterministic processes) remains undecidable even for deterministic livelocks [26].

The above results imply the undecidability of verifying self-stabilization for parameterized uni-rings.

Theorem 2.19. Verifying self-stabilization for a parameterized uni-ring protocol (with self-disabling and
deterministic processes) is undecidable [26].

3 Decidability of Synthesizing Unidirectional Rings

In this section, we show that synthesizing SS uni-rings of deterministic, self-disabling and constant-space
processes is decidable. First, we formulate the synthesis problem. Let Pi = 〈Ri, xi,Mi, δi〉 be the template
process of a fully symmetric uni-ring p, and Pi is instantiated N > 1 times, forming a uni-ring of size N ,
where N is an unbounded (but finite) positive integer. Moreover, let I = ∀j : 1 ≤ j ≤ N : Lj(xj−1, xj)
represent an invariant of the ring.

Problem 3.1 (Synthesis of Unidirectional Rings). We state the synthesis problem as follows:

• Input: Li(xi−1, xi), Ri, xi,Mi and an integer k > 2. Note that, Ri defines the topology of the
protocol modulo ring size N ; i.e., when i = 0, L0(xN−1, x0).

• Output: The transition function δi (represented as an action graph) such that the entire ring is SS to
I = ∀j : 1 ≤ j ≤ N : Lj(xj−1, xj) for any ring size N ≥ k.

Remark 1. Considering Li(xi−1, xi) as an input would suffice for synthesis since if Li holds for all processes,
then a global state in I is reached. Moreover, δi can be represented as an action graph whose every arc can
be specified as a parametric action of the template process Pi.
Remark 2. A straightforward solution of Problem 3.1 may seem like a simple parametric action
¬Li(xi−1, xi) → xi := c, where c ∈ ZMi and Li(xi−1, c) holds. This simply means that every process
updates its x value such that Li holds. However, such updates on xi may further perturb the state of the
successor of each process and destabilize the entire ring. That is, the resulting parameterized protocol may
include livelocks; hence weakly stabilizing. This means that we need a systematic approach for local recovery
to Li(xi−1, xi) such that the correction of the locality of one process will not negatively impact its successor.

Now, we represent a result due to Bernard et al. [3] on the impossibility of solving graph coloring on
uni-rings as we refer to their results in our proofs. A valid coloring of the ring assigns colors to processes
such that no two neighboring processes have similar colors.

Lemma 3.2. Let Pi = 〈Ri, xi,Mi, δi〉 be the template process of a symmetric uni-ring. It is impossible to
have a self-stabilizing graph coloring protocol p for rings of size N > Mi.

Proof. Bernard et al. [3] show that if the ring has at most Mi processes, then assigning unique values to
processes modulo Mi will provide an acceptable coloring. Otherwise, there is no valid coloring of the rings
of sizes N > Mi (as there would always be two neighbors with similar colors).

We also represent one of our previous results as the following lemma since we shall use it in subsequent
proofs.

8

4 2 6

531

0 Legend

In L and L′

In L

(a) The legitimacy graph G for predicate L and its sub-graph G′.

4 2 6

531

0 Legend

0–4|6

0–2|4|6
0|3|5|6 0–

4|60–4|6
0|3|5|6

0–2|4|6

a|b

a–b

Match a or b

In {a, . . . , b}

(b) Stabilizing Protocol p as a digraph, called Action Graph.

Figure 2: Synthesis of stabilization to ∀i : L(xi−1, xi), where

L(xi−1, xi)
def
=

(
(x2i−1+x3i) mod 7 = 3

)
and xi∈Z7.

Lemma 3.3. A closed walk of length l > 1 in the legitimacy graph of a symmetric uni-ring characterizes
the global states of uni-rings of sizes k × l, where k ≥ 1. (Proof in [14].)

Theorem 3.4. Let Pi = 〈Ri, xi,Mi, δi〉 be the template process of a parameterized symmetric uni-ring, and

the state predicate I def
= (∀i : Li(xi−1, xi)) capture its invariant. There exists a parameterized protocol that

stabilizes to I if and only if Li(γ, γ) is true for some γ ∈Mi.

Proof. Assume that no γ exists in Mi such that Li(γ, γ) is true. This implies that ∀i : xi−1 6= xi in I. In
this case, a stabilizing protocol would be a coloring protocol, which is impossible by Lemma 3.2 for ring sizes
greater than Mi. This means if we check the entire domain ZMi

and find no value that makes Li true, then
using Lemma 3.2, we can decide that no solution exists for ring sizes greater than Mi. That is, the problem
is decidable when Li(γ, γ) is false for all γ ∈ ZMi

. We are left to show how to construct a stabilizing protocol
p when some γ can make Li(γ, γ) true.
⇒ Find a γ such that Li(γ, γ) is true Assuming such a γ exists, it is trivial to find it by trying each value
in ZMi

. Intuitively, we will make the stabilizing protocol p converge to (∀i : xi = γ) unless it reaches some
other state that satisfies I. To illustrate the proof strategy and ease its understanding, Figure 2 provides an

example where Li(xi−1, xi)
def
= ((x2i−1+x3i) mod 7 = 3) and variables have domain size Mi = 7. We arbitrarily

choose γ = 5 to satisfy Li(γ, γ); i.e., the solution is not unique.
Construct relation L′i from arcs that form cycles in the legitimacy graph of Li. Let G be the
legitimacy graph of Li (e.g., the graph formed by both solid and dashed lines in Figure 2a). By Lemma
3.3, closed walks in G characterize states in (∀i : Li(xi−1, xi)). Derive a sub-graph G′ (and corresponding
relation L′i) from G by removing all arcs that are not part of a cycle (e.g., arcs (4, 1), (3, 1), (2, 6), and (5, 6)
in Figure 2a). We know that for every arc (a, b) in G that is not part of a cycle, no legitimate state contains

xi−1=a∧xi=b at any index i. All closed walks of G are retained by G′, which means I def
= (∀i : L′i(xi−1, xi)).

Construct a bottom-up spanning tree τ with γ at the root. To ensure that no global livelocks will
occur in any instance of the protocol, we must guarantee that no periodic propagations exist that lead each
other successively (see Theorem 2.16). To this end, we construct a spanning tree of G′ with the root of γ.
Let τ be a function that returns the parent of a node in a tree; i.e, τ(a) = c means that c is the parent of a.

First, let τ(γ)
def
= γ represent the root of the tree. Next, create a tree by backward reachability from γ in G′,

and assign τ(a)
def
= c for each a that has a path a, c, . . . , γ in G′. Finally, let τ(a)

def
= γ for each node a that

has no path to γ in G′. These extra arcs of τ create no cycles. Thus, (∀i : (L′i(xi−1, xi) ∨ τ(xi−1)=xi)) is
yet another equivalent way to write I.
Construct each action (a, b, c) of p by labeling each arc (a, c) of τ with all b values where
(¬L′i(a, b) ∧ τ(a)6=b) holds. In this way, τ defines how a process Pi in p will assign xi when it detects an

9

illegitimate state. Figure 2b illustrates the solution protocol for our example, as well as τ if we ignore the
arc labels. The protocol p is written succinctly by the following action for each process Pi.

¬L′i(xi−1, xi) ∧ τ(xi−1)6=xi −→ xi := τ(xi−1);

This protocol p stabilizes to I. Deadlock-freedom in ¬I and closure of I hold because each process
Pi is enabled to act iff (¬L′i(xi−1, xi) ∧ τ(xi−1)6=xi) holds. Livelock-freedom holds because all periodic
propagations of p consist of actions of the form (γ, b, γ) where Li(γ, b) is false (e.g., the self-loops of Node
5 in Figure 2b). Obviously none of these (γ, b, γ) actions lead each other since b 6= γ; i.e., no periodic
propagations exist. Thus, based on Theorem 2.16, no livelocks exist in ¬I for any ring size greater than Mi.
Therefore, the parameterized protocol p stabilizes to I.
Proof ⇐: Let p be a parameterized protocol p that stabilizes to I on a uni-ring. Thus, closure of I in p,
deadlock-freedom and livelock-freedom of p in ¬I must hold. Since processes are deterministic and self-
disabling, each process Pi contains some actions that are enabled in ¬Li(xi−1, xi). After the execution of a
sequence of such actions Li(xi−1, xi) holds by setting xi to some value λ ∈ Mi, and Pi becomes disabled.
Due to livelock-freedom of p and Theorem 2.16, no periodic propagations should exists in p. That is, there
cannot be any closed walks in the action graph of p other than self-loops over λ. The existence of such
self-loops means Li(λ, λ) holds.

Using the proof of Theorem 3.4, we present Algorithm 1. Since this algorithm is self-explanatory, we just
prove its soundness and completeness.

Theorem 3.5 (Soundness). Algorithm 1 is sound; i.e., every parameterized protocol generated by Algorithm 1
for an invariant I, upholds closure of I and converges to I from any state.

Proof. The proof of soundness includes two parts, namely proof of closure of I and convergence to I, where
I = ∀i : Li(xi−1, xi). Step 7 of the algorithm guarantees closure because once the protocol reaches a global
state where all xi are equal to γ no more actions will be taken; i.e., silent stabilization. Steps 4 to 7 ensure
that the legitimacy graph does not include any periodic propagations (i.e., closed walks) that lead each other
in a circular fashion (Theorem 2.16). As a result, the resulting protocol will be livelock-free. Moreover, each
process eventually sets the value of xi to γ by taking the actions in a path of the spanning tree towards its
root; hence evaluating Li(xi−1, xi) to true. Further, starting from any state where Li(xi−1, xi) does not hold
(i.e., states in ¬I), there is at least one action that each process Pi can execute because its local state is in a
state other than the root of the spanning tree. Thus, there are no deadlock states in ¬I. Deadlock-freedom
and livelock-freedom guarantee convergence to I.

Theorem 3.6 (Completeness). Algorithm 1 is complete; i.e., Algorithm 1 finds a self-stabilizing protocol if
one exists.

Proof. This algorithm declares failure only in Step 2, where no value γ exists that can satisfy Li(xi−1, xi),
implying that no process can recover to its local invariant.

Theorem 3.7. The asymptotic time complexity of Algorithm 1 is polynomial (specifically quadratic) in the
domain size Mi (proof straightforward; hence omitted).

3.1 Case Studies

We now present some case studies for the synthesis of parameterized symmetric uni-rings using Algorithm 1.
Sum-Not-2 protocol. The Sum-Not-2 protocol (taken from [13]) is a simple but interesting protocol that
illustrates the complexities of designing self-stabilizing systems. This is again a protocol on parameterized
uni-rings with a domain size M = 3; i.e., values {0, 1, 2}. The invariant of Sum-Not-2 contains states where
∀i : (xi−1 + xi) 6= 2 holds, where addition and subtraction are in modulo 3. Thus, for each process Pi, we

have Li(xi−1, xi)
def
=(xi−1 + xi) 6= 2. Figure 3a illustrates the legitimacy graph representing Li in the locality

10

Algorithm 1 Synthesizing self-stabilizing uni-rings.

SynUniRing(Li(xi−1, xi): state predicate, Mi: domain size)

1: Check if a value γ ∈ ZMi
exists such that Li(γ, γ) = true.

2: If no such γ exists, then return ∅ and declare that no solution exists.
3: Construct the legitimacy graph G = (V,A) of Li(xi−1, xi).
4: Induce a subgraph G′ = (V ′, E′) that contains all arcs of G that participate in cycles involving γ.
5: Compute a spanning tree of G′ rooted at γ.
6: For each node v ∈ G that is absent from G′, include an arc from v to the root of the spanning tree of
G′. The resulting graph would still be a tree, denoted T .

7: Include a self-loop (γ, γ) at the root of T .
8: Transform T into an action graph of a protocol by the following step:

For each arc (a, c) in T , where a, c ∈ ZMi
, label (a, c) with every value b for which Li(a, b) =

false and b 6= c.

9: Return the actions represented by the arcs of T .

0 1

2

(a) Legitimacy graph representing predicate
Li(xi−1, xi) = ((xi−1 + xi) 6= 2) where each xi ∈ Z3

0 1

2

1

0

2

(b) Action graph of the self-stabilizing protocol.

xi−1=0 ∧ xi=2 −→ xi := 0;

xi−1=1 ∧ xi=1 −→ xi := 0;

xi−1=2 ∧ xi=0 −→ xi := 1;

(c) Actions of each process Pi.

Figure 3: Synthesis of parameterized Sum-Not-2 on uni-rings.

of a process. In this case, there are two candidate values for γ, where L(γ, γ) holds; i.e., values of 0 and 2.
Wlog, we choose γ = 0 and form the spanning tree of the graph G with the root of 0. Stripping the graph
in Figure 3b from the labels on its arcs would give us the spanning tree of G, and the graph with the labels
is the action graph of the synthesized self-stabilizing protocol (in Figure 3c).

Parity. The Parity protocol specifies the local invariant of each process Pi as Li(xi−1, xi)
def
=((xi−1 −

xi) mod 2) = 0, where Mi = 4. Thus, the invariant is ∀i : ((xi−1 − xi) mod 2) = 0. Notice that if there
is an even (respectively, odd) value in the ring, then all values will be even (respectively, odd) in a legitimate
state. Thus, from any state, Parity will converge to either an all-odd or an all-even state. This protocol has
applications in choosing a common parity policy in a distributed system, where from an arbitrary state all
nodes will agree on a common parity policy. Figure 4a represents the legitimacy graph corresponding to the
predicate Li. All four values in the domain Mi are candidate values for γ. We choose γ = 1, and generate
the action graph of Figure 4b. Figure 4c illustrates the actions of the self-stabilizing protocol. Please notice
that this protocol would recover to global states where all values are odd. Symmetrically, one could generate
a protocol that would stabilize to states where all values are even. This could be achieved by strengthening
Li(xi−1, xi) by an additional constraint (xi mod 2 = 0).

11

0 1

2 3

(a) Legitimacy graph representing predicate
Li(xi−1, xi) = ((xi−1−xi) mod 2 = 0) where each
xi ∈ Z4.

0 1

2 3

0|2
3

3
0|2

(b) Action graph of the self-stabilizing protocol.

(xi−1=1 ∨ xi−1=3) ∧ (xi=0 ∨ xi=2) −→ xi := 1;

(xi−1=0 ∨ xi−1=2) ∧ xi=3 −→ xi := 1;

(c) Actions of each process Pi.

Figure 4: Synthesis of parameterized Parity on uni-rings.

4 Synthesizing Self-Stabilizing Top-Down Trees

In this section, we investigate the synthesis of parameterized self-stabilizing top-down trees, where each node
can read its own state and its parent’s. First, we make note that top-down trees are not fully symmetric
because the root does not have a parent; every other node does. That is, there are two template processes,
one for the root and one for non-root processes. We specify the template process of the non-root processes
as Pi = 〈Ri, xi,Mi, δi〉, where Ri = {xpi, xi}, and xpi denotes the parent’s x value. The template process
of the root is specified as Proot = 〈Rroot, xroot,Mi, δroot〉, where Rroot = {xroot} because the root does
not have a parent node. Notice that, the root process cannot be enabled by any process. Since processes
are self-disabling, once the root process takes an action it will be disabled until it is enabled again by the
occurrence of transient faults.

Problem 4.1 (Synthesis of Top-Down Trees). We state the synthesis problem as follows:

• Input: Lroot(xroot) for the root process, Li(xpi, xi) for non-root processes of a top-down tree,
Ri = {xpi, xi}, xi,Mi and an integer k > 2. Note that, Mi = Mroot.

• Output: The transition functions δroot and δi respectively for the root process and the template
process of non-root processes (represented as action graphs) such that the entire tree is SS to I = ∀j :
1 ≤ j ≤ N : Lj(xpj , xj) for any tree size N ≥ k.

Lemma 4.2 (Periodic Propagations in Acyclic Unidirectional Topologies). In any acyclic unidirectional
topology of self-disabling and deterministic processes with constant state space, no periodic propagations exist
that lead each other successively/circularly.

Proof. To prove this lemma, we show that the execution of a process cannot enable its predecessors (similar
to what may happen in cyclic topologies like rings). Consider a process Pi. The set of immediate predecessors
of Pi includes those processes from which Pi can read and the set of immediate successors of Pi consists of
processes that read from Pi. Let Succi denote the set that includes any process reachable from Pi in the
underlying topology graph of the protocol (i.e., transitive closure of the ‘successor’ relation). Likewise, let
Predi represent the set that includes any process from which Pi can be reached (i.e., transitive closure of
the ‘predecessor’ relation). Notice that, in unidirectional topologies the intersection of Succi and Predi is
empty because the topology is acyclic. Due to the self-disabling nature of processes, the actions of a process
can only enable its successors. This means the actions of a process cannot generate a wave of enablements
that come back to itself. Further, no new values can appear in processes because they have constant state
spaces. Therefore, periodic propagations cannot lead each other in a circular fashion.

12

Lemma 4.3 (Livelock-freedom of Acyclic Unidirectional Topologies). Any acyclic unidirectional topology of
self-disabling and deterministic processes with constant state space is livelock-free.

Proof. Proof follows from Lemma 4.2 and Theorem 2.16.

Legitimacy graphs for top-down trees. The notion of legitimacy graph introduced in Section 2 can be
directly used for top-down trees as each non-root process can read only the state of its parent/predecessor
and its own.

Theorem 4.4 (Decidable Synthesis for Top-Down Unidirectional Trees). Let Pi = 〈Ri, xi,Mi, δi〉 be the

template process of non-root nodes in a top-down unidirectional tree, and the state predicate I def
= (∀i :

Li(xpi, xi)) capture the invariant of the tree. A protocol that stabilizes to I exists iff the legitimacy graph
corresponding to Li is cyclic.

Proof. ⇐ There are two cases depending on the existence of values that make Li(xpi, xi) true. For simplicity,
we present this proof in the same spirit as that of Theorem 3.4.

• Case 1: If there is a single value γ ∈ ZMi that makes Li(xpi, xi) true, then the legitimacy graph
G = (V,A) must have a self-loop on the vertex corresponding to γ. In this case, the stabilizing
protocol includes an action for the root that sets its x value to γ and all other processes will have the
action xpi = γ ∧ xi 6= γ → xi := γ.

• Case 2: G has no self-loop, but includes a cycle. As such, there must exist a fi-
nite sequence of distinct values v1, v2, · · · , vk such that {v1, v2, · · · , vk} ∈ ZMi and Li(v1, v2),
Li(v2, v3), · · · , Li(vk−1, vk), Li(vk, v1) hold, where k ≥ 2. If k = Mi, then it is possible to design
an Mi-coloring protocol on the top-down tree, where the root sets its value to v1 and the subsequent
levels of the tree respectively choose the colors v2, · · · , vMi

(by assigning xpi ⊕ 1 to xi where ⊕ de-
notes addition modulo Mi), and the whole pattern gets repeated, thereby meeting the global invariant
I = ∀i : Li(xpi, xi). Even if the state of the tree is perturbed to an arbitrary state, the invariant I will
eventually be met since a wave of stabilization will eventually propagate to all levels from the root.
If 1 < k < Mi, then the length of the cycle is k and some vertices of G do not participate in this
cycle. In this case, from each vertex v outside of the cycle, we build a path to some vertex u in the
cycle. Afterwards, we create the action graph of the self-stabilizing protocol by an arc-labeling method
similar to the one we use in the proof of Theorem 3.4. An alternative approach would use only the k
values in the cycle to design a parameterized SS protocol. To elaborate on this, let Vk = {c0, · · · , ck−1}
be the values in the cycle of length k in G. We first assign the action xroot 6= c0 → xroot := c0 to the
root.Then, each non-root process Pi will have the action xpi = cj ∧ xi 6= f(cj) → xi := f(cj), where
j ∈ Zk and f is a permutation function that maps cj to the next value cj⊕1 and ⊕ denotes addition
modulo k.

⇒ We prove the contrapositive of this part and assume that the legitimacy graph G is acyclic. Thus,
G has a vertex from where no outgoing arcs exist. That is, there is a value v ∈ ZMi

for which there is no
value x ∈ ZMi

that makes Li(v, x) true. This means that if a process Pi in the top-down tree takes the
value v (due to state perturbations), then there is no way for its children to correct their locality. This will
cause a global deadlock in ¬I because children of Pi cannot recover. Therefore, there is no self-stabilizing
solution.

Observe that, given the state predicate Li(xpi, xi) and Mi, the proof of Theorem 4.4 provides a graph-
theoretic algorithm (Algorithm 2) for deciding the existence and synthesis of a self-stabilizing protocol for
the top-down tree that converges to I = ∀i : Li(xpi, xi) from any state.

Theorem 4.5. Algorithm 2 is sound and complete. (Proof follows from Theorem 4.4.)

13

Algorithm 2 Synthesizing self-stabilizing top-down trees.

SynTopDownTrees(Li(xpi, xi): state predicate, Mi: domain size)

1: Construct the legitimacy graph G = (V,A), where each vertex v ∈ V represents a value v in ZMi
, and

each arc (v, v′) captures the fact that Li(v, v
′) holds.

2: If G is acyclic, then return and declare that no solution exists.
3: If G has a self-loop on some vertex γ ∈ V , then include the action xroot 6= γ → xroot := γ for the root,

and the action xpi = γ ∧ xi 6= γ → xi := γ for non-root nodes. exit;
4: For a cycle in G on vertices Dk = {c0, · · · , ck−1} (where 2 ≤ k ≤ Mi), design a permutation function
f : Dk → Dk, where f includes an ordered pair (ci, ci⊕1) iff there is a corresponding arc (ci, ci⊕1) in the
cycle. (⊕ denotes addition modulo k)

5: Assign the action xroot 6= c0 → xroot := c0 to the root, and include the following action in each non-root
process Pi which is located in j × q steps from the root, where 1 ≤ j ≤ k and q is a positive integer:
xpi = cj−1 ∧ xi 6= f(cj−1)→ xi := f(cj−1).

0 1

(a) Legitimacy graph representing predicate Li(xpi, xi) =
((xpi = xi)) where each xi ∈ Z2.

0 11 0

(b) Action graph of self-stabilizing broadcast.

(xpi 6= xi) −→ xi := xpi;

(c) Actions of each process Pi.

Figure 5: Synthesis of parameterized Broadcast on top-down trees.

Theorem 4.6. The asymptotic time complexity of Algorithm 2 is polynomial (specifically quadratic) in the
domain size Mi. (Proof straightforward, hence omitted.)

Corollary 4.7 (Decidability of Synthesis for Unidirectional Chains). Let Pi = 〈Ri, xi,Mi, δi〉 be the template
process of the non-root processes of a unidirectional chain of disabling, constant-space and deterministic

processes, and the state predicate I def
= (∀i : Li(xi−1, xi)) capture its invariant. A protocol that stabilizes to I

exists iff the legitimacy graph corresponding to Li is cyclic.

Proof. Each unidirectional chain is a special case of a top-down tree. Proof follows by applying Theorem
4.4.

Example: Broadcast. Consider a top-down tree that forms the spanning tree of the nodes in a network
and the root is the leader that broadcasts global information. The root simply casts its vote on an issue by
setting its binary variable to 0 or 1. Root’s decision is required to be propagated throughout the network;
i.e., eventually, every node has the same vote as the root’s. Nonetheless, transient faults may perturb
the vote of some nodes, thereby making their vote inconsistent with root’s. The objective is to design a
self-stabilizing protocol that ensures every node will eventually receive the vote of the root. The predicate
Li(xpi, xi) is defined as xi = xroot, however, since each node can just read the state of its parent, we can
rewrite Li as xpi = xi, where xi are binary variables. This specification of Li implies xi = xroot whenever
the tree stabilizes. Figure 5a illustrates the legitimacy graph of Li, its action graph and the actions of the
self-stabilizing protocol. In this case, the value of γ is actually equal to the root’s vote (i.e., Case 1 of
Theorem 4.4). As such, the action of every non-root node will be xpi 6= xi → xi := xpi.
Example: 2-coloring. The graph coloring problem has applications in scheduling, register allocation,
frequency band allocation, etc. The 2-coloring on a top-down tree uses only 2 colors such that no two
neighboring nodes have similar colors. As an application, consider the spanning tree of a sensor network
where sensor motes are spread in a field in specific distances. The root of the spanning tree determines how
frequency bands are allocated such that no two neighboring nodes have the same carrier frequency (hence

14

0 1

(a) Legitimacy graph representing predicate Li(xpi, xi) =
((xpi 6= xi)) where each xi ∈ Z2.

0 1
1

0

(b) Action graph of self-stabilizing 2-coloring.

(xpi = xi) −→ xi := ¬xpi;
(c) Actions of each process Pi.

Figure 6: Synthesis of parameterized 2-coloring on top-down trees.

avoiding potential for overhearing). We consider a binary variable x for each node of the tree. The value

of x signifies which frequency band the node should use. Thus, we have Li(xpi, xi)
def
= (xpi 6= xi). Observe

that, in this case there is no γ for which Li(γ, γ) holds. However, both Li(0, 1) and Li(1, 0) hold3. Following
the algorithm in the proof of Theorem 4.4, the root has an action that sets its x variable to 0 or 1; e.g.,
xroot 6= 0→ xroot := 0. Every other node will have the following action: xpi = xi → xi := ¬xpi.

5 Synthesizing Self-Stabilizing Bottom-UP Trees

In this section, we discuss the synthesis of parameterized self-stabilizing bottom-up trees. Consider a bottom-
up tree topology, processes are the nodes of the tree and each process Pi has a variable xi. Each node can
read its children’s and its own x values, and can write only its own x value. Note that, in bottom-up trees the
locality of non-leaf nodes may include more than two processes. For simplicity, we investigate the synthesis
of binary bottom-up trees. As a result, the local invariant of a process Pi, denoted Li(xli, xi, xri), should
be specified as a state predicate in terms of its variable xi and the variables of its left and right children,
respectively denoted xli and xri. The global invariant of the tree is specified as I = ∀i :: Li(xli, xi, xri).

A bottom-up tree is not fully symmetric because the leaves have no children. Thus, we specify the
template process of non-leaf processes as Pi = 〈Ri, xi,Mi, δi〉, where Ri = {xli, xi, xri}. The template
process of leaves is specified as Pleaf = 〈Rleaf , xleaf ,Mleaf , δleaf 〉, where Rleaf = xleaf and Mi = Mleaf .
Wlog, we consider complete bottom-up binary trees. An incomplete tree can have two types of nodes with
less than two children; leaves that are not at the lowest level and nodes with one children. For the first type,
we can include dummy nodes as children of leaves that copy the actions of their cousins. If a node has just
one child, we consider the child as being both the left and right children. We also make two assumptions
about the kind of leaves a bottom-up tree can have: (1) leaves have no actions to correct themselves and
cannot be perturbed by transient faults, called shielded/hardened leaves, or (2) each leaf process can have a
fixed action that sets its x value to a particular value c0 ∈ ZM if x 6= c0.

Problem 5.1 (Synthesis of Bottom-UP Trees). We state the synthesis problem as follows:

• Input: Lleaf (xleaf) for the leaf processes, Li(xli, xi, xri) for non-leaf processes of a bottom-up tree,
Ri = {xli, xi, xri}, xi,Mi and an integer k > 2. Note that, Mi = Mleaf .

• Output: The transition functions δleaf and δi respectively for the leaf processes and the template
process of non-leaf processes (represented as action graphs) such that the entire tree is SS to I = ∀j :
1 ≤ j ≤ N : Lj(xlj , xj , xrj) for any tree size N ≥ k.

Definition 5.2. A binary tree has left-symmetric (respectively, right-symmetric) leaves if all left (respec-
tively, right) leaves have a symmetric action setting their local x variable to a specific value. Two symmetric
actions can be obtained from each other by a simple variable renaming/re-indexing.

3Please see Case 2 in the proof of Theorem 4.4.

15

Theorem 5.3. There is a parameterized self-stabilizing protocol for a bottom-up binary tree iff there is a
parameterized self-stabilizing protocol for a bottom-up binary tree where leaves have left and right-symmetric
actions.

Proof. Proof of right to left is trivial, hence omitted. Let p be a parameterized self-stabilizing protocol for a
bottom-up tree T . Thus, p should self-stabilize no matter what values the leaves have. We simply replace the
actions of the leaves of T in a left and right-symmetric fashion such that left (respectively, right) leaves are
set to a specific value cl (respectively, cr) if their x value is different from cl (respectively, cr). Observe that
the resulting protocol will also stabilize because it simulates a special scenario under which p stabilizes.

Consider a process Pi whose Li(xli, xi, xri) is false. For Pi to recover, it should set xi to some value
c ∈ ZMi such that Li(xli, c, xri) holds. Let Par(Pi) denote the parent of Pi and Li(x

p
li, x

p
i , x

p
ri) represent the

local invariant of Par(Pi). Notice that Pi may be a left child or a right child of Par(Pi), but there is no way
for Pi to figure out which child of its parent it is. Wlog, assume that Pi is the left child of Par(Pi). Now, if
xi is set to c, there should be some value c′ ∈ ZMi

that Par(Pi) can assign to xpi such that Li(c, c
′, xpri) holds

for any value of xpri. This means the decision of each process in the value it chooses to correct its locality
affects the ability of its parent node to correct itself. Thus, each process Pi should correct its locality by
some value c such that Par(Pi) can also correct its locality regardless of the value that the sibling of Pi takes.
Such a reasoning percolates up the tree at all levels, which means the ability of correcting locality must be
propagated to all levels of the tree in a circular fashion.

Theorem 5.4. Let Pi = 〈Ri, xi,Mi, δi〉 be the template process of the non-leaf processes of a bottom-up
binary tree protocol p with left and right symmetric leaves. p is self-stabilizing iff there exists a set of values
Vk = {c0, · · · , ck−1} ⊆ ZMi

(where 0 < k ≤ Mi − 1) such that these values circularly satisfy Li in the
following fashion Li(c0, c1, c0), Li(c1, c2, c1), · · · , Li(ck−2, ck−1, ck−2), Li(ck−1, c0, ck−1).

Proof. ⇐: To design a parameterized SS protocol, we assign a symmetric action xi 6= c0 → xi := c0
to all leaves. Since all other processes are self-disabling, they will eventually be disabled and any leaf
action that is enabled will be forced to execute. Then, we give each non-leaf process of the tree the action
(xli = xri) ∧ (xri = cj) ∧ xi 6= cj⊕1 → xi := cj⊕1, where cj ∈ Vk and ⊕ denotes addition modulo k. Notice
that, while transient faults could make the non-leaf processes disabled (due to xli 6= xri), after faults stop
occurring, a correction wave will propagate from the leaves up to the root. Since leaves will eventually
execute, Li will eventually hold for each process Pi.
⇒: Let there be a parameterized SS solution that is symmetric on non-leaf processes of the tree, and left

and right symmetric on its leaves. Let Level 0 processes include the leaves. We increment the level number
as we move upward. As such, for processes in Level 1, there must be some value c0 such that Li(x0, c0, y0),
where x0 and y0 are respectively the values of the left and right leaves. Notice that, in this proof, x0 may
not necessarily be equal to y0; however, we use the existence of a value c0 that makes Li(x0, c0, y0) true to
show that the circular dependency starts at some level, which could have been started from the leaves. The
non-existence of c0 would be in contradiction with the assumption of self-stabilization. Then, the siblings
of processes in Level 1 all have the value c0 due to symmetry. At Level 2, there must be some value y that
makes Li(c0, y, c0) true. Now, let y be some value c1 ∈ Mi. As a result, all processes in Level 2 would
take value c1 due to symmetry. A similar reasoning holds for higher level processes. In the worst case,
this reasoning can be repeated Mi times. Due to the pigeon hole principle, in Level Mi + 1, the y value
that would be selected should be one of the previously used values; otherwise, no value can be assigned to
processes in level Mi + 1, which is a contradiction with the tree being self-stabilizing. Thus, if there is a
symmetric SS solution for non-leaf processes of the tree, then there must be a set of values {c0, · · · , ck−1},
where 1 ≤ k ≤ Mi − 1, such that these values circularly satisfy Li; i.e., the following conditions hold
Li(c0, c1, c0), Li(c1, c2, c1), · · · , Li(ck−2, ck−1, ck−2), Li(ck−1, c0, ck−1).

Corollary 5.5. Let Pi = 〈Ri, xi,Mi, δi〉 be the template process of the non-leaf processes of a bottom-
up binary tree protocol p. p is self-stabilizing iff there exists a set of values Vk = {c0, · · · , ck−1} ⊆
ZMi

(where 0 < k ≤ Mi − 1) such that these values circularly satisfy Li in the following fashion
Li(c0, c1, c0), Li(c1, c2, c1), · · · , Li(ck−2, ck−1, ck−2), Li(ck−1, c0, ck−1).

16

Proof. The proof follows from Theorems 5.3 and 5.4.

Example: LessThan protocol. Consider a bottom-up tree with an invariant I = ∀i : Li(xli, xi, xri),

where Li(xli, xi, xri)
def
=((xli + xi) > xri) and Mi = 3. We apply Theorem 5.4 and look for the set of values

Vk. Let c0 = 2. Thus, we should find a value for x in Li(2, x, 2) such that Li holds. No value in the domain
Z3 can be substituted for x to make Li(2, x, 2) true. This means that Li(2, x, 2) cannot participate in any
cyclic satisfaction of Li. If c0 = 0, then to satisfy Li(0, x, 0), x can be either 1 or 2 (but not 0). If we
assign 2 to x in Li(0, x, 0), then in the next level, we should satisfy Li(2, x, 2), which we already showed is
impossible. Thus, only 1 can be substituted for x in Li(0, x, 0). The third possible scenario is where c0 = 1;
i.e., Li(1, x, 1) should be satisfied for some value of x. The only possibility in this case is x = 1. We can
see that Li(1, 1, 1) holds, and the nodes in the next level of the tree will have their values equal to 1. Thus,
Vk = {1} and the cyclic satisfaction of Li occurs just by propagation of Li(1, 1, 1). A self-stabilizing protocol
would be a left and right symmetric protocol that assigns the action (xli = xri = 1) ∧ (xi 6= 1)→ xi := 1 to
all non-leaf nodes, and the action xi 6= 1→ xi := 1 to the leaves.
Example: Maximal Independent Set (MIS). A set of vertices V ′ ⊆ V in a graph G = (V,E) is
independent iff there are no edges between any pair of vertices in V ′. Such a set is maximal if no vertex
can be added to it without breaking its independence property. The Maximal Independent Set problem has
applications in several domains (e.g., scheduling, map labeling, largest correcting code, etc.). Consider the
problem of finding an MIS of a bottom-up tree. Depending on the domain of application, a bottom-up tree
could represent different problems (e.g., a set of prioritized tasks where the leaves hold higher priority tasks).
Let each process Pi have a binary variable xi such that Pi is in an MIS iff xi is true. Moreover, a process
Pi is in an MIS iff neither of its children are in the MIS of their own subtrees. In other words, any one of
the children of Pi is in an MIS iff Pi itself is not in that MIS. This in turn means that the local invariant for
each process Pi is Li(xli, xi, xri) ≡ (¬xi ⇔ xli ∨ xri). Now, applying Theorem 5.4, we can find the following
cycle: Li(true, false, true), Li(false, true, false), which implies Vk = {true, false}. The resulting protocol
will have the action x 6= true→ x := true for leaves, and the action xi = (xli ∨ xri)→ xi := ¬(xli ∨ xri) for
non-leaf processes.
Example: Min/Max protocol. Consider a protocol in a bottom-up tree where the global invariant includes
states where the root of the tree includes the minimum of all values in the tree. (A symmetric protocol can be
considered for the maximum value.) The objective is to design a self-stabilizing protocol that works for any
tree size. Each process has a variable x with a domain of modulo Mi (i.e., ZMi). The local invariant of each

node states that Li(xli, xi, xri)
def
= (xi = Min(xli, xi, xri)), where Min is a function that returns the minimum

of three values. Formally, the global invariant is I = ∀i : Li(xli, xi, xri). Now, using Theorem 5.4, we look
for a set Vk ⊆ ZMi

that includes values that circularly satisfy Li. For Li(0, x, y) to hold, x must be set to
0, where y ∈ ZMi

. This would result in ensuring that Li(0, x, y) and Li(y, x, 0) hold at the next level of the
tree. Thus, in this case Vk = {0}, which implies the existence of a left-right symmetric solution. The action
(xi 6= 0)→ xi := 0 for leaves, and the parameterized action (xi 6= Min(xli, xi, xri))→ xi := Min(xli, xi, xri)
for non-leaf processes would provide us a self-stabilizing protocol.

5.1 Synthesis Algorithm

This section presents an algorithm for synthesizing self-stabilizing parameterized protocols in bottom-up
binary trees. Specifically, the objective is to determine if for a specific predicate Li(xli, xi, xri) a parame-
terized self-stabilizing protocol exists for a bottom-up tree. If such a protocol exists, we generate its action
graph. We first extend the notion of legitimacy graphs for bottom-up trees. Notice that, the semantics of
vertices and arcs of the legitimacy graph might differ from one topology to another. Then, we provide a
graph-theoretic characterization of Theorem 5.4.

Definition 5.6 (Legitimacy graph for bottom-up trees). Let G = (V,A) be the legitimacy graph corre-
sponding to Li(xli, xi, xri) for a parameterized bottom-up tree. A vertex s ∈ V captures a local legitimate
state of the template process of the non-leaf nodes of a bottom-up tree; i.e., Li holds in s. An arc (s, s′)

17

connects two legitimate states s and s′ in G iff (1) s′ is a state of the parent of a process in state s, and (2)
x′l(s

′) = x′r(s′).

The second constraint is enforced by Theorem 5.4 as we are looking for a sequence of values that propagate
through the tree in a cyclic fashion. Figure 7-(a) illustrates the legitimacy graph of the LessThan protocol
presented in this section. If a process Pi in the bottom-up tree is in a legitimate state s = 〈2, 1, 0〉, then
we connect s to a legitimate state s′ = 〈x′l, x′, x′r〉, where x′l = x′r = 1. The only legitimate states of the
LessThan protocol that meet the condition x′l = x′r = 1 include 〈1, 1, 1〉 and 〈1, 2, 1〉. Thus, we include two
arcs from 〈2, 1, 0〉 to 〈1, 1, 1〉 and 〈1, 2, 1〉. The gray states in Figure 7-(a) are the ones that have no outgoing
arcs; i.e., deadlock states. Such states represent the locality of a process whose parent cannot correct its own
local state under Constraint (2) of Definition 5.6. Figure 7-(b) demonstrates a subgraph of the legitimacy
graph G, denoted G′, that excludes any arc reaching a deadlock state. Now, the interpretation of Theorem
5.4 in the context of the legitimacy graph is as follows:

Corollary 5.7. A parameterized protocol exists for a bottom-up binary tree with left and right symmetric

leaves, and symmetric non-leaf processes that self-stabilizes to I def
= ∀i :: Li(xli, xi, xri) iff the deadlock-free

legitimacy graph G′ of Li has a simple cycle.

Notice how legitimacy graphs simplify reasoning about global behaviors in comparison with the proof of
Theorem 5.4. The following theorem provides a sufficient condition for unsolvability.

Theorem 5.8. For a parameterized bottom-up binary tree and a predicate I def
= (∀i :: Li(xli, xi, xri)), if Li

includes a conjunct that is specified only in terms of xli and xri, then no protocol that stabilizes to I exists.

Proof. Let Li
def
= X ∧Ci(xli, xri), where Ci(xli, xri) is a predicate specified only in terms of xli and xri. For

a process Pi to correct its locality when Li is false, Pi should ensure that Ci(xli, xri) holds too. Since Pi can
write only xi, it has no way to update variables xli and xri. Moreover, the children of Pi cannot read/write
each other’s state.

For example, let Li
def
= X ∧ (xli 6= xri). In this case, we have Ci(xli, xri) = (xli 6= xri). Obviously, if

Ci(xli, xri) is false (i.e., (xli = xri)), then process Pi can detect it but cannot take any action to ensure
Ci(xli, xri) becomes true; nor can any one of Pi’s children.
Example: 2-coloring. Consider the case where we design a 2-coloring self-stabilizing protocol on a complete
bottom-up tree. The objective of a 2-coloring protocol is to ensure stabilization to a state where the entire
tree has been colored by two colors in such a way that the color of each process differs from that of its

parent. Formally, we have Li
def
= ((xi 6= xli) ∧ (xi 6= xri)). Since xi are binary variables, the inequality

of xi to xli and xri implies xli = xri. First, we create the legitimacy graph of this protocol (see Figure
8) to determine if a solution exists at all. Notice that there are only two legitimate states for which Li

holds. Corollary 5.7 implies that a 2-coloring self-stabilizing solution exists. Observe that, for 2-coloring
on a bottom-up tree, if the leaves are not symmetric, then no solution exists. For instance, if two sibling
leaves take different values, then there is no value that their parent can take towards satisfying the constraint
((xi 6= xli) ∧ (xi 6= xri)). This means that in the case of 2-coloring on a bottom-up tree, no solution exists
if the leaves are not symmetric.
Synthesizing a protocol. In order to synthesize a self-stabilizing protocol on a bottom-up binary tree, we
present Algorithm 3. The input to the algorithm includes Li and the domain size of xi, and the output
contains the parametric actions of the template processes. Due to its simplicity, we present this algorithm
in plain English as a stepwise process.

Theorem 5.9. Algorithm 3 is sound and complete. (Proof follows from Theorem 5.4.)

Theorem 5.10. The asymptotic time complexity of Algorithm 3 is polynomial in M b+1
i , where Mi is the

domain size and b denotes the branching factor of the bottom-up tree. (Proof follows from Theorem 5.4.)

Proof. Every step of Algorithm 3 takes polynomial time in the size of the legitimacy graph of the bottom-up
tree. However, the size of the legitimacy graph in this case depends on the maximum number of children; i.e.,
the branching factor of the tree. The deadlock-free legitimacy graph can have at most M b+1

i vertices.

18

111

010 110 120

100 201 210

020 021 121

200 220 211

(a) Legitimacy graph for predicate Li(xli, xi, xri) = ((xli+
xi) > xri) where each xi ∈ Z3. Values “abc” in states
represent a local state where xli = a, xi = b, xri = c.

111

010 110 120

100 201 210

020 021 121

200 220 211

(b) Legitimacy graph after eliminating arcs that reach
deadlocks.

Figure 7: Legitimacy graph of the LessThan protocol on a bottom-up binary tree.

010101

(a) Legitimacy graph for predicate Li(xli, xi, xri)
def
=

((xi 6= xli) ∧ (xi 6= xri)) where each xi ∈ Z2.

Figure 8: Legitimacy graph of the 2-coloring protocol on a bottom-up binary tree.

19

Algorithm 3 Synthesizing self-stabilizing bottom-up trees.

SynBottomUpTrees(Li(xli, xi, xri): state predicate, Mi: domain size)

1: Construct the deadlock-free legitimacy graph G′ = (V,A), where each vertex s ∈ V represents a legiti-
mate state that satisfies Li, and each arc (s, s′) captures the possibility of a parent process being in the
legitimate state s′ while its child is in the legitimate state s.

2: If there are no simple cycles in G′, then return and declare that no solution exists.
3: Consider one of the simple cycles of G′.
4: Select a state 〈a′, c′, b′〉 in the cycle.
5: Extract the left and right symmetric actions of the leaves out of 〈a′, c′, b′〉 as follows:

Action assigned to left leaves: xi 6= a′ → xi := a′.
Action assigned to right leaves: xi 6= b′ → xi := b′.

6: For each arc to a state 〈a, c, b〉 in the cycle, consider the action xli = a ∧ xri = b ∧ xi 6= c→ xi := c.

Examples. Using Algorithm 3, we synthesize the following parameterized actions for the 2-coloring protocol
on the bottom-up tree:

• Use action xi 6= 0→ xi := 0 (respectively, xi 6= 1→ xi := 1) for all leaves.

• The actions of each non-leaf node of the tree are as follows: (xli = 1) ∧ (xri = 1) ∧ (xi 6= 0)→ xi := 0
and (xli = 0) ∧ (xri = 0) ∧ (xi 6= 1)→ xi := 1.

In the case of the LessThan protocol, we have only one simple cycle as a self-loop on the state 〈1, 1, 1〉 in
Figure 7-(b). Applying the proposed synthesis algorithm to this cycle, we get the following actions:

• All leaves have the action xi 6= 1→ xi := 1.

• Each non-leaf node of the tree has the action (xli = 1) ∧ (xri = 1) ∧ (xi 6= 1)→ xi := 1.

6 Undecidability of Synthesizing Bidirectional Rings

While synthesizing parameterized self-stabilizing protocols is decidable for uni-rings, we show that synthesis
is undecidable for bidirectional rings.

Theorem 6.1. Let I def
= (∀i : L(xi−1, xi, xi+1)) be an invariant for a bi-directional ring, where each process

Pi can read the variables of its left and right neighbors; i.e., Ri = {xi−1, xi, xi+1}. It is undecidable whether
there is a parameterized symmetric protocol p that is self-stabilizing to I.

Proof. To show undecidability, we reduce the problem of verifying livelock freedom of a uni-ring protocol p
to the problem of synthesizing a bidirectional ring protocol p′ that stabilizes to I ′, where I ′ has some form
determined by p. We construct I ′ such that exactly one bidirectional ring protocol p′ resolves all deadlocks
without breaking closure, but it only stabilizes to I ′ if p is livelock-free. Thus, p′ is the only candidate
solution for the synthesis procedure, and the synthesis succeeds iff p is livelock-free. Our reduction is broken
into two parts: (1) showing that exactly one particular p′ resolves all deadlocks without breaking closure,
and (2) showing that p′ is livelock-free iff p is livelock-free.
Assumptions about p. We assume that p (1) has a deterministic livelock that (2) involves all actions and
(3) includes all values. These assumptions do not affect the undecidability of verifying livelock freedom in p.
First, by Theorem 2.18, deterministic livelock detection is undecidable in uni-rings. Second, deterministic
livelock detection remains undecidable when the livelock involves all actions; otherwise, we could detect de-
terministic livelocks by checking each subset of actions. Third, deterministic livelock detection is undecidable
even when the livelock involves all values; otherwise, we could detect deterministic livelocks by checking each
subset of values. Thus, verifying livelock-freedom under our assumptions for p remains undecidable.

20

P0 P1 P2 P3 P4 P0

x0 x1 x2 x3 x4 x0x′4 x′0 x′1 x′2 x′3 x′4

Figure 9: Topology for bidirectional ring protocol p′ in Theorem 6.1. Each process Pi owns x′i−1 and xi.

Forming I ′ from p. To form I ′, we augment each process Pi with a new variable x′i−1 ∈ ZMi
, which

is a local copy of xi−1, along with its xi ∈ ZMi
, making its effective domain size M ′i

def
= M2

i . Since p′ is a
bidirectional ring, Pi can read xi−1 and x′i−2 from Pi−1 and can read xi+1 and x′i from Pi+1. For each action
(a, b, c) ∈ δi, we use xi−1 = a and x′i = b to encode the precondition of a Pi action (a, b, c), and xi = c to
encode its assignment. Notice that, δ denotes the transition function of p, and x′i is from Pi+1 as depicted
in Figure 9 (for an example ring of 5 processes). Thus, we must ensure that x′i eventually obtains a copy of

xi. The resulting I ′ def
= (∀i : L′i(xi−1, xi)) is as follows with instances of xi replaced with x′i and a condition

that x′i−1 is a copy of xi−1.

L′i(xi−1, xi)
def
=

(
(xi−1, x

′
i) ∈ Pre(δ)

=⇒ x′i−1 = xi−1 ∧ xi = δ(xi−1, x
′
i)
)

Forming p′ and δ′i from I ′. We want to show that a particular p′ stabilizes to I ′ when p is livelock-free,
and it is the only bidirectional ring protocol that resolves deadlocks without breaking closure. This p′ has
the following action for each Pi.

(xi−1, x
′
i) ∈ Pre(δ) ∧

(
x′i−1 6= xi−1 ∨ xi 6= δ(xi−1, x

′
i)
)

−→ x′i−1 := xi−1; xi := δ(xi−1, x
′
i);

Notice that p′ is deadlock-free and preserves closure since a process Pi can act iff its L′i(xi−1, xi) is
unsatisfied. We now show that this p′ is the only such protocol. That is, each process Pi of p′ must have
the above action to ensure x′i−1 = xi−1 and xi = δ(xi−1, x

′
i) when (xi−1, x

′
i) ∈ Pre(δ). To this end, we show

that if there is only one process enabled in the entire ring, that process must execute an action as above.
Our proof strategy is based on picking values for variables to make the neighboring processes of a specific
process disabled. Consider a process Pj in a ring of N processes, and let its readable variables from Pj−1
and Pj+1 have arbitrary values. By our earlier assumptions about p, Pj has an action (a, b, c) for any given
a or c (not both), and (a, c) 6∈ Pre(δ) because processes of p are self-disabling. Thus, we can choose xj−2 of
Pj−2 to make (xj−2, x

′
j−1) 6∈ Pre(δ) for Pj−1, and we can choose x′j+1 of Pj+2 to make (xj , x

′
j+1) 6∈ Pre(δ)

for Pj+1. We have satisfied L′j−1 and L′j+1, and we can likewise satisfy L′j−2 and L′j+2 by choosing values
of xj+2 and x′j+2 respectively. By a similar method, we can ensure that any other process Pk (k 6= j) in the
ring has L′k satisfied. Thus, p′ is in a legitimate state iff L′j is satisfied. Therefore, if L′j is satisfied, then Pj

cannot act without adding a transition within I ′ (i.e., breaking closure). As a consequence, no other process
but Pj can act if L′j is not satisfied. Since processes are symmetric, each Pk of p′ must have the above action
to ensure x′k−1 = xk−1 and xk = δ(xk−1, x

′
k) when (xk−1, x

′
k) ∈ Pre(δ).

If p has a livelock, then p′ has a livelock. Assume p has a livelock. We show that p′ has a livelock
too. We prove this by showing that p′ can simulate the livelock of p. By assumption, p has a deterministic
livelock from some state C = (c0, . . . , cN−1) on a ring of size N where only the first process is enabled; i.e.,
(ci−1, ci) ∈ Pre(δ) only for i = 0. Let C ′ = (c′0, . . . , c

′
N−1) be the state of this system after all processes act

once. That is, c′0 = δ(cN−1, c0) and c′i = δ(c′i−1, ci) for all other i > 0. We can construct a livelock state of
p′ from the same xi = ci values for all i and x′i = ci for all i < N − 1. The value of x′N−1 can be cN−1,
but can be anything else such that (xN−2, x

′
N−1) 6∈ Pre(δ). In this state of p′, only P0 is enabled since we

assumed that (ci−1, ci) ∈ Pre(δ) only holds for i = 0. P0 then performs x0 := c′0 and x′N−1 := cN−1. This
does not enable PN−1, but does enable P1 to perform x1 := c′1 and x′0 := c′0. The execution continues for

21

P2, . . . , PN−1 to assign xi := c′i and x′i−1 := c′i−1 for all i > 1. At this point the system is in a state where
xi = c′i for all i and x′i = c′i for all i < N − 1. The value of x′N−1 is cN−1, which leaves it disabled. This
state of p′ matches the state C ′ of p using the same constraints as we used to match the initial state C.
Therefore, p′ can continue to simulate p, showing that it has a livelock.
If p is livelock-free, then p′ is livelock-free. Assume p is livelock-free. We show that p′ is livelock-free
too. First, notice that if Pi+1 acts immediately after Pi in p′, then Pi will not become enabled because
xi = x′i and self-disabling processes of p ensure that (a, c) 6∈ Pre(δ) for every action (a, b, c). This means
that in a livelock, if an action of Pi+1 enables Pi, then Pi−1 must have acted since the last action of Pi.
As such, an action of Pi−1 must occur between every two actions of Pi in a livelock of p′. The number of
such propagations clearly cannot increase, and thus must remain constant in a livelock. In order to avoid
collisions, an action of Pi+1 must occur between every two actions of Pi. Since Pi+1 always acts before Pi

in a livelock of p′, it ensures that x′i = xi when Pi acts. By making this substitution, we see that Pi is
only enabled when (xi−1, xi) ∈ Pre(δ), and assigns xi := δ(xi−1, xi), which is equivalent to the behavior of
protocol p. Since p is livelock-free, p′ must also be livelock-free. Thus, p is livelock-free iff p′ is livelock-free.
Therefore, synthesizing stabilization on bidirectional rings is undecidable.

7 Experimental Results

This section presents our experimental results on automatic synthesis of several self-stabilizing parameterized
uni-rings. We have integrated Algorithm 1 in a framework for automated synthesis of SS systems available
at http://asd.cs.mtu.edu/projects/protocon/. The platform of experiments is a regular MacBook Air
laptop with an Intel Core i7 2.2 GHz processor, 8 GB RAM and OS X El Capitan 10.11.6. For the examples
in this section, we first present Li(xi−1, xi) and the domain Mi of xi as they are the main inputs to our
synthesis tool. We also re-run the synthesis for domain sizes in the range of 2 to 11; i.e., 2 ≤ Mi ≤ 11 to
study the impact of domain size on the time efficiency of synthesis. Figure 10 illustrates how synthesis time
grows as we increase the domain size from 2 to 11 (see the horizontal axis). The vertical axis represents the
average synthesis time over 1000 runs.
Agreement. Agreement is a fundamental problem in distributed computing where processes in a network
should agree on a specific value. Achieving agreement becomes more difficult in the presence of transient
faults where the values of processes can be perturbed arbitrarily. For the processes in a uni-ring to agree on
the same value, we specify the global invariant as ∀i : i ∈ ZN : Li(xi−1, xi), where N denotes the number

of processes and Li(xi−1, xi)
def
= (xi−1 = xi). The synthesized action for the agreement protocol for rings of

size N > 2 is (xi−1 6= xi) ∧ (xi 6= 0)→ xi := 0. (See Figure 10 for average synthesis time.)
Odd Parity. The Parity protocol in Section 3.1 ensures the adoption of a common parity (odd or even) in

uni-rings. We can strengthen its invariant and require odd parity in the ring; i.e., Li(xi−1, xi)
def
= (((xi−1 −

xi) mod 2) = 0)∧ (xi mod 2 6= 0). The resulting synthesized actions for uni-rings of size N > 2 are as follows:

(xi mod 2 = 0) → xi := 1;
(xi−1 mod 2 = 0) ∧ (xi mod 2 6= 0) ∧ (xi 6= 1) → xi := 1;

Sorting. Recovery to a global configuration where the values of processes adhere to the constraints of
the sorting problem (a.k.a. sorted configuration) has applications in several distributed algorithms such
as distributed hashing. On a ring though the first and the last processes are neighbors and this can im-

pact recovery to a sorted configuration. To investigate this, we specify Li(xi−1, xi)
def
= (xi−1 ≤ xi), and

automatically synthesize the following action: (xi−1 > xi) ∧ (xi 6= 0)→ xi := 0 for ring sizes N > 2.

SumNotThree. We extend the SumNotTwo protocol of Section 2 to SumNotThree, where Li(xi−1, xi)
def
=

((xi−1 + xi) mod Mi) 6= 3. We synthesize this protocol for 4 ≤Mi ≤ 11 because if Mi = 3, then 3 /∈ ZMi
.

(xi−1 = 3) ∧ (xi = 0) → xi := 1;
((xi−1 + xi) mod Mi = 3) ∧ (xi 6= 0) → xi := 0;

22

http://asd.cs.mtu.edu/projects/protocon/

SumNotOdd and SumNotEven. To study the general case of SumNotTwo and SumNotThree protocols,
we investigate the cases where the summation of the x values of two neighboring processes must not be odd

(respectively, even). That is, Li(xi−1, xi)
def
= (((xi−1 + xi) mod Mi) mod 2 = 0) (respectively, Li(xi−1, xi)

def
=

(((xi−1 + xi) mod Mi) mod 2 6= 0)). For the SumNotOdd protocol, we synthesize the following action for the
case where Mi is odd.

(((xi−1 + xi) mod Mi) mod 2) 6= 0 → xi := (Mi − xi−1) mod Mi;

If Mi is even, we automatically synthesize the following action:

((((xi−1 + xi) mod Mi) mod 2) 6= 0) ∧ (xi 6= 0) → xi := 0;

In the case of the SumNotEven protocol, there are no solutions for cases where Mi is even because there
is no γ ∈Mi for which Li(γ, γ) holds.
Summary. First, we would like to emphasize that average synthesis time for SS uni-rings is in the scale
of micro seconds, which is the most efficient to the best of our knowledge. Second, while the asymptotic
time complexity of Algorithm 1 is quadratic (in domain size), in our case studies, the average synthesis time
increases almost linearly.

Figure 10: Average synthesis time vs. domain size.

8 Related Work

Most existing approaches [16, 8, 23, 11, 31, 5] for the synthesis of Parameterized Systems (PSs) synthesize
from temporal logic specifications and/or make assumptions about synchrony, fairness and complete knowl-
edge of the network for each process. Moreover, most existing methods focus on synthesis for either safety
properties or local liveness properties (e.g., progress of a thread); they do not address self-stabilization under
asynchronous semantics with no fairness where convergence (i.e., recovery from any state) should be achieved
through the collaboration of all processes. A different line of work [30] focuses on sketch-based synthesis
of fault-tolerant distributed algorithms, where designers provide the control flow/structure of processes as
a sketch automaton. The transitions of the sketch automaton are guarded by conditions that contain un-
known parameters. Then, they generate the values of threshold parameters using a counterexample-guided
refinement method such that specific safety/liveness properties are met. By contrast, the proposed approach
in this paper generates the entire control structure of the processes of a parameterized protocol. While
the actions of processes in our model lack explicit threshold guards, such kind of guards can be captured
as state predicates specified on the locality of each process. The closest work to ours includes r-operators
for self-stabilization [9] where the authors present an algebraic method for the design of SS protocols that
compute static tasks (e.g., shortest path from a specific process, DFS trees, etc.) and are parameterized

23

in terms of the type of the operators used in each process. Nonetheless, their approach differs from ours
in several directions. First, they consider a message passing model of computation on arbitrary topologies.
Second, in their proof of correctness they assume global weak fairness. Third, they assume some degree of
synchrony implemented by time-out events that trigger each process for execution, whereas our approach
is fully asynchronous. Fourth, r-operators define a total order over variable domains. Such total orders
along with time-outs ensure livelock-freedom. Finally, their approach is mostly geared towards value-based
problems where the legitimate state of each process is determined by the final value it computes (e.g., its
distance from source). By contrast, our approach is more general in that a state predicate must hold in the
locality/neighborhood of each process.

There is a rich body of work on the verification of PSs whose objective is to take an existing design of
a PS and verify if some safety/liveness properties hold for the PS. Such verification methods can hardly be
used for our purpose due to the requirements that (1) convergence must be met from any state and not just
a proper subset of the state space, (2) convergence is a global liveness property rather than local liveness
properties, and (3) convergence should be synthesized rather than verified after the fact. Nonetheless, we
discuss their relevance to our work as follows. Techniques for the verification of PSs can be classified into
several major methods. Abstraction methods [4, 22, 35, 12] generate a finite-state model of a PS and
then reduce the verification of the PS to the verification of its finite model. SMT-based verification
[18, 7] is an example of such abstraction methods where SMT solvers are used to verify safety and inclusion
properties in a reachability analysis phase. Parameterized Visual Diagrams (PVDs) [39] model a PS and
its required properties in terms of visual abstractions (e.g., predicate automata); however, they assume weak
fairness and generate a large number of verification conditions that should be verified by model checking.
Network invariant approaches [43, 24, 21] find a process that satisfies the property of interest and is
invariant to parallel composition; i.e., composing it with itself for an arbitrary number of times will create
a system that still satisfies the property of interest. The network invariant method is mostly used for
the verification of safety properties, whereas self-stabilization includes a global liveness property, namely
convergence. Methods for compositional model checking of PSs (e.g., cache coherence [33]) use abstract
interpretation to reduce the verification of unbounded systems to finite-state model checking of a set of local
temporal properties. Such abstractions are too coarse for synthesizing self-stabilization because an SS system
must guarantee convergence from each concrete state. Logic program transformations and inductive
verification methods [36, 37, 38, 17] encode the verification of a PS as a constraint logic program and verify
the equivalence of goals in the logic program. In regular model checking [6, 40, 1], system states are
represented by grammars over strings of arbitrary length, and a protocol is represented by a transducer.
Proof spaces [15] enable a novel method for automated extraction of Hoare triples for unbounded multi-
threaded programs, where these verification conditions are used in a deductive reasoning system. Neo
[32] uses network invariants to identify architectures [32] with special topologies (e.g., trees) for which safety
properties are verifiable. Neo’s topology-specific verification has similarities to our topology-specific synthesis
method; nonetheless, the focus of this project is on synthesis rather then verification.

9 Conclusions and Future Work

In this paper, we investigated the problem of synthesizing parameterized systems that have the property
of self-stabilization. The system components/processes are deterministic and have constant state space.
Moreover, we consider self-disabling processes, where a process disables itself after executing an action until
it is enabled again by the actions of other processes (or by the occurrence of faults). While it is known that
verifying self-stabilization of unidirectional rings is undecidable [26], in this paper, we present a surprising
result that synthesizing self-stabilizing unidirectional rings is actually decidable. The intuition behind this
counterintuitive result is that, during synthesis, the existence of a simple solution (which can be found
algorithmically) is necessary and sufficient for the existence of self-stabilizing solutions, in general. However,
in the case of verification of self-stabilization, the verifier must examine an intractable number of scenarios.
We introduce the notion of legitimacy graphs and action graphs that greatly simplify local reasoning about
global properties of parameterized systems. We also present a family of sound and complete algorithms for the

24

synthesis of self-stabilizing parameterized protocols in unidirectional topologies (e.g., uni-rings, chains, top-
down and bottom-up trees), and apply our algorithms to a few case studies. We have integrated our algorithm
for the synthesis of symmetric uni-rings in Protocon (http://asd.cs.mtu.edu/projects/protocon/), and
our experimental results demonstrate the extraordinary time efficiency of our method (in the scale of a few
tens of microseconds). Further, we show that the synthesis of parameterized rings becomes undecidable
if we assume bidirectional rings. Our results hold for the interleaving execution semantics and under no
fairness. As an extension to this work, we are investigating rules of composition where one can compose two
or more self-stabilizing parameterized systems with elementary topologies (e.g., uni-rings, chains and trees)
to generate more complicated topologies while preserving stabilization.

References

[1] P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular model checking. In
CONCUR, pages 35–48, 2004.

[2] A. Arora and S. S. Kulkarni. Detectors and correctors: A theory of fault-tolerance components. Inter-
national Conference on Distributed Computing Systems, pages 436–443, May 1998.

[3] S. Bernard, S. Devismes, M. G. Potop-Butucaru, and S. Tixeuil. Optimal deterministic self-stabilizing
vertex coloring in unidirectional anonymous networks. In 23rd IEEE International Symposium on
Parallel and Distributed Processing, IPDPS 2009, Rome, Italy, May 23-29, 2009, pages 1–8. IEEE,
2009.

[4] G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model checking for ctl*. In IEEE
Symposium on Logic in Computer Science (LICS), pages 388–397, 1995.

[5] R. Bloem, N. Braud-Santoni, and S. Jacobs. Synthesis of self-stabilising and Byzantine-resilient dis-
tributed systems. In International Conference on Computer Aided Verification, pages 157–176. Springer,
2016.

[6] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In CAV, pages 403–418,
2000.

[7] S. Conchon, A. Goel, S. Krstic, A. Mebsout, and F. Zaıdi. Cubicle: A parallel SMT-based model checker
for parameterized systems. In CAV, pages 718–724. Springer, 2012.

[8] L. De Moura and N. Bjørner. Satisfiability modulo theories: introduction and applications. Communi-
cations of the ACM, 54(9):69–77, 2011.

[9] S. Delaët, B. Ducourthial, and S. Tixeuil. Self-stabilization with r-operators revisited. Journal of
Aerospace Computing, Information, and Communication, 3(10):498–514, 2006.

[10] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the ACM,
17(11):643–644, 1974.

[11] D. Dolev, J. H. Korhonen, C. Lenzen, J. Rybicki, and J. Suomela. Synchronous counting and compu-
tational algorithm design. In Symposium on Self-Stabilizing Systems, pages 237–250. Springer, 2013.

[12] E. A. Emerson and K. S. Namjoshi. On reasoning about rings. International Journal of Foundations
of Computer Science, 14(4):527–550, 2003.

[13] A. Farahat. Automated Design of Self-Stabilization. PhD thesis, Michigan Technological University,
July 2012.

[14] A. Farahat and A. Ebnenasir. Local reasoning for global convergence of parameterized rings. In IEEE
International Conference on Distributed Computing Systems (ICDCS), pages 496–505, 2012.

25

http://asd.cs.mtu.edu/projects/protocon/

[15] A. Farzan, Z. Kincaid, and A. Podelski. Proving liveness of parameterized programs. In Proceedings of
the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pages 185–196, 2016.

[16] B. Finkbeiner and S. Schewe. Bounded synthesis. International Journal on Software Tools for Technology
Transfer, 15(5-6):519–539, 2013.

[17] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strategies for the verification of
infinite state systems. TPLP, 13(2):175–199, 2013.

[18] S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories, pages 22–29. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[19] M. Gouda. The theory of weak stabilization. In 5th International Workshop on Self-Stabilizing Systems,
volume 2194 of Lecture Notes in Computer Science, pages 114–123, 2001.

[20] M. G. Gouda and F. F. Haddix. The stabilizing token ring in three bits. Journal of Parallel and
Distributed Computing, 35(1):43–48, May 1996.

[21] O. Grinchtein, M. Leucker, and N. Piterman. Inferring network invariants automatically. In Automated
Reasoning, pages 483–497. 2006.

[22] C. N. Ip and D. L. Dill. Verifying systems with replicated components in murphi. Formal Methods in
System Design, 14(3):273–310, 1999.

[23] S. Jacobs and R. Bloem. Parameterized synthesis. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 362–376. Springer, 2012.

[24] Y. Kesten, A. Pnueli, E. Shahar, and L. Zuck. Network invariants in action. In Concurrency Theory,
pages 101–115. Springer, 2002.

[25] A. Klinkhamer and A. Ebnenasir. A software tool for swarm synthesis of self-stabilization. http:

//asd.cs.mtu.edu/projects/protocon/.

[26] A. Klinkhamer and A. Ebnenasir. Verifying livelock freedom on parameterized rings and chains. In
International Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 163–177,
2013.

[27] A. Klinkhamer and A. Ebnenasir. On the hardness of adding nonmasking fault tolerance. IEEE
Transactions on Dependable and Secure Computing, 12(3):338–350, May-June 2015.

[28] A. Klinkhamer and A. Ebnenasir. Shadow/puppet synthesis: A stepwise method for the design of
self-stabilization. IEEE Transactions on Parallel and Distributed Systems, 27(11):3338 – 3350, Feb.
2016.

[29] S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In Formal Techniques in
Real-Time and Fault-Tolerant Systems, pages 82–93, London, UK, 2000. Springer-Verlag.

[30] M. Lazić, I. Konnov, J. Widder, and R. Bloem. Synthesis of distributed algorithms with parameterized
threshold guards. In 21st International Conference on Principles of Distributed Systems, 2017.

[31] C. Lenzen and J. Rybicki. Near-optimal self-stabilising counting and firing squads. arXiv preprint
arXiv:1608.00214, 2016.

[32] O. Matthews, J. Bingham, and D. J. Sorin. Verifiable hierarchical protocols with network invariants on
parametric systems. In Formal Methods in Computer-Aided Design (FMCAD), pages 101–108, 2016.

[33] K. L. McMillan. Parameterized verification of the flash cache coherence protocol by compositional model
checking. In Correct hardware design and verification methods, pages 179–195. 2001.

26

http://asd.cs.mtu.edu/projects/protocon/
http://asd.cs.mtu.edu/projects/protocon/

[34] A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesis. In Proceedings of 31st
IEEE Symposium on Foundation of Computer Science, pages 746–757, Washington, DC, USA, 1990.
IEEE Computer Society.

[35] A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0, 1, infty)-counter abstraction. In International
Conference on Computer Aided Verification (CAV), pages 107–122, 2002.

[36] A. Roychoudhury, K. N. Kumar, C. Ramakrishnan, I. Ramakrishnan, and S. A. Smolka. Verifica-
tion of parameterized systems using logic program transformations. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 172–187. 2000.

[37] A. Roychoudhury and I. Ramakrishnan. Automated inductive verification of parameterized protocols?
In Computer Aided Verification, pages 25–37. Springer, 2001.

[38] A. Roychoudhury and I. Ramakrishnan. Inductively verifying invariant properties of parameterized
systems. Automated Software Engineering, 11(2):101–139, 2004.

[39] A. Sánchez and C. Sánchez. Parametrized verification diagrams. In Temporal Representation and
Reasoning (TIME), 2014 21st International Symposium on, pages 132–141, 2014.

[40] T. Touili. Regular model checking using widening techniques. Electronic Notes in Theoretical Computer
Science, 50(4):342–356, 2001.

[41] G. Varghese. Self-stabilization by local checking and correction. PhD thesis, MIT, 1993.

[42] G. Varghese. Self-stabilization by counter flushing. In The 13th Annual ACM Symposium on Principles
of Distributed Computing, pages 244–253, 1994.

[43] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network invariants.
In International Workshop on Automatic Verification Methods for Finite State Systems, pages 68–80,
1989.

27

	Introduction
	Basic Concepts
	Decidability of Synthesizing Unidirectional Rings
	Case Studies

	Synthesizing Self-Stabilizing Top-Down Trees
	Synthesizing Self-Stabilizing Bottom-UP Trees
	Synthesis Algorithm

	Undecidability of Synthesizing Bidirectional Rings
	Experimental Results
	Related Work
	Conclusions and Future Work

