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Abstract

This paper proposes a framework for automatic design of (finite-state) self-stabilizing programs from
their non-stabilizing versions. A method that automatically adds stabilization to non-stabilizing program
is highly desirable as it generates self-stabilizing programs that are correct by construction, thereby elim-
inating the need for after-the-fact verification. Moreover, automated design methods enable separation
of stabilization from functional concerns. In this paper, we first present a deterministically sound and
complete algorithm that adds weak stabilization to programs in polynomial time (in the state space of the
non-stabilizing program). We also present a sound method that automatically adds strong stabilization
to non-stabilizing programs using the results of the proposed weak stabilization algorithm. These two
methods constitute the first elements of the proposed extensible framework. To demonstrate the applica-
bility of our algorithms in automated design of self-stabilization, we have implemented our algorithms in
a software tool using which we have synthesized many self-stabilizing programs including Dijkstra’s token
ring, graph coloring and maximal matching. While some of the automatically generated self-stabilizing
programs are the same as their manually designed versions, our tool surprisingly has synthesized pro-
grams that represent alternative solutions for the same problem. Moreover, our algorithms have helped
us reveal design flaws in manually designed self-stabilizing programs (claimed to be correct).
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1 Introduction

This paper proposes an extensible repository of automated techniques for designing self-stabilization. The mo-
tivation behind such a repository is multi-fold. First, since manual design and verification of self-stabilization
are known to be difficult tasks [1–4], it is desirable to facilitate these tasks by automated techniques and
tools, thereby eliminating the need for after-the-fact verification. (Gouda [3] observes that verifying self-
stabilization often takes more time than designing it almost by a factor of ten.) Second, such a repository
provides a set of reusable design techniques/patterns for the research and engineering community. Third, the
automated techniques can potentially be integrated in compilers for addition of self-stabilization for cases
where such transformations are feasible [2]. Finally, since platform-specific constraints (such as fairness pol-
icy of the underlying scheduler, execution semantics, atomicity, etc.) impact the complexity of design, such
a repository will enable designers to investigate self-stabilization under different assumptions.

Several general techniques for the design of self-stabilization exist [5–13], most of which provide problem-
specific solutions [14–22] and lack the necessary tool support for automatic addition of self-stabilization
to non-stabilizing systems. For example, Katz and Perry [7] present a general (but expensive) method for
transforming a non-stabilizing system to a stabilizing one by taking global snapshots and resetting the global
state of the system if necessary. Arora et al. [9,23] provide a method based on constraint satisfaction, where
they create a dependency graph of the local constraints whose satisfaction guarantees recovery of the entire
system. Varghese [8] and Afek et al. [12] put forward a method based on checking local conditions towards
providing global recovery. Nonetheless, this approach is only applicable to a family of systems whose set of
legitimate states can be specified as the conjunction of a set of local conditions, known as locally checkable
systems. Moreover, even if a program is locally checkable, it may not be locally correctable; i.e., even
though a process can locally detect that the program is in an illegitimate global state, the correctness of
its corrective actions depend on the state and the actions of its neighbors. (See the maximal matching
program in Section 6.2 as an example of a locally checkable program that is not locally correctable.) To
design non-locally checkable systems, Varghese [10] proposes a design technique based on counter flushing,
where a leader node systematically increments and flushes the value of a counter throughout the network.
Layering and modularization [5, 6, 11, 13] are also techniques that enable the design of self-stabilization by
incremental construction of convergence using either strictly decreasing [1, 24, 25] or non-increasing ranking
functions [26]. Nonetheless, these methods fail if convergence from an illegitimate state can only be achieved
by oscillating for a finite number of times before converging to the set of legitimate states.

In this paper, we present an algorithmic approach, supported by a software tool called STabilization
Synthesizer (STSyn), for systematic exploration of the computational structure of non-stabilizing programs
towards generating their stabilizing versions. In particular, we start with a program p and a state predicate
I representing a set of legitimate states from where computations of p satisfy its specification, denoted
spec. Starting from I, every computation of p remains in I; i.e., strong closure [27].1 Subsequently, we
systematically include transitions in the non-stabilizing program to ensure two types of convergence, namely
weak and strong convergences (defined in [3,28]). Weak convergence to I requires that from any state in the
state space of p, there exists a program computation that reaches a state in I, whereas strong convergence
stipulates that, from any state, every computation reaches a state in I. We present a deterministically sound
and complete algorithm that incrementally builds reachability paths to I from outside I, thereby ensuring
weak convergence. Nonetheless, a weakly stabilizing system guarantees stabilization only on a strongly fair
scheduler, where strong fairness guarantees that any process that is enabled infinitely often will be executed
infinitely often. Previous work illustrates that, under the interleaving semantics, the design of maximally
strong fair schedulers on distributed platforms is hard and in some cases rather impossible [29].2 While there
are self-stabilizing scheduling algorithms that provide strong fairness to applications [30], these methods are
not maximal and have a high overhead. As such, it is desirable to design strongly stabilizing systems as they
stabilize on any scheduler [28]; i.e., portability. However, designing strong convergence is known to be a hard
problem [31] as one has to ensure progress in addition to reachability, where progress requires that every
program computation has a state in I. A major challenge in the design of strong convergence is the resolution
of non-progress cycles in ¬I, where a non-progress cycle comprises a sequence σ = 〈si, si+1, · · · , sj , si〉 of

1Weak closure [28] requires that every computation starting in I has a non-empty suffix that remains in I.
2A maximal scheduler generates all schedules that are permissible under its fairness policy.



states (j ≥ i) in which each state is reached from its predecessor by a program transition and no state
in σ is in I. To design strong convergence, we present a sound heuristic that systematically explores the
possibility of synthesizing reachability to I without creating non-progress cycles. The time complexity of
the proposed heuristic is polynomial (in the state space of the non-stabilizing program). To evaluate the
applicability of our heuristic, we have implemented it as the first tool of the STSyn framework. Using
STSyn, we have automatically designed several strong self-stabilizing programs such as Dijkstra’s token ring
(3 different versions), matching on a ring [32], 3 coloring of a ring, equalizing over a ring and delay-insensitive
self-stabilization (available at http://cs.mtu.edu/~anfaraha/CaseStudiesExamples). More importantly,
STSyn has helped us uncover a non-progress cycle in a manually designed maximal matching program
presented in [32].
Organization. Section 2 presents the preliminary concepts. Section 3 formulates a general problem of
adding self-stabilization to non-stabilizing programs. Section 4 presents a sound and complete polynomial-
time algorithm for automated design of weak stabilizing programs. We use the results of the algorithm for the
addition of weak stabilization as an approximation for automated design of strong stabilization in Section
5. Section 6 demonstrates the addition of strong stabilization in the context of a token ring, a maximal
matching and a three coloring program. Subsequently, Section 7 presents our experimental results, and then
we make concluding remarks and discuss future work in Section 8.

2 Preliminaries

In this section, we present the formal definitions of programs, the read/write model and self-stabilization.
The programs are defined in terms of their set of variables, their transitions and their processes/components.
We adapt our read/write model from [33,34]. The definitions of self-stabilization is adapted from [1,3,27,28].
To simplify our presentation, we use a simplified version of Dijkstra’s token ring program [1] as a running
example.
Programs. A program p = 〈Vp, δp, Πp〉 is a tuple of a finite set Vp of variables, a set of transitions δp and
a finite set Πp of K processes, where K ≥ 1. Each variable vi ∈ Vp, for 1 ≤ i ≤ N , has a finite non-empty
domain Di. A state s of p is a valuation 〈d1, d2, · · · , dN 〉 of program variables 〈v1, v2, · · · , vN 〉, where di ∈ Di.
A transition t is an ordered pair of states, denoted (s0, s1), where s0 is the source and s1 is the target state
of t. A process Pj (1 ≤ j ≤ K) includes a set of transitions δj . The set δp of program transitions is equal to
the union of the transitions of its processes; i.e., δp = ∪K

j=1δj . For a variable v and a state s, v(s) denotes
the value of v in s. The state space Sp is the set of all possible states of p, and |Sp| denotes the size of the
state space.
Notation. When it is clear from the context, we use p and δp interchangeably.
Example: Token Ring (TR). The Token Ring (TR) program (adapted from [1]) includes four processes
{P0, P1, P2, P3} each with an integer variable xj , where 0 ≤ j ≤ 3, with a domain {0, 1, 2}. We use Di-
jkstra’s guarded commands language [35] as a shorthand for representing the set of program transitions.
A guarded command (action) is of the form grd → stmt, where grd is a Boolean expression in terms of
variables in Vp and stmt is a statement that may update program variables atomically. Formally, a guarded
command grd → stmt includes all program transitions {(s0, s1) : grd holds at s0 and the atomic execution
of stmt at s0 takes the program to state s1}. We represent the new values of updated variables as primed
values. For example, if an action updates the value of an integer variable v from 0 to 1, then we have v = 0
and v′ = 1. The process P0 has the following action: (addition and subtraction are in modulo 3)

A0 : (x0 = x3) −→ x0 := x3 + 1;

When the values of x0 and x3 are equal, P0 increments x0 by one. Since the actions of processes Pj , for
1 ≤ j ≤ 3 are symmetric, we use the following parametric action to represent them.

Aj : (xj + 1 = xj−1) −→ xj := xj−1;

Each process Pj (1 ≤ j ≤ 3) increments xj only if xj is one unit less than xj−1. �

State and transition predicates. A state predicate of p is any subset of Sp specified as a Boolean
expression over Vp. We say a state predicate X holds at a state s (respectively, s ∈ X) if and only if
(iff) X evaluates to true at s. An unprimed state predicate is specified only in terms of unprimed variables.



Likewise, a primed state predicate includes only primed variables. We define a function Primed (respectively,
UnPrimed) that takes a state predicate X (respectively, X ′) and substitutes each variable in X (respectively,
X ′) with its primed (respectively, unprimed) version, thereby returning a state predicate X ′ (respectively,
X). A transition predicate (adapted from [36,37]) is a subset of Sp ×Sp represented as a Boolean expression
over both unprimed and/or primed variables. The function getPrimed (respectively, getUnPrimed) takes a
transition predicate T and returns a primed (respectively, an unprimed) state predicate representing the
set of destination (respectively, source) states of all transitions in T . Note that, a state predicate X also
represents two transition predicates; one includes all transitions (s, s′), where s ∈ X and s′ is an arbitrary
state, and the other includes transitions (s, s′), where s is an arbitrary state and s′ is in Primed(X). An
action grd → stmt is enabled at a state s iff grd holds at s. A process Pj ∈ Πp is enabled at s iff there exists
an action of Pj that is enabled at s.
TR Example. By definition, process Pj , j = 1, 2, 3, has a token iff xj + 1 = xj−1. Process P0 has a token iff
x0 = x3. We define a state predicate S1 that captures the set of states in which only one token exists in the
TR program, where S1 is

((x0 = x1) ∧ (x1 = x2) ∧ (x2 = x3)) ∨ ((x1 + 1 = x0) ∧ (x1 = x2) ∧ (x2 = x3)) ∨
((x0 = x1) ∧ (x2 + 1 = x1) ∧ (x2 = x3)) ∨ ((x0 = x1) ∧ (x1 = x2) ∧ (x3 + 1 = x2))

Let 〈x0, x1, x2, x3〉 denote a state of TR. Then, the states s1 = 〈0, 1, 1, 1〉 and s2 = 〈1, 1, 1, 2〉 belong to
S1, where P1 has a token in s1 and P3 has a token in s2. �

Computations and execution semantics. We consider a nondeterministic interleaving of all program
actions generating a sequence of states in the serial execution semantics. That is, enabled actions are
executed one at a time. A computation of a program p = 〈Vp, δp, Πp〉 is a sequence σ = 〈s0, s1, · · ·〉 of states
that satisfies the following conditions: (1) for each transition (si, si+1) (i ≥ 0) in σ, there exists an action
grd → stmt in some process Pj ∈ Πp such that grd holds at si and the execution of stmt at si yields si+1,
and (2) σ is maximal in that either σ is infinite or if it is finite, then no program action is enabled in its
final state. A state that has no outgoing transitions is called a deadlock state. The final state of a deadlocked
computation is a deadlock state. To distinguish between valid terminating computations and deadlocked
computations, we stutter at the final state of valid terminating computations. A computation prefix of a
program p is a finite sequence σ = 〈s0, s1, · · · , sk〉 of states, where k ≥ 0, such that each transition (si, si+1) in
σ (0 ≤ i < k) belongs to some action grd → stmt in some process Pj ∈ Πp. The projection of a program p on
a non-empty state predicate S, denoted as p|S, is the program 〈Vp, {(s0, s1) : (s0, s1)∈δp ∧ s0, s1∈S}, Πp〉.
In other words, p|S consists of transitions of p that start in S and end in S.
Closure. A state predicate X is closed in an action grd → stmt iff executing stmt from a state s ∈ (X∧grd)
results in a state in X . We say a state predicate X is strongly closed in a program p iff X is closed in every
action of p. A state predicate X is weakly closed in a program p iff eventually X becomes closed in every
action of p. In other words, weak closure [28] requires that every computation starting in I has a non-empty
suffix that remains in I, whereas strong closure states that every computation that starts in I, remains in I.
TR Example. Starting from a state in the state predicate S1, the TR program generates an infinite sequence
of states (i.e., a computation), where all reached states belong to S1. �

Read/Write model. In order to capture distribution issues, for each process Pj ∈ Πp of a program
p = 〈Vp, δp, Πp〉, we consider a subset of variables in Vp that Pj can write, denoted wj , and a subset of
variables that Pj is allowed to read, denoted rj . We assume that for each process Pj , wj ⊆ rj ; i.e., if a
process can write a variable, then that variable is readable for that process. No action in a process Pj is
allowed to update a variable v /∈ wj . Thus, the transition predicate wRestj ≡ (∀v : v /∈ wj : v = v′) captures
the write restrictions of Pj ; i.e., the value of all variables that action Pj cannot write remain unchanged.
Note that wj excludes any unreadable variable; i.e., the transition predicate wRestj captures the fact that
a variable that cannot be read, cannot be written either.

A major impact of read restrictions is that every transition of a process Pj is in fact a group of transitions
due to the inability of that process in reading variables that are not in rj . Consider two processes P1 and P2

each having a Boolean variable that is not readable for the other process. That is, P1 (respectively, P2) can
read and write x1 (respectively, x2), but cannot read x2 (respectively, x1). Let 〈x1, x2〉 denote a state of this
program. Now, if P1 writes x1 in a transition (〈0, 0〉, 〈1, 0〉), then since P1 cannot read x2, P1 has to consider



the possibility of x2 being 1 when it updates the value of x1 from 0 to 1. As such, executing an action in which
the value of x1 is changed from 0 to 1 is captured by the fact that a group of two transitions (〈0, 0〉, 〈1, 0〉)
and (〈0, 1〉, 〈1, 1〉) is included in P1. In general, a transition is included in the set of transitions of a process if
and only if its associated group of transitions is included. Formally, any two transitions (s0, s1) and (s′0, s

′
1)

in a group of transitions formed due to the read restrictions of a process Pj , denoted rj , meet the following
constraints: ∀v : v ∈ rj : (v(s0) = v(s′0))∧ (v(s1) = v(s′1)) and ∀v : v /∈ rj : (v(s0) = v(s1)) ∧ (v(s′0) = v(s′1)).
We consider a function Group(rj , transPred) that returns the groups of transitions of Pj corresponding to
each transition in the predicate transPred. We formally specify an action grd → stmt of Pj as a transition
predicate Group(rj , grd ∧ stmtPred ∧ wRestj), where stmtPred is a transition predicate generated from
the assignment stmt. For example, an assignment x := y + 1 can be specified as the transition predicate
x′ = y + 1, where x and y are two variables and the predicate x′ = y + 1 includes all transitions (s0, s1) that
meet the constraint x(s1) = y(s0) + 1.
TR Example. Each process Pj (1 ≤ j ≤ 3) is allowed to read variables xj−1 and xj , but can write only xj .
Process P0 is permitted to read x3 and x0 and can write only x0. Thus, since a process Pi is unable to read
two x values (each with a domain of three values), each group associated with an action Aj includes nine
transitions. Notice that, for a program with n processes, each group includes 3n−2 transitions. �

Convergence and self-stabilization. Let I be a state predicate. We say that a program p = 〈Vp, δp, Πp〉
strongly converges to I iff from any state, every computation of p reaches a state in I. A program p weakly
converges to I iff from any state, there exists a computation of p that reaches a state in I. A program p is
strongly (respectively, weakly) self-stabilizing to a state predicate I iff (1) I is strongly closed in p and (2) p
strongly (respectively, weakly) converges to I.
TR Example. If the TR program starts from a state outside S1, then it may reach a deadlock state; e.g.,
the state 〈0, 0, 1, 2〉 is a deadlock state. Thus, the TR program is neither weakly stabilizing nor strongly
stabilizing to I. �

Fairness/Scheduling Policy. The way processes of a program are given a chance of execution determines
the fairness assumption, which affects the correctness of self-stabilization [4]. Consider a transition (s, s′) and
a computation σ〈s0, s1, · · ·〉 of a program p. The computation σ is strongly fair iff for every transition (s, s′)
of p, if s occurs infinitely often in σ, then (s, s′) will infinitely often be executed in σ (definition adapted
from [28]). For an algorithm that adds stabilization to non-stabilizing programs, the fairness assumption
would make a significant difference [28] in its complexity. For instance, fairness determines which cycles
should be resolved. Consider a program p that should converge to a closed predicate I. Moreover, consider
that p is perturbed to a cycle outside I that consists of two states s0 and s1, where a process Pj executes the
transition (s0, s1) and Pk executes (s1, s0). If there is a third process Pm that includes a transition (s0, s2),
then Pm is infinitely often enabled. As such, if s2 is different from s0 and s1, then a strongly fair scheduler
will make it possible to recover from the cycle. By contrast, with no fairness assumptions, the cycle should
be resolved so convergence to I can be achieved.

3 Problem Statement

Consider a non-stabilizing program p = 〈Vp, δp, Πp〉 and a state predicate I, where I is strongly closed
in p. Our objective is to generate a (weakly/strongly) stabilizing version of p, denoted ps. To separate
stabilization property from functional concerns, we require that no states (respectively, transitions) are added
to or removed from I (respectively, p|I). The motivation behind this separation of concerns is to ensure
that if in the absence of transient faults, p meets its specification, then ps will preserve the correctness of p
in the absence of faults, and only self-stabilization is added to p to ensure convergence to I in the presence
of faults. This is a specific instance of a more general problem, namely Problem 3.1, that we are currently
investigating. (Problem 3.1 is an adaptation of the problem of adding fault tolerance in [33].)

Problem 3.1: Adding Self-Stabilization

• Input:

– A program p = 〈Vp, δp, Πp〉,

– A state predicate I such that I is Lc closed in p, where Lc ∈ {weakly, strongly},



– A property of Ls stabilizing, where Ls ∈ {weakly, strongly},

– An atomicity model captured by read/write restrictions (with respect to Vp) representing the
underlying communication topology of the processes in Πp, and

– An execution semantics E ∈ {interleaving, concurrent}.

• Output: A program ps = 〈Vp, δps
, Πp〉

• Constraints:

1. I is unchanged.

2. δps
|I = δp|I.

3. ps is Ls stabilizing to I with the execution semantics E.

In this paper, we shall investigate Problem 3.1 for two cases where Lc = strongly and E = interleaving.
Specifically, Section 4 investigates the case where Ls = weakly, and Section 5 presents a solution for the case
where Ls = strongly.
Comment. While in this paper we focus on the case where the state space of ps is the same as that of p,
new variables can be introduced manually to the non-stabilizing program to generate an input instance of
Problem 3.1. We are currently investigating automated techniques [38] where, if necessary, new variables
will be introduced automatically during algorithmic addition of self-stabilization.

4 Algorithmic Design of Weak Stabilization

In this section, we present a (deterministically) sound and complete algorithm for adding weak stabilization to
programs. In Section 5, we illustrate how we use the synthesized weakly stabilizing programs as approxima-
tions that guide the design of strong stabilization. Figure 1 demonstrates the algorithm Add WeakStabilization

that takes a program p, a state predicate I that is strongly closed in p and the read/write restrictions of the
processes of p. Add WeakStabilization generates a program ps that is weakly self-stabilizing to I while preserv-
ing the computations of p starting in I. Specifically, in the for loop (Line 2) in Figure 1, Add WeakStabilization

computes the program ps as the disjunction of all possible transitions starting in ¬I and adhering to the
read/write restrictions of each process. As such, we guarantee that p|I remains unchanged and the closure of
I in p is preserved. The purpose of the repeat-until loop (Lines 3-6) is to compute the set explored of backward
reachable states from I using the transitions of ps. In Line 3, the transition predicate convergT ransPred
captures the transitions of ps whose destination states are in explored. Line 4 computes Rank[i] (i is the loop
index) as the set of states in ¬explored from where convergT ransPred reaches explored. In other words,
Rank[i] denotes the set of states from where I is reachable in i steps using the transitions of ps. The repeat-

until loop terminates when there are no more states to be added to explored; i.e., Rank[i − 1] = ∅. Line 7
checks whether explored contains the entire state space (true). If so, then ps is returned as a weakly self
stabilizing version of p. Otherwise, Add WeakStabilization declares the non-existence of a solution.

Theorem 4.1 The algorithm Add WeakStabilization is sound.
Proof. We illustrate that, if Add WeakStabilization returns a program ps, then ps satisfies the constraints of
Problem 3.1. In the for loop in Line 2, ps includes only the transitions that start outside (¬I). Hence, I
remains unchanged and p|I = ps|I, which ensures the closure of I in ps.

At each iteration i of the repeat-until loop (Lines 3-6), explored includes the set of states from where I
is reachable in at most i steps using the transitions of ps. In Line 5, explored is updated such that in the
subsequent iteration, Rank[i] is excluded from the set of states to explore. Since Sp has a finite size, the
repeat-until loop (Lines 3-6) eventually terminates. By assumption, Add WeakStabilization returns a program.
Thus, explored is equal to true. Hence, ps has a computation prefix to I from every state in Sp. Therefore,
ps is weakly self-stabilizing. 2

Theorem 4.2 The output of Add WeakStabilization is maximal.



Add WeakStabilization(p: program, {r1, · · ·, rK}: read restrictions,
{wRest1, · · ·, wRestK}: write restrictions, I: state predicate )

{ /* K denotes the number of processes in Πp and Rank is an array of state predicates. */
- explored := I; ps := p; i := 1; (1)
- for (j := 1; j ≤ K; j := j + 1) ps := ps ∨ Group(rj,¬I ∧ wRestj); (2)
- repeat {

- convergTransPred:= getPrimed(explored) ∧ ps; (3)
- Rank[i] := getUnPrimed(convergTransPred) ∧ ¬explored; (4)
- explored := explored ∨ Rank[i]; (5)
- i := i + 1; (6)

- } until (Rank[i − 1] = ∅);
- if (explored = true) then return ps, Rank; (7)
- else declare that a weakly self-stabilizing version of p does not exist; (8)

}

Figure 1: Adding weak stabilization.

Proof. The for loop in Line 2 includes any transition satisfying the read/write restrictions and originating in
¬I. Any additional transition added to ps would violate the closure of I, modify p|I or violate the read/write
restrictions. Therefore, ps is maximal. 2

Theorem 4.3 The algorithm Add WeakStabilization is complete.
Proof. Consider a program p, its given read/write restrictions and a state predicate I that is closed in p.
Assume that Add WeakStabilization fails to generate a weakly stabilizing version of p, denoted ps. Moreover,
assume that a weakly stabilizing version of p, denoted p′s, exists, where p′s meets the constraints of Problem
3.1. Thus, there must exists a set of states in ¬I from where I is reachable by transitions that adhere to
read/write restrictions of p, but Add WeakStabilization failed to find such transitions. This is a contradiction
with Theorem 4.2. Therefore, Add WeakStabilization would have found a weakly stabilizing program. 2

Theorem 4.4 The time complexity of Add WeakStabilization is polynomial in |Sp|.
Proof. The for loop in Line 2 iterates at most K times (K is a constant equal to the number of processes).
The number of iterations of the for loop in Lines 3-6 is at most equal to the number of states in ¬I. Therefore,
the time complexity of Add WeakStabilization is polynomial in |Sp|. 2

5 Algorithmic Design of Strong Stabilization

In this section, we present a sound heuristic for adding strong stabilization in polynomial time (in the
state space of the non-stabilizing program). Consider a program p = 〈Vp, δp, Πp〉, a state predicate I
that is closed in p and the read/write restrictions of the processes {P1, · · · , PK} of p, First, we invoke the
Add WeakStabilization algorithm presented in Section 4 to check whether a weakly stabilizing version of p exists.
If so, then the Add StrongStabilization heuristic (see Figure 2) uses the ranks generated by Add WeakStabilization

to systematically synthesize strong stabilization. We first consider some temporary variables for representing
p, and its intermediate version during synthesis, denoted intermProg (see Line 1 in Figure 2). Then, we check
whether or not the transitions of p form any cycles outside I, i.e., non-progress cycles (see Line 2 in Figure
2). If so, Add StrongStabilization declares failure in designing a stabilizing program and exits. This is because
resolving those cycles would result in changing p|I, which violates the second constraint of Problem 3.1. Since
we implement Add StrongStabilization using symbolic data structures (such as Binary Decision Diagrams [39]),
we reuse a symbolic cycle detection algorithm with linear time complexity due to Gentilini et al. [40]. The
Detect SCC routine in Line 2 of Figure 2 (implementing Gentilini et al.’s algorithm) returns an array of state
predicates, denoted SCCs, where each array cell contains the states of a Strongly Connected Component
(SCC) in the state transition graph of p in ¬I. Detect SCC also returns the number of SCCs, which if it is
non-zero, then Add StrongStabilization terminates.

Add StrongStabilization includes three rounds (see Line 5 in Figure 2) for designing strong conver-
gence, where four constraints of adding recovery transitions are relaxed in each round. Specifically,
Add StrongStabilization explores the possibility of adding recovery transitions under these constraints: (1)
no transition that is grouped with a transition originating in I can be used for recovery (Line 6 in Figure 2).



Add StrongStabilization({P1, · · · , PK}: transition predicate; I: state predicate,
sch[1..K]: integer array; Rank[1..M ]: array of state predicates,

{wRest1, · · ·, wRestK}: write restrictions; {r1, · · ·, rK}: read restrictions)
{ /* sch is an array representing a preferred schedule based on which */

/* processes are used in the design of convergence. */
- p := ∨K

j=1Pj; intermProg := p; (1)
- SCCs, numOfSCCs := Detect SCC(p, ¬I); // SCCs is an array of SCCs (2)
- if (numOfSCCs > 0) then declare that

failed to add strong self-stabilization to p; exit; (3)
- deadlockStates := ¬getUnPrimed(p) ∧ ¬I; (4)
- for Round:= 1 to 3 do { // go through 3 rounds (5)

- if (Round = 1) then ruledOutTrans := I ∨ Primed(deadlockStates); (6)
- else ruledOutTrans := I;
- for i := 1 to M do { // go through M ranks (7)

- if (Round 6= 3) then From := Rank[i]∧ deadlockStates; To := Rank[i − 1]; (8)
- else From := deadlockStates; To := true;
- for j := 1 to K do { // use the schedule in array sch for recovery (9)

- intermProg := Add Recovery(From, To,wRestsch[j], rsch[j], Psch[j],
intermProg, ruledOutTrans); (10)

- deadlockStates := ¬getUnPrimed(intermProg) ∧ ¬I; (11)
- if (deadlockStates = ∅) then return intermProg; (12)
}

- if (Round = 3) then break; (13)
} }
- declare that failed to add strong self-stabilization to p; (14)

}

Figure 2: Adding strong stabilization.

(Recall that, due to read restrictions, all transitions in a group must be either included or excluded.); (2)
recovery transitions are added from each Rank[i] to Rank[i − 1], where 1 ≤ i ≤ M and Rank[0] = I (see the
for loop in Line 7; see also Line 8 in Figure 2); (3) no two transitions grouped with two recovery transitions
form a cycle outside I, and (4) no transition grouped with a recovery transition reaches a deadlock state
(Line 6 in Figure 2).

In the first round, Add StrongStabilization explores the possibility of adding recovery from deadlock states
in ¬I to non-deadlock states under the aforementioned constraints. The routine Add Recovery (see Line 10 of
Figure 2 and Figure 3) investigates whether or not a process Pj can include new transitions that add recovery
from the states in a state predicate From to another state predicate To. No recovery transition should have a
groupmate ruled out by the transition predicate ruledOutTrans. The transition predicate resolvedDeadlocksj

denotes such transitions (Line 1 in Figure 3). We use an array sch[] to specify the order based on which the
ability of processes in adding recovery is investigated in the for loop in Line 9 of Figure 2. We call this order
the recovery schedule.

The Add Recovery routine verifies whether or not the new recovery transitions form non-progress cycles
with the transitions of the intermediate program and/or their groupmates. Towards this end, Add Recovery

uses the Identify Resolve Cycles routine (Line 2 in Figure 3 and Figure 4), which first invokes Detect SCC to
determine if there are cycles in ¬I. The for loop in Step 3 of Figure 4 removes the newly added recovery
transitions (along with their groups) that have a groupmate starting and ending in a SCC. This way, we
ensure that the remaining recovery transitions do not create non-progress cycles in ¬I.
TR Example. For the TR example introduced in Section 2, the state predicate I is equal to S1 (defined in
Section 2). Add WeakStabilization computes two ranks (M = 2). That is, in the weakly stabilizing version of
TR, S1 is reachable from any state in at most 2 steps. The non-stabilizing TR program does not have any
non-progress cycles in ¬S1. The recovery schedule to Add StrongStabilization is P1, P2, P3, P0. That is, in the
for loop in Line 9 of Figure 2, we first investigate the actions of P1 for adding recovery, and subsequently
use the actions of P2, P3 and P0 in order. We have observed that the recovery schedule has an impact on
the success of synthesis as a schedule may create less number of non-progress cycles with respect to other
schedules. For the TR program, Add StrongStabilization could not add any recovery transitions in the first
round as the groups that do not terminate in deadlock states cause cycles. For example, the recovery action
x3 = x0 + 1 → x0 := x3 for P0 and the recovery action xj = xj−1 + 1 → xj := xj−1 − 1 for process Pj



Add Recovery(From, To, I: state predicate; wRestj: write restrictions; rj : read restrictions,
Pj, intermProg, ruledOutTrans: transition predicate)

{ - resolvedDeadlocksj := Group(rj,From ∧ Primed(To) ∧ Pj ∧ wRestj) ∧
¬Group(rj , ruledOutTrans); (1)

- removedTrans := Identify Resolve Cycles(intermProg, resolvedDeadlocksj, ¬I); (2)
- return (intermProg ∨ (resolvedDeadlocksj ∧ ¬Group(rj ,removedTrans))); (3)

}

Figure 3: Adding recovery transitions.

participate in non-progress cycles, where 1 ≤ j ≤ 3 and addition and subtraction are performed in modulo
3. For instance, the recovery action added for P1 has transitions in a cycle starting from the state 〈1, 2, 1, 0〉
with the schedule (P3, P2, P1, P0) repeated three times. Therefore, no new transitions are included in the
TR program during the first round. �

In the second round, Add StrongStabilization explores the possibility of adding recovery from deadlock
states to any state while adhering to the ranking constraints. That is, the rank of the source state of each
recovery transition must be one unit more than the rank of its destination state; i.e., constructing a strictly
decreasing ranking. In the third round, we remove the ranking constraint as well. Nonetheless, the first and
the third constraints must be met in all three rounds. Round 3 is an important contribution of our work as
it enables Add StrongStabilization to explore other possibilities for self-stabilization than just designing strictly
decreasing computation prefixes that reach I.
TR Example. In the second round, Add StrongStabilization adds the recovery action xj = xj−1+1 → xj := xj−1,
for 1 ≤ j ≤ 3, without introducing any cycles. Notice that no new transitions are included in P0. The
union of the added recovery action and the action Aj in the non-stabilizing program results in the action
xj 6= xj−1 → xj := xj−1 for the stabilizing TR program. The synthesized TR program is exactly the same
as Dijkstra’s token ring program in [1]. �

Theorem 5.1 Add StrongStabilization is sound.
Proof. In Step 6, we ensure that no transition originating in I will be included. Moreover,
Add StrongStabilization adds new recovery transitions; it does not remove any transitions. Thus, through-
out the execution of Add StrongStabilization, I remains unchanged and intermProg|I = p|I. Hence, the first
two constraints of Problem 3.1 are met by ps. The only step where Add StrongStabilization exits successfully
is Step 12, where it returns intermProg when no more deadlock states exist. Now, by contradiction, consider
a computation σ = 〈s0, s1, · · ·〉, where ∀j : j ≥ 0 : sj ∈ ¬I. Since the state space of p is finite, there must be
some state si that is revisited in σ; i.e., a non-progress cycle in ¬I. Nonetheless, the Identify Resolve Cycles
routine ensures that no cycles are formed in ¬I every time a recovery action is added by Add Recovery in
Line 10 of Figure 2. Thus, the computation σ must include a state in I. Therefore, the returned program
intermProg is strongly stabilizing to I. 2

Theorem 5.2 The time complexity of Add StrongStabilization is polynomial in |Sp|.
Proof. Add StrongStabilization comprises three nested for loops. The outer loop in Line 5 iterates three times.
The first inner loop in Line 7 iterates M times, where M is the number of ranks. The second inner loop
iterates K times, where K is the number of processes. The Add Recovery routine takes at most a linear time
in the size of Sp [40]. In the worst case, each rank would include a single state, and hence M would be in
the order of |Sp|. Therefore, the time complexity of Add StrongStabilization is at most quadratic in |Sp|. 2

6 Case Studies

In this section, we present some of our case studies for the addition of strong stabilization. The strongly
stabilizing programs presented in this section have been automatically generated by STSyn.



Identify Resolve Cycles(intermProg, addedTrans: transition predicate, X: state predicate) {
- removedTrans := false; (1)
- SCCs, numOfSCCs := Detect SCC(intermProg ∨ addedTrans, X); (2)

// SCCs is an array of SCCs
- for i := 1 to numOfSCCs do (3)

- removedTrans := removedTrans ∨ (addedTrans ∧ SCCs[i] ∧ Primed(SCCs[i]));
- return removedTrans; (4)

}

Figure 4: Symbolic cycle resolution.

6.1 Token Ring: Alternative Ways for Stabilization

We presented a 4-process non-stabilizing Token Ring (TR) program in Section 2 and we demonstrated the
synthesis of its strongly stabilizing version in Section 5. In this section, we present some alternative strongly
stabilizing versions of the TR program that STSyn generated automatically. These alternative solutions
illustrate how useful a tool for automated addition of stabilization could be in helping designers understand
the impact of different factors (such as variable domains, the scheduling policy of processes, etc.) on the
stabilization property. Let K denote the number of processes and L denote the size of the domain of each
variable xi, for 0 ≤ i ≤ K − 1. Moreover, let sch[K] be an array of K integers, where sch[j] contains the
index of the process that is used for the addition of recovery in iteration j of the for loop in Line 9 of Figure
2.
Case 1: K = 4, L = 3 and sch[] = {1, 2, 3, 0}. In this case, STSyn synthesized Dijkstra’s token ring program
as in [1].
Case 2: K = 4, L = 4 and sch[] = {0, 1, 2, 3}. In this case, STSyn synthesized the following program from
the non-stabilizing TR program. This program stabilizes for cases where L > K − 1. Moreover, observe
that only processes P1 and P2 are symmetric. That is, instead of one distinguished process (as in Dijkstra’s
program), we have two distinguished processes.

P0: x3 = x0 −→ x0 := x3 + 1
x0 6= x3 + 1 ∧ x0 6= x3 −→ x0 := x3

P1: x0 = x1 − 1 −→ x1 := x0 − 1
x0 6= x1 − 1 ∧ x0 6= x1 −→ x1 := x0

P2: x1 = x2 − 1 −→ x2 := x1 − 1
x1 6= x2 − 1 ∧ x1 6= x2 −→ x2 := x1

P3: x2 = x3 + 1 −→ x3 := x2

Case 3: K = 5, L = 4 and sch[] = {1, 2, 3, 4, 0}. Interestingly, STSyn generated a program for this case that
stabilizes for L ≥ K − 1, but is somewhat different from Dijkstra’s program in [1]. In particular, process P0

is still a distinguished process and is no different than the first process in non-stabilizing program p. Yet, the
other processes are different than their counterparts in Dijkstra’s solution! (The action of Pi, for 1 ≤ i ≤ 4,
in Dijkstra’s program is xi 6= x(i−1) → xi := x(i−1).) Each process Pi (1 ≤ i ≤ 4) has two actions with
mutually exclusive guards. The second action performs an assignment similar to the action in Dijkstra’s
program, but it has a strengthened guard. Notice that the actions of Pi are a sequential decomposition of
Pi action in Dijkstra’s program (1 ≤ i ≤ 4). Thus, the convergence of the synthesized process takes more
steps compared to Dijkstra’s solution (addition and subtraction are performed in modulo 4).

P0: x4 = x0 −→ x0 := x4 + 1
Pi: x(i−1) = xi − 1 −→ xi := x(i−1) − 1

x(i−1) 6= xi − 1 ∧ x(i−1) 6= xi −→ xi := x(i−1)



6.2 Maximal Matching on a Bidirectional Ring

The Maximal Matching (MM) program (presented in [32]) has K processes {P0, · · · , PK−1} located on a ring,
where P(i−1) and P(i+1) are respectively the left and right neighbors of Pi, for 1 ≤ i < K. The left neighbor
of P0 is PK−1 and the right neighbor of PK−1 is P0. Each process Pi has a variable mi with a domain of
three values {left, right, self} representing whether or not Pi points to its left neighbor, right neighbor or
itself. Intuitively, two neighbor processes are matched iff they point to each other. More precisely, process Pi

is matched with its left neighbor P(i−1) (respectively, right neighbor P(i+1)) iff mi = left and m(i−1) = right
(respectively, mi = right and m(i+1) = left), where addition and subtraction are in modulo K. When Pi is
matched with its left (respectively, right) neighbor, we also say that Pi has a left match (respectively, has a
right match). Process Pi is not matched with any of its neighbors iff mi = self. Each process Pi can read
the variables of its left and right neighbors. Pi is also allowed to read and write its own variable mi. The
non-stabilizing program is empty; i.e., does not include any transitions. Our objective is to automatically
generate a strongly stabilizing program that converges to a state in IMM = ∀i : 0 ≤ i ≤ K − 1 : LCi, where
LCi is a local state predicate of process Pi as follows

LCi = (mi = left⇒ m(i−1) = right) ∧
(mi =right⇒ m(i+1) =left) ∧ (mi =self ⇒ (m(i−1) = left ∧ m(i+1) =right ))

The state predicate IMM is a silent predicate in that when the program stabilizes to IMM , no program
action is enabled. In a state in IMM , each process is matched with either its right neighbor or its left
neighbor. If Pi is unmatched, then its right neighbor points to right and its left neighbor points to left. The
following parameterized actions represent a process Pi in a manually designed MM program presented by
Gouda and Acharya’s [32].

mi = left ∧ m(i−1) = left −→ mi := self
mi = right ∧ m(i+1) = right −→ mi := self
mi = self ∧ m(i−1) 6= left −→ mi := left
mi = self ∧ m(i+1) 6= right −→ mi := right

We have automatically synthesized stabilizing MM programs for K = 5, 6, 8 and 10 in at most 69 seconds.
The following actions represent the synthesized MM program for K = 5.

Actions of P0:
m4 = left ∧m0 6= self ∧ m1 =right −→ m0 := self
(m0 6= left ∧ m4 = right) ∧ (m0 6= right ∨m1 6= self) −→ m0 := left
m0 6= right ∧m1 = left ∧(m0 6= left ∨m4 = left) −→ m0 := right

Actions of P1:
m0 = left ∧m1 6= self ∧m2 = right −→ m1 := self
m1 6= left ∧m0 6= left ∧(m0 6= self ∨(m1 6= right ∧m2 = self)) −→ m1 := left
m1 6= right ∧m2 6= right ∧((m0 6= right ∧((m0 6= left ∧m1 6= left)
∨m2 6= self))∨(m1 6= left ∧m2 6= self)) −→ m1 := right

Actions of P2:
m1 = left ∧m2 6= self ∧m3 = right −→ m2 := self
m2 6= left ∧m1 6= left ∧((m1 6= self ∧(m2 6= right ∨m3 6= left))
∨(m2 6= self ∧m3 = right) ∨(m2 6= right ∧m3 = self)) −→ m2 := left
m2 6= right∧((m1 = self ∧m2 6= left) vee(m1 = left ∧m3 =left)
∨(m2 6= left ∧m3 = left)) −→ m2 := right



Actions of P3:
m2 = left ∧m3 6= self ∧m4 = right −→ m3 := self
m3 6= left ∧m2 6= left ∧((m2 6= self ∧(m3 6= right ∨m4 = right))
∨(m3 6= right ∧m4 = self)) −→ m3 := left
m3 6= right ∧((m3 6= left ∧m2 = self) ∨(m2 6= self ∧m4 = left)) −→ m3 := right

Actions of P4:
m3 = left ∧m4 6= self ∧m0 = right −→ m4 := self
m4 6= left ∧(m3 = right ∨(m4 6= right ∧m0 = self)) −→ m4 := left
m4 6= right ∧((m0 = left ∧(m3 = left ∨m4 6= left))
∨(m3 = self ∧m4 6= left)) −→ m4 := right

Interestingly, our automatically generated MM program is different from that of Gouda and Acharya.
This difference motivated us to investigate the causes of such differences. Surprisingly, while analyzing
Gouda and Acharya’s program, we found out that their program includes a non-progress cycle starting
from the state 〈left, self, left, self, left〉 with a schedule P0, P1, P2, P3, P4 repeated twice, where the tuple
〈m0, m1, m2, m3, m4〉 denotes a state of the MM program. This experiment illustrates how difficult the design
and verification of strongly stabilizing programs is and how automated design can facilitate the development
of stabilizing systems by generating programs that are correct by construction. To gain more confidence in
the implementation of STSyn, we have model checked the MM program we have synthesized (available at
http://cs.mtu.edu/~anfaraha/CaseStudiesExamples).

6.3 Three Coloring

In this section, we present a strongly stabilizing three-coloring program in a ring (adapted from [32]). The
Three Coloring (TC) program has K > 1 processes located in a ring, where each process Pi has the left
neighbor P(i−1) and the right neighbor P(i+1), where i − 1 and i + 1 are modulo K. Each process Pi has a
variable ci with a domain of three distinct values representing three colors. Each process Pi is allowed to
read c(i−1), ci and c(i+1) and write only ci. The non-stabilizing program has no transitions initially. The
synthesized program must strongly stabilize to the predicate Icoloring = ∀i : 0 ≤ i ≤ K − 1 : c(i−1) 6= ci

representing the set of states where every adjacent pair of processes get different colors (i.e., proper coloring).
STSyn synthesized a stabilizing program with 40 processes with the following actions labeled by process
numbers (1 < i ≤ 40), where other(x,y) is a nondeterministic function that returns a color different from x
and y if x 6= y; other(x,x) non-deterministically returns one of the two remaining colors.

P1: (c1 = c0) ∨ (c1 = c2) −→ c1 := other(c0, c2)
Pi: (c(i−1) 6= ci) ∧ (ci = c(i+1)) −→ ci := other(c(i−1), c(i+1))

We would like to mention that this program is different from the TC program presented in [32]; i.e., STSyn
generated an alternative solution for the TC problem.

6.4 Two-Ring Token Passing

In this section, we demonstrate the addition of strong stabilization to a token ring program with a two-ring
topology. The Two-Ring Token Passing (TRTP) program includes 8 processes located in two rings A and
B (see Figure 5). In Figure 5, the arrows show the direction of token passing. Process PAi (respectively,
PBi), 0 ≤ i ≤ 2, is the predecessor of PAi+1 (respectively, PBi+1). Process PA3 (respectively, PB3) is the
predecessor of PA0 (respectively, PB0). Each process PAi (respectively, PBi), 0 ≤ i ≤ 3, has an integer
variable ai (respectively, bi) with the domain {0, 1, 2, 3}. Process PAi (respectively, PBi), 1 ≤ i ≤ 3, is
allowed to read its own state and the state of its predecessor and write only ai (respectively, bi). Process PA0

(respectively, PB0) can read its own state and the state of its predecessor PA3, PB0 and PB3 (respectively,
PB3, PA0 and PA3) and turn. Process PA0 (respectively, PB0) is permitted to write only a0 (respectively,
b0) and turn.

Process PAi, for 1 ≤ i ≤ 3, has the token iff (ai−1 = ai ⊕ 1), where ⊕ denotes addition modulo 4.
Intuitively, PAi has the token iff ai is one unit less ai−1. Process PA0 has the token iff (a0 = a3) ∧ (b0 =
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Figure 5: The two-ring token passing program.

b3) ∧ (a0 = b0); i.e., PA0 has the same value as its predecessor and that value is equal to the values held by
PB0 and PB3. Process PB0 has the token iff (b0 = b3) ∧ (a0 = a3) ∧ ((b0 ⊕ 1) = a0). That is, PB0 has the
same value as its predecessor and that value is one unit less than the values held by PA0 and PA3. Process
PBi (1 ≤ i ≤ 3) has the token iff (bi−1 = bi ⊕ 1). The TRTP program also has a Boolean variable turn; ring
A executes only if turn = true, and if ring B executes then turn = false. Using the following actions, the
processes circulate the token in rings A and B (i = 1, 2, 3):

AC0 : (a0 = a3) ∧ turn −→ if (a0 = b0) a0 := a3 ⊕ 1;
else turn := false;

ACi : (ai−1 = ai ⊕ 1) −→ ai := ai−1;

Notice that the action ACi is a parameterized action for processes PA1, PA2 and PA3. The actions of
the processes in ring B are as follows (i = 1, 2, 3):

BC0 : (b0 = b3) ∧ ¬turn −→ if (a0 6= b0) b0 := b3 ⊕ 1;
else turn := true;

BCi : (bi−1 = bi ⊕ 1) −→ bi := bi−1;

A closed predicate, denoted ITRTP . Consider a state s0 where (∀i : 0 ≤ i ≤ 3 : (ai = 0) ∧ (bi = 0)) and
turn is true in s0. The predicate ITRTP contains all the states that are reached from s0 by the execution
of actions ACi and BCi, for 0 ≤ i ≤ 3. Starting from a state s0 where (turn(s0) = true) ∧ (∀i : 0 ≤
i ≤ 3 : (ai(s0) = 0) ∧ (bi(s0) = 0)), process PA0 has the token and starts circulating the token until the
program reaches the state s1, where (turn(s1) = false) ∧ (∀i : 0 ≤ i ≤ 3 : (ai(s1) = 1) ∧ (bi(s1) = 0));
i.e., PB0 has the token. Process PB0 circulates the token until the program reaches a state s2, where
(turn(s2) = true) ∧ (∀i : 0 ≤ i ≤ 3 : (ai(s2) = 1) ∧ (bi(s2) = 1)), process PA0 again has the token. This way
the token circulation continues in both rings, where there is exactly one token in both rings at any time.
The predicate ITRTP = IA ∧ IB, where

IA = {s | (∀i : 0 ≤ i ≤ 3 : ai(s) = ai⊕1(s)) ∨
((turn(s) = true) ∧ (∃j : 1 ≤ j ≤ 3 : (aj−1(s) = aj(s) ⊕ 1) ∧

(∀k : 0 ≤ k < j − 1 : ak(s) = ak+1(s)) ∧
(∀k : j ≤ k < 3 : ak(s) = ak+1(s))) }

IB = {s | (∀i : 0 ≤ i ≤ 3 : bi(s) = bi⊕1(s)) ∨
((turn(s) = false) ∧ (∃j : 1 ≤ j ≤ 3 : (bj−1(s) = bj(s) ⊕ 1) ∧

(∀k : 0 ≤ k < j − 1 : bk(s) = bk+1(s)) ∧
(∀k : j ≤ k < 3 : bk(s) = bk+1(s))) }

The state predicate IA (respectively, IB) includes the states in which either all a (respectively, b) values
are equal or it is the turn of ring A (respectively, B) and there is only one token in ring A (respectively, B).
Intuitively, in any state of ITRTP at most one token exists.
Transient faults. Transient faults may non-deterministically assign a value between 0 and 3 to any variable,
which may generate multiple tokens.

FNA: true −→ a0 := 0|1|2|3, a1 := 0|1|2|3, a2 := 0|1|2|3, a3 := 0|1|2|3;
FNB: true −→ b0 := 0|1|2|3, b1 := 0|1|2|3, b2 := 0|1|2|3, b3 := 0|1|2|3;



The self-stabilizing program includes the recovery actions ACi1 and BCi1, for 1 ≤ i ≤ 3, that enable
recover to states from where at most one token exists and every process will receive the token.

ACi1 : (ai−1 6= ai ⊕ 1) ∧ (ai−1 6= ai) −→ ai := ai−1;
BCi1 : (bi−1 6= bi ⊕ 1) ∧ (bi−1 6= bi) −→ bi := bi−1;

Remark. While we have presented the TRTP program in the context of 4 processes in each ring, the
example can be generalized for any fixed number of processes. Moreover, observe that the number of rings
can also be increased, where one process from each ring participates in a higher level ring of processes in
which token circulation determines which ring is active.

7 Experimental Results

While the significance of our work is in enabling the automated design of self-stabilization, we would like
to identify the practical bottlenecks of our work in terms of tool development. With this motivation, in
this section, we introduce a set of metrics that we have used in our case studies to evaluate the time/space
complexity of automated design of self-stabilization using STSyn. First, we present the platform on which we
conducted our experiments. Then we introduce a set of criteria based on which we analyze the performance
of STSyn. Finally, we discuss our results for programs presented in Section 6.
Platform of experiments. We conducted our experiments on a Linux Fedora 10 distribution personal
computer, with 3GHz dual core Intel processor and a 1GB of RAM. We have used C++ and the CUDD/GLU
library version 2.1 for BDD manipulation [41] in the implementation of STSyn.
Metrics. We consider the following metrics in our case studies:

• Domain Size denotes the number of distinct values that can be assigned to a program variable.

• Initial SCC Detection Time captures the time required to detect if there are SCCs in ¬I of the non-
stabilizing program (see Line 2 in Figure 2).

• Average SCC Detection Time is the total time for detecting SCCs divided by the number of SCCs in
¬I.

• Ranking Time is the time required to compute the ranks in the Add WeakStabilization algorithm for the
non-stabilizing program.

• Average SCC Size is the average number of BDD nodes per SCC, which gives an estimate of the size
of SCCs. We believe that the number of BDD nodes is a better measure of space complexity for
two reasons: (1) the number of BDD nodes reflects how large the internal data structures created
by our algorithms become during synthesis in a platform-independent fashion, and (2) measuring the
exact memory space used by an application is often inaccurate because memory chunks might be
allocated/freed by the operating system and the heap manager of the CUDD/GLU package on which
we have little control.

• Number of non-trivial SCCs, where a non-trivial SCC contains multiple states, whereas a trivial SCC
is a single state.

• Total SCC Detection Time is the time required to detect both non-trivial and trivial SCCs.

• Synthesized program size is the number of BDD nodes representing the transition predicate of the
synthesized stabilizing program.

Table 1 illustrates the results of our experiments on the three cases of the token ring program presented
in Section 6. While the total synthesis time is less than 2 seconds for Case 3 (with 5 processes), the SCC
detection appears as the major bottleneck as it comprises the bulk of the total synthesis time and the total
number of BDD nodes. We make two observations on the impact of increasing the domain size and the



number of processes on time/space complexity of synthesis. First, moving from Case 1 to Case 2, we keep
the number of processes unchanged, but increase the domain size by one. Notice that this change significantly
affects the average SCC size and the total SCC detection time. Second, increasing the number of processes
from Case 2 to Case 3 has a similar effect in addition to increasing the number of ranks and a drastic increase
in the number of SCCs. For these reasons, STSyn failed to synthesize token ring programs with more than
5 processes and domain size of greater than 5 as the number of processes and the domain size are correlated
in the token ring program.

Table 1: Token Ring Metrics

Metric Case 1 Case 2 Case 3

Domain Size 3 4 4
# of Processes 4 4 5

# of Ranks 3 3 4
Initial SCC Detection Time (sec.) 0.003 0.007 0.131

Average SCC Detection Time (sec.) 0.001 0.012 0.112
Ranking Time (sec.) 0.001 0.002 0.014

Average SCC Size (BDD nodes) 23.82 50.28 71.71
# of non trivial detected SCC(s) 7 11 31
Total SCC Detection Time (sec.) 0.014 0.083 1.549

Total Execution Time (sec.) 0.023 0.107 1.80
Synthesized Program Size (BDD nodes) 114 179 254

Table 2 presents the results of synthesizing three versions of the maximal matching program for 6, 8 and
10 processes in a ring. Observe that, increasing the number of processes significantly increases the time and
space complexity of synthesis. Nonetheless, since the domain size is constant, we were able to scale up the
synthesis and generate a strongly stabilizing program with 10 processes in almost 69 seconds.

Table 2: Matching Metrics

Metric Case 1 Case 2 Case 3

Domain Size 3 3 3
# of Processes 6 8 10

# of Ranks 5 7 9
Initial SCC Detection Time (sec.) 0.001 0.001 0.001

Average SCC Detection Time (sec.) 0.010 0.221 2.696
Ranking Time (sec.) 0.008 0.200 5.882

Average Detected SCC Size (BDD nodes) 11.57 14.08 17.60
# of non trivial detected SCC(s) 189 2916 30618
Total SCC Detection Time (sec.) 0.120 3.969 59.305

Total Execution Time (sec.) 0.146 4.528 68.347
Synthesized Program Size (BDD nodes) 373 651 885

Table 3 demonstrates the values of our metrics for four cases of the coloring program with 10, 20, 30 and
40 processes respectively. Since the coloring program does not include any SCCs outside Icoloring, we have
been able to scale up the synthesis and generate a stabilizing program with 40 processes. While both Icoloring

and IMM in the matching program are locally checkable for each process Pi, we note that the complexity of
synthesizing a maximal matching program is due to the fact that the correction of the local predicate of Pi

cannot be easily achieved. We call such systems non-locally correctable versus locally correctable programs
such as coloring. More specifically, consider a case where the first conjunct of the local predicate LCi (in
IMM ) is false for Pi. That is, mi = left and mi−1 6= right. If Pi makes an attempt to satisfy its local
predicate LCi by setting mi to self, then the third conjunct of its invariant may become invalid if mi−1 6=
left. The last option for Pi would be to set mi to right, which may not make the second conjunct true if



mi+1 6= left. Thus, the success of Pi in correcting its local predicate depends on the actions of its neighbors
as well. Such dependencies cause cycles outside IMM , which complicate the design of self-stabilization. By
contrast, in the coloring program, each process can easily establish its local predicate xi−1 6= xi by selecting
a color that is different from its left and right neighbors.

Table 3: Coloring Metrics

Metric Case 1 Case 2 Case 3 Case 4

Domain Size 3 3 3 3
# of Processes 10 20 30 40

# of Ranks 6 11 16 21
Initial SCC Detection Time (sec.) 0 0 0 0

Average SCC Detection Time (sec.) 0.007 0.009 0.076 0.121
Ranking Time (sec.) 0.130 9.342 74.805 313.776

Average Detected SCC Size (BDD nodes) 0 0 0 0
# of non trivial detected SCC(s) 0 0 0 0
Total SCC Detection Time (sec.) 0.066 1.772 2.200 4.703

Total Execution Time (sec.) 0.247 11.888 80.207 328.147
Synthesized Program Size (BDD nodes) 547 1257 1967 2677

In summary, our experience demonstrates that SCC detection and resolution constitute major bottlenecks
that we will have to address in our future work. Moreover, it is interesting to identify sufficient conditions
that enable the design of locally correctable programs, which mitigates SCC detection and resolution.

8 Conclusions and Future Work

In this paper, we proposed an extensible repository for automated design of self-stabilization. In particular,
we presented a deterministically sound and complete algorithm for automatic design of weak stabilizing
programs from their non-stabilizing version. We illustrated that the complexity of such synthesis of weak
stabilization is polynomial in the state space of the non-stabilizing program. We then presented a polynomial-
time heuristic that uses the synthesized weakly stabilizing programs as an approximation for automatic design
of strong stabilization. We have developed a software tool, called STabilization Synthesized (STSyn), using
which we have automatically generated many (strongly) stabilizing programs including several versions of
Dijkstra’s token ring program, maximal matching, three coloring in a ring and delay insensitive stabilization
(available at http://cs.mtu.edu/~anfaraha/CaseStudiesExamples). While the current version of STSyn
facilitates the design of many self-stabilizing systems, it fails to generate self-stabilizing versions of some
programs due to the exponential complexity of automated design. As such, our vision for STSyn is an
extensible framework that plays the role of a repository of ready-to-use heuristics that facilitate the design
of self-stabilization. Moreover, STSyn has generated alternative solutions (see Section 6) and has facilitated
the detection of design errors in manually designed self-stabilizing programs (e.g., in the maximal matching
program [32]).

The proposed approach in this paper differs from previous work in several directions. In our previous
work [36, 42, 43], we investigate the automated addition of nonmasking fault tolerance, where we identify a
superset of the set of legitimate states reached in the presence of faults, called the fault-span, which may
exclude some states. Then we add recovery from the fault-span to a (possibly proper) subset of the set
of legitimate states. Nonetheless, automatic addition of self-stabilization is more challenging as recovery
should be added from any state in program state space. Bonakdarpour and Kulkarni [31] investigate the
problem of adding progress properties under read restrictions, where they might exclude reachable states from
program computations towards ensuring progress. Abujarad and Kulkarni [44] present a heuristic for the
addition of stabilization to locally checkable systems, where the set of legitimate states can be decomposed
into a conjunction of a set of local state predicates. By contrast, our approach is more general in that we
add stabilization to non-locally checkable and/or non-locally correctable programs. More importantly, our
heuristic for the addition of strong stabilization enables the design of programs that may oscillate for a finite



number of times before converging to the set of legitimate states, whereas most existing design methods rely
on strictly decreasing ranking/variant functions.

We are currently investigating several extensions of our work. First, as our experimental results demon-
strate, the bottleneck in automated design of strong stabilization is cycle detection and resolution. As such,
we plan to devise more intelligent heuristics for cycle resolution. Second, we will focus on identifying suf-
ficient conditions (e.g., locally correctable programs) for efficient addition of strong stabilization. Third,
we will investigate the parallelization of our algorithms towards exploiting the computational resources of
computer clusters for automated design of self-stabilization. We will also integrate STSyn with modeling
languages such as SAL [45] to facilitate the model-driven development of self-stabilizing network protocols.
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