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Abstract

In aspect-oriented programming, it is desirable to algorithmically design correct advised programs that

meet a new crosscutting concern while preserving the properties of the base program. Such an automated

design eliminates the need for after-the-fact verification, thereby potentially reducing development costs.

In this paper, we present a formalization of the problem of designing safety aspects for finite-state

programs while ensuring the reachability of states from where liveness is met, where safety stipulates

that nothing bad ever happens, and liveness states that something good will eventually happen in program

computations. Subsequently, we illustrate that, for deterministic sequential programs, it is impossible to

efficiently design safety aspects and reach states from where liveness is satisfied unless P = NP; i.e., the

problem is NP-hard in program state space. This is a counterintuitive result as previous work illustrates

that this problem is NP-hard for distributed programs in the presence of faults.
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1 Introduction

We concentrate on the problem of designing safety aspects for deterministic sequential (finite-state) programs
while ensuring the reachability of states from where liveness is met. The composition of a crosscutting aspect
with an existing program, called the base program, that does not meet that aspect is realized in terms of
composing new pieces of code, called advices, in specific places in the code of the base program (e.g., method
calls), called the joinpoints [1–4]. Given a base program and a crosscutting concern specified as a safety
property (e.g., invariance properties [5,6]), developers often manually identify joinpoints and the advices that
should be woven with the base program (in those joinpoints) so that the safety property is met by the resulting
program, called the advised program. Moreover, the advised program should guarantee that it eventually
reaches states from where the liveness specification of the base program is satisfied. To verify that the
advised program is correct, i.e., it meets the crosscutting concern while preserving the correctness of the base
program with respect to its specification, researchers have proposed numerous verification approaches [4,7–9].
However, when such verification fails, programmers have to manually fix the advised program using the
feedback of the verification process (e.g., counterexamples in model checking). To facilitate the design of
aspect-oriented programs, it is desirable to automatically identify the join points and the advices that should
be woven. Several researchers have proposed formalisms and approaches for such an automated design of
aspects [2,6,10–12]. We focus our attention on investigating the computational complexity of the automated
design of safety aspects.

In this paper, we first formulate the problem of Automated Design of Safety Aspects (ADSA) in the
context of deterministic sequential programs. Then we illustrate that the ADSA problem is in fact NP-
hard in program state space. The significance of our hardness result is multi-fold. First, we illustrate
that, in general, it is unlikely that the design of correct aspect-oriented programs for safety concerns can
be done efficiently (unless P = NP). Second, our hardness result establishes a lower bound complexity for
the design of aspect-oriented programs for other types of crosscutting concerns. For instance, we conjecture
that, in general, the design of crosscutting liveness concerns (e.g., guaranteed service) cannot be easier than
designing safety aspects. Third, our NP-hardness proof will help identify sufficient conditions under which
the automated design of aspects can be done in polynomial time (e.g., for a special class of programs and
aspects). Fourth, our result is somewhat counterintuitive as in our previous work [13], we have shown that
designing safety concerns for distributed programs in the presence of faults is a hard problem, whereas in
this paper, we show that designing safety aspects remains difficult even for deterministic programs in the
absence of faults!
Organization. The organization of the paper is as follows: We present preliminary concepts in Section 2.
In Section 3, we formulate the problem of automated design of safety aspects. Subsequently, in Section 4,
we show that designing safety aspects is NP-complete by a reduction from the 3-SAT problem [14]. Finally,
we make concluding remarks and discuss future work in Section 5.

2 Preliminaries

In this section, we present formal definitions of programs, objects, computations and safety specifications.
The definition of specification is adapted from Alpern and Schneider [15]. We represent our read/write
model from [16, 17]. We define advices, joinpoints, pointcuts and weaving techniques in the level of states
and transitions. Several formalizations of the corresponding concepts in the aspect-oriented programming
literature [1–4] have inspired our formal definitions.
Programs and objects. A program P = 〈Vp,Op, Ip,Fp〉 is a tuple of a finite set Vp of variables, a finite
set Op of objects, a finite set of initial states Ip and a finite set of accepting states. Each variable vi ∈ Vp,
for 1 ≤ i ≤ N , has a finite non-empty domain Di. A state s of a program p is a valuation 〈d1, d2, · · · , dN 〉 of
program variables 〈v1, v2, · · · , vN 〉, where di ∈ Di. The state space Sp is the set of all possible states of p. A
transition of p is of the form (s, s′), where s and s′ are program states. An object Oj , where 1 ≤ j ≤ k and
k ≥ 1, is defined in terms of a set of transitions captured by a partial transition function δj : Sp → Sp that
takes a program state and determines what the next state is. From any state, at most one object executes.
The set of transitions of a program is the union of the sets of transitions of its objects.
Computations. A computation of a program P = 〈Vp,Op, Ip,Fp〉 is a sequence σ = 〈s0, s1, · · ·〉 of



states with length len(σ) that satisfies the following conditions: (1) for each transition (si, si+1), where
0 ≤ i < len(σ), in σ, there exists an object Oj , 1 ≤ j ≤ k, that includes (si, si+1); i.e., Oj executes the
transition (si, si+1); (2) if σ is finite and terminates in a state sf , then there does not exist a state s such that
(sf , s) is executed by some program object. A computation prefix of p is a finite sequence σ = 〈s0, s1, · · · , sm〉
of states in which every transition (si, si+1), for 0 ≤ i < m, is executed by some object in Oj , 1 ≤ j ≤ k.
Specifications. Intuitively, a safety specification states that nothing bad ever happens. Formally, we
define a safety specification in terms of a set of transitions [18], denoted B ⊆ Sp ×Sp, that must not appear
in program computations. That is, the set B denotes the bad things that must not occur.1 A program
computation σ = 〈s0, s1, · · ·〉 satisfies its specification from Ip iff (if and only if) (1) s0 ∈ Ip, (2) no transition
(si, si+1), i ≥ 0, is in B and (3) some states in Fp are reached infinitely often. If a computation σ includes
a transition in B, then σ is a safety-violating computation. The intuition behind the third requirement is
that the set of states Fp defines a condition for satisfying liveness specifications that state something good
must happen infinitely often. Thus reaching some states in Fp infinitely often (respectively, halting in a
state in Fp) would satisfy the liveness specification. A program P satisfies its specification from Ip iff all
computations of p satisfy its specification from Ip. Given a finite computation σ = 〈s0, s1, · · · , sd〉, if there
does not exist a state s such that (sd, s) is executed by some program object and sd /∈ Fp, then σ is a
deadlocked computation and sd is a deadlock state. A computation σ = 〈s0, s1, · · ·〉 that does not reach some
state in Fp infinitely often is a non-progress computation. A deadlocked computation is an instance of a
non-progress computation. Another example is the case where a computation includes a cycle in which no
state belongs to Fp, called a non-progress cycle. A computation σ violates the specification (i.e., does not
satisfy the specification) from a state s0 iff σ starts at s0 and σ is either a non-progress computation or a
safety-violating computation. A program P violates the specification (i.e., does not satisfy the specification)
from Ip iff there exists a computation of P that violates the specification from some state s0 in Ip.
Advices. An advice is a finite sequence of states 〈as0, · · · , asm〉, where m ≥ 0, as denotes a state of an
advice and every transition (asi, asi+1), 0 ≤ i < m, is executed by some object in Op.
Advice composition (weaving). There are three ways of composing an advice at a specific joinpoint,
namely Before, After and Around [1–4]. For instance, if the joinpoint is a call to a method m(), then an
advice can be executed before m(), after m() or around m(); i.e., bypassing the execution of m().2 Next, we
present the before, after and around compositions at the level of program computations.

Let c = 〈s0, · · · , sb, · · · se, · · ·〉 be a program computation, the state sb be a joinpoint and a =
〈as0, · · · , asm〉 be an advice. (A pointcut is a set of states/joinpoints) In a concrete sense, sb could be
the starting point of a method of some object and the advice a is supposed to be executed before that
method. In the Before weaving (see Figure 1), the transition (sb−1, sb) is replaced by the sequence of transi-
tions sb−1, as0, · · · , asm, sb.

s0

Advice

. . . sb-1 se. . . . . .sb

as0 . . . asm

Program 

computation

. . . sb-1 se. . . . . .sb

as0 . . . asm

s0

Weaving

Figure 1: Before advice composition.

If the advice a were to be woven After a method call ending in se, then the transition (se, se+1) would be
replaced by se, as0, · · · , asm, se+1 (see Figure 2).

Weaving advice a Around the method call sb, · · · , se generates the sequence sb−1, as0, · · · , asm, se+1 (see
Figure 3).

1The notion of bad transitions is more general than the concept of bad states often specified in the literature in terms of the
always operator (or invariance properties) in temporal logic [19]. That is, any transition reaching a bad state is considered a
bad transition, however, a state having one outgoing (or incoming) bad transition may not necessarily be a bad state.

2There are more complicated ways for around composition (e.g., inserting copies of m() in the advice [4]), which we omit
for simplicity.



s0
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as0 . . . asm

Program 

computation

. . . se . . .se+1

as0 . . . asm

s0

Weaving

sb . . .

Figure 2: After advice composition.

s0

Advice

. . . sb se+1. . . . . .se

as0 . . . asm

Program 

computation

. . . . . .se+1

as0 . . . asm

s0 sb-1

sb-1

Weaving

Figure 3: Around advice composition.

While the above weaving methods are different from the point of view of their order with respect to
a method call sb, · · · , se, in principle, the advice a is inserted between two states (be it between sb−1 and
sb, between se and se+1 or between sb−1 and se+1). We use this fact to define the problem of automated
design of advices for a given safety aspect in Section 3. Moreover, in Section 4, we shall construct our proof
of NP-completeness based on deciding about the sequences of transitions that can be woven between two
specific states so a safety aspect is captured.
Read/write model. In order to model the access rights of the objects with respect to program variables,
for each object Oj (1 ≤ j ≤ k), we define a set of variables that Oj is allowed to read, denoted rj , and a set
of variables that Oj can write, denoted wj . We assume that wj ⊆ rj ; i.e., an object cannot blindly write a
variable it cannot read. The write restrictions identify a set of transitions {(s, s′)|∃v : v /∈ wj : v(s) 6= v(s′)}
that Oj does not include, where v denotes a variable and v(s) denotes the value of v in the state s. For
example, consider a program Pe with two objects O1 and O2 and two binary variables v1 and v2. The object
O1 (respectively, O2) can read and write the variable v1 (respectively, v2), but it cannot read (and write) v2

(respectively, v1). Let 〈v1, v2〉 denote the state of the program Pe. In this case, a transition t1, represented
as 〈0, 0〉 → 〈1, 1〉, does not belong to O1 because v2 /∈ w1 and the value of v2 is being updated.

The effect of read restriction is that when an object includes (respectively, excludes) a transition, a group
of transitions is included (respectively, excluded) [16, 20]. Consider the transition t2 as 〈0, 0〉 → 〈1, 0〉. If
O1 includes only t2, then the execution of t2 can be interpreted as the atomic execution of the following
if statement: ‘if (v1 = 0) ∧ (v2 = 0) then v1 := 1’; i.e., O1 needs to read v2. Including both transitions
〈0, 0〉 → 〈1, 0〉 and 〈0, 1〉 → 〈1, 1〉 makes the value of v2 irrelevant, thereby eliminating the need for reading
v2 by O1. Thus, the object O1 must include both transitions as a group. Likewise, if we were to remove
transition t2 from the set of transitions of O1, we would have to exclude the group associated with t2 (due
to read restrictions). Formally, an object Oj can include a transition (s, s′) if and only if Oj also includes
the transition (sg, s

′

g) such that for all variables v ∈ rj , we have v(s) = v(sg) and v(s′) = v(s′g), and for all
variables u /∈ rj , we have u(s) = u(s′) and u(sg) = u(s′g). In Section 4, we shall use the notion of grouping
of transitions (due to read inabilities) to illustrate that the problem of designing correct aspect-oriented
programs is NP-complete.

3 Problem Statement

In this section, we formally define the problem of designing advices for safety aspects. Let P = 〈Vp,Op, Ip,Fp〉
be the base program and B denote the safety specification of P . We assume that P satisfies its specification
before weaving the advices; i.e., P executes no transitions in B and all computations of P that start from a



state in Ip infinitely often reach a state in Fp. Moreover, let Bnew denote a new safety specification that P
does not satisfy. Our goal is to automatically design an advised version of P , denoted Pa = 〈V a

p ,Oa
p , Ia

p ,Fa
p 〉,

such that Pa satisfies B∧Bnew and any computation of Pa starting from a state in Ip infinitely often reaches
some state in Fp. Note that, for simplicity, during such transformation, we do not expand the state space
of P ; i.e., no new variables are added to Vp and thus Sa

p = Sp.
In order to simplify the design of Pa, we benefit from the fact that P satisfies its specification from Ip.

In particular, in the design of Pa, we focus on weaving new advices with existing computations of P . For
this reason, we do not consider new initial states since we do not have any guarantees about the behaviors
of P from new initial states. Moreover, since Pa must still satisfy the specification of P from all states in
Ip, we should preserve all initial states of P . From a practical point of view, the initial states are valuable
and we do not want to eliminate them during the automated design of the advised program. Thus, we
require that Ip = Ia

p . Furthermore, starting from Ip, we require the computations of Pa to infinitely often
reach a non-empty subset of the accepting states that P would reach; i.e., Fa

p ⊆ Fp. Hence, we define the
requirements of the problem of automated design of safety aspects as follows:

The Problem of Automated Design of Safety Aspects (ADSA).
Given is a program P = 〈Vp,Op, Ip,Fp〉, its safety specification B and a new safety specification Bnew. The
program P satisfies its specification from Ip; i.e., P satisfies its safety specification B and Fp is reached
infinitely often in all computations of P from Ip. However, P may not satisfy Bnew from Ip.

Identify an advised program Pa = 〈V a
p ,Oa

p , Ia
p ,Fa

p 〉 such that the following conditions hold:

1. Sa
p = Sp

2. Ia
p = Ip

3. Fa
p ⊆ Fp and Fa

p 6= ∅

4. Pa satisfies B ∧ Bnew from Ip

5. Starting from Ip, computations of Pa reach Fa
p infinitely often. That is, starting from Ip, no compu-

tation of Pa becomes a non-progress computation. 2
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Figure 4: States and transitions corresponding to propositional variables and clauses.



4 Hardness Result

In this section, we illustrate that the complexity of automated design of safety aspects is NP-complete
in program state space. The intuition behind our complexity result lies in the difficulty of building an
acceptable advice that can be woven between two specific states in a computation. In particular, consider
a computation σ = 〈s0, · · · , si, si+1, · · ·〉 in a program P (i > 0) and a new safety specification Bnew that
forbids the execution of the transition t = (si, si+1); i.e., t must not be executed in the advised program. As
such, we have to remove t. If si /∈ Fp, then σ becomes a deadlocked computation, which is not desirable.
To resolve the deadlock state si, we systematically synthesize an advice a = 〈sa0, · · · , sak〉, for k ≥ 0, that
is woven between si and si+1. Such an advice must satisfy B ∧ Bnew; i.e., no transition in advice a violates
B ∧ Bnew. Additionally, the advice a must not preclude the reachability of the accepting states in σ. To
meet this requirement, no transition (s, s′) in advice a should be grouped with a transition (sg, s

′

g) such
that sg is reachable in some computation of P . If sg is reached in some program computation σ, then the
execution of the transition (sg, s

′

g) may cause three problems: (1) s′g may not have any outgoing transition,
thus creating a reachable deadlock state in some program computation, (2) s′g may be an ancestor state
of sg in σ, thereby creating a non-progress cycle, and (3) (sg, s

′

g) may be a safety-violating transition that
must not be executed. To ensure that the above cases do not occur, we should re-examine all transitions
selected to be in advice a and all transitions used to weave a along with their associated groups. This may
lead to verifying an exponential number of possible combinations of the safe transitions that can potentially
be selected to be in an advice. Next, we prove that the ADSA problem is NP-complete using a reduction
from the 3-SAT problem [14] to ADSA. First, we reiterate the decision problem of 3-SAT. We also state the
ADSA problem as a decision problem. Then, in Subsection 4.1, we present a polynomial reduction from an
arbitrary instance of 3-SAT to an instance of the ADSA decision problem. Finally, we illustrate that the
instance of 3-SAT is satisfiable iff the answer to the ADSA decision problem is affirmative.

The 3-SAT decision problem.
Given is a set of propositional variables, x1, x2, ..., xn, and a Boolean formula F = C1 ∧C2 ∧ ...∧Cm, where

each Cj (1 ≤ j ≤ m) is a disjunction of exactly three literals. Without loss of generality, we assume
that xi and ¬xi do not simultaneously appear in the same clause (1 ≤ i ≤ n).

Does there exist an assignment of truth values to x1, x2, ..., xn such that F is satisfiable?

The ADSA decision problem.
Given is a program P = 〈Vp,Op, Ip,Fp〉, its safety specification B and a new safety specification Bnew. The

program P satisfies its specification from Ip, but may not satisfy Bnew from Ip.

Does there exist an advised program Pa = 〈V a
p ,Oa

p , Ia
p ,Fa

p 〉 that meets the requirements of the ADSA
problem (stated in Section 3)?

4.1 Polynomial Reduction from 3-SAT

In this section, we present a polynomial-time reduction from 3-SAT to ADSA. In particular, we illustrate
how for each instance of 3-SAT, we create an instance of ADSA, which includes a program, its set of initial
states, its set of accepting states, its objects and their read/write restrictions, its safety specification and the
new safety specification that should be captured by the advised program.
Program variables. The instance of ADSA has four variables e, f, g and h with the following domains:

• The variable e has the domain {0, · · · , n} ∪ {m + n + 1, · · · , 2m + n}.

• The domain of variable f is equal to {0, 1}.

• The variable g has a domain of {0, · · · , n}.

• The domain of the variable h is {0, 1} ∪ {m + n + 1, · · · , 2m + n}.
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Legend:

Figure 5: Value assignment to program variables.

States and transitions. For each propositional variable xi (1 ≤ i ≤ n), we consider two program states ai

and ai+1 (see part (a) of Figure 4). The state a1 is an initial state and the state an+1 is an accepting state.
The program also includes a transition from an+1 back to a1. Thus, starting from a1, the base program
simply transitions to a2, a3, · · · , an+1 and back to a1. Part (b) of Figure 4 illustrates the structure of the
base program along with a set of safe transitions that can be selected in an advice woven between ai and
ai+1. These transitions are as follows (see Figure 4): (ai, bi), (bi, ai), (bi, ci), (bi, c

′

i), (ci, ai+1), (ai, b
′

i), (b′i, c
′

i),
(c′i, b

′

i), (c′i, ci) and (c′i, ai+1).
For each clause Cr = xi ∨ ¬xj ∨ xk, where 1 ≤ r ≤ m and 1 ≤ i, j, k ≤ n, we consider an initial state

zr and seven states reachable from zr, namely states zri, z
′

ri, zrj, z
′

rj, zrk, z′rk and z′r (see part (c) of Figure
4). Corresponding to the literals in Cr, we consider the transitions (zri, z

′

ri), (zrj, z
′

rj) and (zrk, z′rk). We
also consider one transition from zr to zri and a transition from z′rk to z′r. The states zri, zrj, zrk and z′r
reachable from zr are accepting states. Thus, we have

• Ip = {a1} ∪ {zr|1 ≤ r ≤ m}

• Fp = {an+1} ∪ {zri, zrj, zrk, z′r| for each clause (Cr = xi ∨ ¬xj ∨ xk) in the 3-SAT formula, where
(1 ≤ r ≤ m) ∧ (1 ≤ i, j, k ≤ n)}

Safety specifications. The safety specification B rules out any transition except the aforementioned
transitions (see Figure 4). The new safety specification Bnew prohibits the execution of transitions (ai, ai+1)
and (z′rk, z′r) (see Figure 4). Observe that B permits the execution of transitions (ai, ai+1) and (z′rk, z′r),
whereas Bnew forbids them. Thus, the candidate advices that can be woven between ai and ai+1 are as
follows: (i) 〈bi, ci〉, (ii) 〈b′i, c

′

i〉, and (iii) 〈bi, c
′

i, ci〉.
Objects and their read/write restrictions. The base program includes seven objects (see Figure 5)
whose transitions and read/write restrictions are as follows:

• The first object O1 includes the transitions (ai, bi), for all 1 ≤ i ≤ n (see Figure 5). The set of readable
variables of O1, denoted r1, is equal to {e, f, g, h} and its set of writeable variables is w1 = {f, g, h}.

• The set of transitions (ai, b
′

i) comprises the object O2 and r2 = {e, f, g, h} and w2 = {e, h}.

• The object O3 includes the transitions (bi, ci) (see the arrow with two dots on it in Figure 5). We also
have r3 = {e, f, g, h} and w3 = {e, h}.

• The fourth object, denoted O4, includes transitions (b′i, c
′

i), and r4 = {e, f, g, h} and w4 = {f, g} (see
the arrow with three dots on it in Figure 5).

• For object O5, we have r5 = w5 = {e, f, g}; i.e., O5 cannot read h. The object O5 includes transition
(ci, ai+1), which is grouped with (c′i, b

′

i) and (zqi, z
′

qi), due to inability of reading h, where (zqi, z
′

qi)



corresponds to a clause Cq in which the literal ¬xi appears. Notice that in these three transitions, the
values of the readable variables e, f and g are the same in the source states (and in the destination
states) and the value of h does not change during these transitions because it is not readable for O5

(see Figure 5).

• The sixth object O6 can read r6 = w6 = {f, g, h}, but cannot read e. Its set of transitions includes
(c′i, ai+1), (bi, ai) and (zri, z

′

ri) that are grouped due to inability of reading e, where (zri, z
′

ri) corresponds
to a clause Cr in which the literal xi appears.

• The object O7 can read and write all variables and its set of transitions includes (an+1, a1), (bi, c
′

i) and
(c′i, ci) for 1 ≤ i ≤ n. Moreover, for each clause Cr = xi∨¬xj∨xk, where 1 ≤ r ≤ m and 1 ≤ i, j, k ≤ n,
object O7 includes the following transitions: (zr, zri), (z

′

ri, zrj), (z
′

rj , zrk) and (z′rk, z′r).

Figure 5 illustrate how we assign different values to the variables in each state of the instance of the
ADSA problem. We denote a program state by 〈e, f, g, h〉.
Theorem 4.1 The complexity of the reduction is polynomial.
Proof. For each propositional variable xi, we consider six states and 10 transitions. Moreover, for each
clause in the 3-SAT formula, we have 8 states and seven transitions. Note that since the safety specifications
rule out any other transitions except the ones included in the instance of ADSA, we need not be concerned
about them. Thus, the size of the instance of the ADSA problem is polynomial in the size of the instance of
3-SAT. 2
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b’2 c’2

a3

<0, 1, 0, 1> <1, 1, 0, 0> 

<1, 0, 1, 0> 
<0, 0, 1, 0> 

<1, 0, 1, 1> <1, 1, 0, 1> 

a1

b1 c1

b’1 c’1

a2

Figure 6: A partial structure of the advised program corresponding to the value assignment x1 = false, x2 = true

and x3 = true for an example clause C5 = x1 ∨ ¬x2 ∨ x3.

4.2 Correctness of Reduction

In this section, we show that 3-SAT is satisfiable iff the answer to the instance of ADSA (created by the
reduction in Section 4.1) is affirmative.
Lemma 4.2 If the instance of 3-SAT is satisfiable, then there exists an advised version of the instance of
ADSA that meets all the requirements of the ADSA problem (defined in Section 3).
Proof. If the 3-SAT instance is satisfiable, then there must exist a value assignment to the propositional
variables x1, · · · , xn such that all clauses Cr, for 1 ≤ r ≤ m, evaluate to true. Corresponding to the value
assignment to a variable xi, for 1 ≤ i ≤ n, we include a set of transitions in the advised program as follows:

• If xi is assigned true, then we include transitions (ai, bi), (bi, ci), (ci, ai+1). Thus the advice 〈bi, ci〉
is woven between ai and ai+1. Since we have included (ci, ai+1), and (ci, ai+1) is grouped with the
transitions (zqi, z

′

qi), where 1 ≤ q ≤ m, (see the dashed arrow (zrj, z
′

rj) in Figure 5) for any clause Cq

in which ¬xi appears, we must include (zqi, z
′

qi) as well.

• If xi is assigned false, then we include transitions (ai, b
′

i), (b
′

i, c
′

i), (c
′

i, ai+1), thereby weaving the advice
〈b′i, c

′

i〉 between ai and ai+1. Due to the inability of reading e, including (c′i, ai+1) results in the inclusion
of the transitions (zli, z

′

li), where 1 ≤ l ≤ m, (see the dotted arrows (zri, z
′

ri) and (zrk, z′rk) in Figure
5) for any clause Cl in which xi appears.



• For each clause Cr = xi ∨ ¬xj ∨ xk, the transition (zri, z
′

ri) (respectively, (zrk, z′rk)) is included iff xi

(respectively, xk) is assigned false. The transition (zrj, z
′

rj) is included iff xj is assigned true.

Figure 6 depicts a example partial structure of an advised program for the value assignment x1 = false,
x2 = true and x3 = true in an example clause C5 = x1 ∨ ¬x2 ∨ x3. Note that the bad transition (z′rk, z′r) is
not reached because x3 = true and the transition (zrk, z′rk) is excluded.

Now, we illustrate that the advised program in fact meets the requirements of the ADSA problem. The
state space remains obviously the same as no new variables have been introduced; i.e., Sp = Sa

p . During the
selection of transitions based on value assignment to propositional variables, we do not remove any initial
states. Thus, we have Ip = Ia

p .
Satisfying safety specifications. Since the new safety specification rules out transitions (ai, ai+1) and
(z′rk, z′r), we have to ensure that the advised program does not execute them. From ai, the program either
transitions to bi or to b′i. Thus safety is not violated from ai. Moreover, since all clauses are satisfied, at
least one literal in each clause Cr = xi ∨ ¬xj ∨ xk must be true. Thus, at least one of the three transitions
(zri, z

′

ri), (zrj , z
′

rj) or (zrk, z′rk) is excluded, thereby preventing the reachability of z′rk; i.e., the bad transition
(z′rk, z′r) will not be executed.
Reachability of accepting states (satisfying liveness specifications). While the accepting state z′r is
no longer reachable, starting from zr, at least one of the accepting states zri, zrj or zrk can be reached. Thus,
the advised program halts in an accepting state. Moreover, the accepting state an+1 is reached infinitely
often due to the way we have woven either aspect 〈bi, ci〉 or aspect 〈b′i, c

′

i〉 between ai and ai+1. Thus, starting
from any initial state, some accepting states will be visited infinitely often; i.e., Fa

p ⊆ Fp.
Therefore, if 3-SAT is satisfiable, then there exists an advised program (for the instance of the ADSA

problem) that satisfies the requirements of the ADSA problem. 2

Lemma 4.3 If there exists an advised version for the instance of ADSA that meets all the requirements of
the ADSA problem, then the instance of 3-SAT is satisfiable.
Proof. Let Pa be an advised version for the instance of ADSA that meets all the requirements of the ADSA
problem. As such, the set of initial states Ia

p must be equal to the set {a1} ∪ {zr|1 ≤ r ≤ m}. Starting from
a1, Pa must execute a safe transition. Otherwise, we reach a contradiction; i.e., either a1 is a deadlock state
or the transition (a1, a2), which violates the new safety specification is executed. Thus, Pa either includes
(a1, b1) or (a1, b

′

1), but not both. If Pa includes (a1, b1), then we set x1 to true in the 3-SAT formula. If Pa

includes (a1, b
′

1), then we set x1 to false.
We assign truth values to each xi, for 1 ≤ i ≤ n, depending on the presence of (ai, bi) or (ai, b

′

i) at state ai

(similar to the way we assign a value to x1). Such a value assignment strategy, results in a unique truth-value
assigned to each variable xi since Pa is a deterministic program having at most one outgoing transition from
each state. If Pa includes (ai, bi), then, from bi, Pa includes either (bi, ci) or (bi, c

′

i), but not both. If Pa

includes (bi, c
′

i), then, from c′i, Pa must include either (c′i, ci) or (c′i, ai+1). If Pa includes (c′i, ai+1), then it
must include (bi, ai) since these two transitions are grouped due to inability of O6 in reading e. As such, the
two transitions (ai, bi) and (bi, ai) make a non-progress cycle in Pa. Now, we show that, from c′i, Pa cannot
include (c′i, ci) either. If Pa includes (c′i, ci), then it must include (ci, ai+1), which is grouped with (c′i, b

′

i)
due to inability of O5 in reading h. Thus, Pa may reach b′i from c′i and deadlock in b′i. Thus, if Pa includes
(ai, bi) from ai, then it must include (bi, ci) and (ci, ai+1). In case where Pa includes (ai, b

′

i) from ai, the
transition (b′i, c

′

i) must also be included; otherwise Pa deadlocks in b′i. From c′i, Pa cannot include (c′i, ci)
because it has to include (ci, ai+1) that is grouped with (c′i, b

′

i), which creates a non-progress cycle. Thus,
Pa must include (c′i, ai+1) from c′i.

We also illustrate that each clause in the 3-SAT formula evaluates to true. Consider a clause Cr =
xi ∨ ¬xj ∨ xk. Starting from the initial state zr, the transition (zr, zri) must be present; otherwise zr

is a deadlock state, which is a contradiction with Pa being a correct advised program. Moreover, from
zr, the safety-violating transition (z′rk, z′r) must not be executed. Thus, at least one of the transitions
(zri, z

′

ri), (z
′

ri, zrj), (zrj , z
′

rj), (z
′

rj , zrk) or (zrk, z′rk) (see Figure 5) must not be in Pa. However, if one of
the transitions (zr, zri), (z′ri, zrj), (z

′

rj , zrk) or (z′rk, z′r) is excluded, then a reachable deadlock state will be
created as their source states are not accepting states. Thus, if either z′ri or z′rj is reached from zr, then the
corresponding transition (z′ri, zrj) or (z′rj, zrk) must be present in Pa. Hence, at least one of the transitions
(zri, z

′

ri), (zrj, z
′

rj) or (zrk, z′rk) must be excluded in Pa; i.e., at least one literal in Cr must be true, thereby
satisfying Cr. For instance, let ¬xj be the literal that evaluates to true in Cr; i.e., xj = false. Thus, the



transition (zrj, z
′

rj), and the transitions (cj , aj+1) and (c′j , b
′

j) that are grouped with (zrj , z
′

rj) are excluded.
Observe that the assignment of false to xj is consistent with our truth-value assignment. Otherwise, Pa

must include (aj , bj) and (bj , cj), thereby reaching cj , which is a deadlock state because (cj , aj+1) has been
excluded. This is a contradiction with Pa being a correct advised program. Therefore, the 3-SAT formula is
satisfiable since every clause evaluates to true. 2

Theorem 4.4 The problem of automated design of safety aspects is NP-complete in program state space.
Proof. The proof of NP-hardness follows from Lemmas 4.2 and 4.3. The proof of NP membership is
straightforward, hence omitted. Therefore, the ADSA problem is NP-complete. 2

5 Concluding Remarks and Future Work

We focused on the problem of designing aspect-oriented programs for crosscutting safety concerns. Specif-
ically, we formulate the problem of designing a correct advised version of a base program that satisfies a
safety concern while preserving the correctness of the base program. We then illustrated that designing
correct advised programs is NP-complete in program state space. In other words, in general, it is unlikely
that the design of correct aspect-oriented programs can be done efficiently (unless P = NP ). This is a
counterintuitive result as previous work [13,21] illustrates that designing safety aspects for non-deterministic
programs is NP-complete. Based on our hardness result in this paper, we believe that the complexity of
design is not due to non-determinism, instead it is due to the inability of one object in reading the state of
other objects.

As an extension of this work, we will focus on the design of sound heuristics that reduce the complexity
of design at the expense of losing completeness. That is, if such heuristics generate an advised program,
then the advised program is correct by construction, however, the heuristics may fail to create an advised
program while there exists one. As such, for different programs and aspects of different nature, we may need
different heuristics. To provide tool support for designers, we will create an extensible software framework
that integrates sound heuristics for automated design of aspects. We foresee two categories of users for our
framework, namely, (1) developers of heuristics who will focus on designing new heuristics and integrating
them in our framework, and (2) designers of aspect-oriented programs who will use the built-in heuristics in
our framework to automatically design advised programs.
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