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Abstract

We present sound and (deterministically) complete algorithms for stepwise design of two families of
multitolerant programs in a high atomicity program model, where a program can read and write all its
variables in an atomic step. We illustrate that if one needs to add failsafe (respectively, nonmasking)
fault-tolerance to one class of faults and masking fault-tolerance to another class of faults, then such an
addition can be done in separate polynomial-time (in the state space of the fault-intolerant program)
steps regardless of the order of addition. This result has a significant methodological implication in
that designers need not be concerned about unknown fault tolerance requirements that may arise due to
unanticipated types of faults. Further, we illustrate that if one needs to add failsafe fault-tolerance to one
class of faults and nonmasking fault-tolerance to a different class of faults, then the resulting problem
is NP-complete in program state space. This is a counterintuitive result in that adding failsafe and
nonmasking fault-tolerance to the same class of faults can be done in polynomial time. We also present
sufficient conditions for polynomial-time addition of failsafe-nonmasking multitolerance to programs.
Finally, we demonstrate the stepwise addition of multitolerance in the context of a token ring protocol
and a repetitive agreement protocol that is subject to Byzantine and transient faults.

Keywords: Fault tolerance, Multitolerance, Automatic addition of fault tolerance, Formal methods,
Program synthesis
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1 Introduction

Today’s systems are often subject to multiple classes of faults and, hence, it is desirable that these systems
tolerate multiple classes of faults. Since it is often undesirable or impractical to provide the same level
of fault-tolerance to each class of faults, Arora and Kulkarni [1] introduced the notion of multitolerance,
where a multitolerant system (possibly) provides a different level of fault-tolerance to each fault-class. The
importance of such multitolerant systems can be easily observed from the fact that several methods for
designing multitolerant programs as well as several instances of multitolerant programs can be readily found
(e.g., [2, 3, 4, 1]) in the literature.

The design of finite-state multitolerant programs is complicated as different levels of fault-tolerance
considered for different classes of faults may be inconsistent. To alleviate this problem, Arora and Kulkarni [1]
have provided a method for stepwise design of multitolerance. In this method, multitolerance is added in a
stepwise fashion where in each step, only one class of faults is considered. Furthermore, in each step, fault-
tolerance to previously added faults is preserved. The choices made during stepwise addition of multitolerance
affect the completeness of the design in that the stepwise addition may fail to yield a multitolerant program
while one exists. To illustrate this, consider the case where we begin with a fault-intolerant program p –
that meets its specification in the absence of faults although provides no guarantees in the presence of faults
– where fault-tolerance is to be provided to two classes of faults, say f1 and f2. Arora and Kulkarni [1]
have shown that their method is complete, i.e., if such a multitolerant program exists then one can use their
method to find programs p1 and p2 where p1 provides the desired level of fault-tolerance to f1 and p2 provides
the desired level of fault-tolerance to both f1 and f2. In other words, their stepwise method can first design
p1 and then p2. However, the method in [1] can generate several possible fault-tolerant programs after the
first step (as well as the second step). In particular, in the first step, the synthesized program may be p1

(considered above) or p′1 (another program). Moreover, it is possible that if the program synthesized in the
first step is p′1, then the method may fail to find a multitolerant program in the second step. In this sense,
the method in [1] is non-deterministically complete. In other words, the choices made during the addition
of fault-tolerance to f1 may prevent adding fault-tolerance to f2 even though a fault-tolerant program that
provides tolerance to both faults exists.

From the above discussion, it follows that a deterministically (sound and) complete stepwise method for
multitolerance would be especially valuable, as it would allow us to consider only one class of faults at a
time while ensuring that the choices made in the addition of fault-tolerance to one class of faults would not
prevent addition of fault-tolerance to another class of faults. To the best of our knowledge, the design of
such a deterministically complete method is still an open problem for arbitrary inputs (i.e., faults, programs,
and specifications). Moreover, we are not even aware of the existence of such a deterministically sound and
complete method for cases where restrictive inputs are considered.

In this paper, we show that for a class of high atomicity programs (where a process can read and write
all program variables in an atomic step) and a specification in the bad transitions (BT ) model [5] (where
the safety specification can be characterized in terms of bad states and bad transitions that should not
occur in program computations), a deterministically sound and complete solution exists in the following two
scenarios:

• Failsafe fault-tolerance – where safety is guaranteed in the presence of faults – is provided to one class
of faults, and masking fault-tolerance – where a masking program eventually recovers to its legitimate
states and ensures that safety is always preserved – is provided to another class of faults, called failsafe-
masking multitolerance.

• Nonmasking fault-tolerance – where a nonmasking program eventually recovers to its legitimate states
although safety may be violated during recovery – is provided to one class of faults, and masking
fault-tolerance is provided to another class of faults, called nonmasking-masking multitolerance. (see
Section 2 for precise definitions of failsafe, nonmasking and masking fault-tolerance.)

Additionally, we also find a counterintuitive result that if failsafe fault-tolerance is required to one class
of faults and nonmasking fault-tolerance is desired to another class of faults, then such a sound and deter-
ministically complete algorithm is unlikely to exist if the complexity of adding one class of faults is to be
polynomial. In particular, we show that the problem of adding failsafe fault-tolerance to one class of faults



and nonmasking fault-tolerance to a different class of faults is NP-complete. This result is surprising in that
adding failsafe and nonmasking fault-tolerance to the same class of faults is polynomial [6]. In general, this
NP-completeness result implies the non-existence of a stepwise method (where the complexity of each step
is polynomial) unless P = NP . For efficient stepwise addition of multitolerance, we present sufficient condi-
tions where polynomial-time stepwise addition can be achieved. We also demonstrate an example program
where these sufficient conditions are satisfied.

Moreover, our stepwise method is amenable to automation. Such automated synthesis has the advantage
of generating fault-tolerant programs that are correct by construction, and tolerate multiple classes of faults.
In our method, we begin with a fault-intolerant program and add fault-tolerance to the given classes of faults
while providing the required level of fault-tolerance to each of those fault-classes. This addition is performed
by reusing the algorithms in [6] where one adds fault-tolerance to a single class of faults. Furthermore, to
illustrate the soundness and completeness of our method, we only rely on certain properties of the algorithms
in [6] and not on their implementation; i.e., we reuse the algorithms in [6] as black boxes.

The rest of the paper is organized as follows: In Section 2, we present preliminary concepts. Then, in
Section 3, we present the formal definition of multitolerant programs and the problem of synthesizing a
multitolerant program from a fault-intolerant program. Subsequently, in Section 4, we demonstrate that,
in general, stepwise addition of multitolerance is NP-complete (in program state space), which constitutes
an impossibility result for efficient stepwise design of multitolerance unless P = NP . In Section 5, we
investigate the feasibility of sound and complete stepwise addition of multitolerance for special cases. In
Section 6, we illustrate two examples of stepwise addition of failsafe-nonmasking-masking and nonmasking-
masking multitolerance. Finally, in Section 7, we make concluding remarks and discuss future work.

2 Preliminaries

In this section, we give formal definitions of programs, problem specifications, faults, and fault-tolerance.
The programs are defined in terms of their state space and their transitions. The definition of specifications
is adapted from Alpern and Schneider [7]. The definitions of faults and fault-tolerance are adapted from
Arora and Gouda [8] and Kulkarni [9].

2.1 Programs

A program p = 〈Sp, δp〉 is defined by a finite state space, Sp, and a set of transitions, δp, where δp is a subset of
Sp×Sp. A state predicate of p is any subset of Sp. A state predicate S is closed in the program p (respectively,
δp) iff (if and only if) ∀s0, s1 : (s0, s1)∈δp : (s0∈S ⇒ s1∈S). A sequence of states, σ = 〈s0, s1, ...〉 with len(σ)
states, is a computation of p iff the following two conditions are satisfied: (1) ∀j : 0 < j < len(σ) : (sj−1, sj)∈
δp, and (2) if σ is finite and terminates in state sl then there does not exist state s such that (sl, s)∈δp. A
finite sequence of states, 〈s0, s1, ..., sn〉, is a computation prefix of p iff ∀j : 0 < j ≤ n : (sj−1, sj)∈δp.

The projection of a program p on a non-empty state predicate S, denoted as p|S, is the program
〈Sp, {(s0, s1) : (s0, s1) ∈ δp ∧ s0, s1 ∈ S}〉. In other words, p|S consists of transitions of p that start in
S and end in S. Given two programs, p=〈Sp, δp〉 and p′=〈S′

p, δ
′
p〉, we say p′ ⊆ p iff S′

p =Sp and δ′p ⊆ δp.
Notation. When it is clear from the context, we use p and δp interchangeably. We also say that a state
predicate S is true in a state s iff s∈S.

2.2 Specifications

Following Alpern and Schneider [7], we let the specification be a set of infinite sequences of states. We assume
that this set is suffix-closed and fusion-closed. Suffix closure of the set means that if a state sequence σ is in
that set then so are all the suffixes of σ. Fusion closure of the set means that if state sequences 〈α, s, γ〉 and
〈β, s, δ〉 are in that set then so are the state sequences 〈α, s, δ〉 and 〈β, s, γ〉, where α and β are finite prefixes
of state sequences, γ and δ are suffixes of state sequences, and s is a program state.

We say a computation σ = 〈s0, s1, · · ·〉 satisfies (does not violate) spec iff σ ∈ spec. Given a program p,
a state predicate S, and a specification spec, we say that p satisfies spec from S iff (1) S is closed in p, and



(2) every computation of p that starts in a state where S is true satisfies spec. If p satisfies spec from S and
S 6={}, we say that S is an invariant of p for spec.

Note that since specifications contain only infinite sequences, a program can satisfy a specification from S
only if all its computations from S are infinite, i.e., there are no deadlock states, where a deadlock state has
no outgoing transitions. If a program is permitted to have terminating or fixpoint states where the program
can stay forever, then this can be specified explicitly by providing a self-loop for those states. With this
requirement, we can distinguish between permitted fixpoint states that may be present in the fault-intolerant
program and deadlock states that could be created during synthesis when transitions are removed.

While a finite state sequence cannot satisfy a specification, spec, we can determine whether it has a
potential to satisfy it. With this intuition, we say that α maintains spec iff there exists β such that αβ
(concatenation of α and β) is in spec. We say that a finite sequence α violates spec iff α does not maintain
spec. Note that we overload the word violate to say that a finite sequence does not maintain spec.

Based on [7], given any spec, it can be expressed as an intersection of a safety specification and a liveness
specification, each of which is also a set of infinite sequences of states. Such infinite sequences of states cannot
be used as an input to a synthesis routine, especially if we are interested in identifying the complexity of the
synthesis algorithm. Hence, we need to identify an equivalent (but concise) finite representation. We discuss
this next.

Representation of safety during synthesis. For a suffix-closed and fusion-closed specification, the
safety specification can be characterized by a set of bad transitions (see Page 26, Lemma 3.6 of [9]), that
is, for program p, its safety specification can be characterized by a subset of {(s0, s1) : (s0, s1)∈Sp × Sp}.
These two representations are equivalent in that (1) given a set badtr of bad transitions, it corresponds to the
infinite state sequences where no sequence contains any transition from badtr, and (2) given a specification
spec in terms of a set of infinite sequences, the set of bad transitions badtr includes those transitions that do
not appear in any sequence in spec. Since the set of transitions provides a concise representation for safety
specification, we use that as an input to the synthesis algorithm.
Remark. If fusion or suffix closure is not provided then safety specification can be characterized in terms of
finite-length prefixes [7]. We have shown in [5] that if one adopts such general model of safety specification
instead of our restricted model (i.e., the bad transitions model) then the complexity of synthesis significantly
increases from polynomial (in program state space) to NP-hard. Hence, for efficient synthesis, based on
which tool support [10] can be provided, we represent safety with a set of bad transitions that must not
occur in program computations.

Representation of liveness during synthesis. From [7], a specification, spec, is a liveness specifica-
tion iff for any finite prefix α, α maintains spec. Our synthesis algorithms do not need liveness specification
during synthesis. This is due to the fact that if the fault-intolerant program satisfies its liveness specification
then, in the absence of faults, the fault-tolerant program also satisfies it.
Notation. Whenever the specification is clear from the context, we shall omit it; thus, S is an invariant of
p abbreviates S is an invariant of p for spec.

2.3 Faults

The faults that a program is subject to are systematically represented by transitions. A class of faults f
for program p = 〈Sp, δp〉 is a subset of {(s0, s1) : (s0, s1)∈ Sp × Sp}. We use p[]f to denote the transitions
obtained by taking the union of the transitions in p and the transitions in f . We say that a state predicate
T is an f -span (read as fault-span) of p from S iff the following two conditions are satisfied: (1) S ⊆ T ,
and (2) T is closed in p[]f . Observe that for all computations of p that start in S, T is a boundary in the
state space of p to which (but not beyond which) the state of p may be perturbed by the occurrence of f
transitions.

We say that a sequence of states, σ = 〈s0, s1, ...〉 with len(σ) states, is a computation of p in the presence
of f iff the following three conditions are satisfied: (1) ∀j : 0 < j < len(σ) : (sj−1, sj) ∈ (δp ∪ f), (2)
if σ is finite and terminates in state sl then there does not exist state s such that (sl, s) ∈ δp, and (3)
∃n : n ≥ 0 : (∀j : j > n : (sj−1, sj)∈δp). The first requirement captures that in each step, either a program
transition or a fault transition is executed. The second requirement captures that faults do not have to
execute. Finally, the third requirement captures that the number of fault occurrences in a computation is



finite. This requirement is the same as that made in previous work (e.g., [11, 12, 8, 13]) to ensure that
eventually recovery can occur.

2.4 Fault Tolerance

We now define what it means for a program to be failsafe/nonmasking/masking fault-tolerant. The intuition
for these definitions is in terms of whether the program satisfies safety and whether the program recovers
to states from where subsequent computations satisfy safety and liveness specifications. Intuitively, if only
safety is satisfied in the presence of faults, the program is failsafe. If the program recovers to states from where
subsequent computations satisfy the specification, then it is nonmasking fault-tolerant. If the program always
satisfies safety as well as recovers to states from where subsequent computations satisfy the specification then
it is masking fault-tolerant. Based on this intuition, we define the levels of fault-tolerance in terms of the
following requirements:

1. In the absence of f , p satisfies spec from S.

2. There exists an f -span of p from S, denoted T .

3. p[]f maintains spec from T .

4. Every computation of p[]f that starts from a state in T contains a state of S.

We say a program p is failsafe f -tolerant from S for spec iff p meets the requirements 1, 2 and 3. The
program p is nonmasking f -tolerant from S for spec iff p meets the requirements 1, 2 and 4. The program p
is masking f -tolerant from S for spec iff p meets the requirements 1, 2, 3 and 4.
Notation. Whenever the specification spec and the invariant S are clear from the context, we shall omit
them; thus, “f -tolerant” abbreviates “f -tolerant from S for spec ”.

3 Problem Statement

In this section, we formally define the problem of synthesizing multitolerant programs from their fault-
intolerant versions. There exist several possible choices in deciding the level of fault-tolerance that should
be provided in the presence of multiple fault-classes. One possibility is to provide no guarantees when f1

and f2 occur in the same computation. With such a definition of multitolerance, the program would provide
fault-tolerance if faults from f1 occur or if faults from f2 occur. However, no guarantees will be provided
if both faults occur simultaneously. Another possibility is to provide the minimum level of fault-tolerance
when f1 and f2 occur. In this approach, we impose an ordering on levels of fault tolerance based on a
less than relation, denoted ≺, which orders two levels of fault tolerance based on the level of guarantees
they provide in the presence of faults. Thus, based on the definition of fault tolerance, we have failsafe ≺
masking, nonmasking ≺ masking, intolerant ≺ masking, intolerant ≺ failsafe and intolerant ≺ nonmasking.
As a result, the fault-tolerance provided for cases where f1 and f2 occur simultaneously should be equal
to the minimum level of fault-tolerance provided when either f1 occurs or f2 occurs. To illustrate this,
let masking fault tolerance be required to f1 and nonmasking fault tolerance be desired to f2. Thus, the
occurrence of f2 allows violation of safety. If we were to require masking fault tolerance for cases where f1

and f2 occur simultaneously, then this would mean that safety may be violated in the presence of f2 alone,
however, if f1 occurs after the occurrence of f2, then safety must be preserved. This contradicts the notion
that faults are undesirable and make it harder for a program to meet its specification. Thus, the level of
fault-tolerance for any combination of fault-classes will be less than or equal to the level of fault-tolerance
provided to each class. We follow this approach to define the notion of multitolerance in this section.

We use the ≺ relation to determine the level of fault tolerance that should be provided when multiple
classes of faults occur. For instance, if masking fault tolerance is required to f1 and failsafe (respectively,
nonmasking) fault-tolerance is desired to f2, then failsafe (respectively, nonmasking) fault-tolerance should
be provided for the case where f1 and f2 occur simultaneously. However, if nonmasking fault-tolerance is
provided to f1 and failsafe fault-tolerance is provided to f2, then no level of fault-tolerance will be guaranteed
for the case where f1 and f2 occur simultaneously. Figure 1 illustrates the minimum level of fault-tolerance
provided for different combinations of levels of fault-tolerance.
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Figure 1: Minimum level of fault-tolerance (in italic) provided for combinations of two levels of fault-tolerance.

When a program is subject to several classes of faults for which the same level of fault-tolerance is
required, the addition of multitolerance amounts to making the union of all those faults as a single fault-
class and providing the desired level of fault-tolerance for the union. For example, consider the situation
where failsafe fault-tolerance is required for two classes of faults f1 and f2. From the above description,
failsafe fault-tolerance should be provided for the fault class ff = f1∪f2. Likewise, we obtain the fault-class
fn (respectively, fm) for which nonmasking (respectively, masking) fault-tolerance is provided. Therefore,
hereafter, ff (respectively, fn or fm) denotes the union of all classes of faults for which failsafe (respectively,
nonmasking or masking) fault-tolerance is required. We would like to note that while, in this case, we add
fault tolerance to the union of fault-classes, it is feasible to apply the stepwise approach proposed in this
paper to incrementally add fault tolerance to f1 and then to f2 (see Section 5 for details).

Now, given the transitions of a fault-intolerant program, p, its invariant, S, its specification, spec, and a
set of classes of faults ff , fn, and fm, we define what it means for a program p′ (synthesized from p), with
invariant S′, to be multitolerant by considering how p′ behaves when (i) no faults occur, and (ii) either one
of faults ff , fn, and fm occurs. Observe that if faults in ff and fm simultaneously occur in a computation
then safety must be preserved in that computation. In other words, failsafe fault-tolerance must be provided
in cases where faults from ff and/or fm occur. If faults from fm alone occur then masking fault-tolerance
must also be provided. Thus, the set of faults to which masking fault-tolerance is provided is a subset of
the set of faults to which failsafe fault-tolerance is provided. With this intuition, we require that fm ⊆ ff .
Likewise, we require that fm ⊆ fn. Therefore, we define multitolerant programs as follows:
Definition 3.1 Let fm be a subset of fn ∩ ff . Program p′ is multitolerant to ff , fn, and fm from S′ for
spec iff the following conditions hold:

1. p′ satisfies spec from S′ in the absence of faults.
2. p′ is masking fm-tolerant from S′ for spec.
3. p′ is failsafe ff -tolerant from S′ for spec.
4. p′ is nonmasking fn-tolerant from S′ for spec.

For cases where only two types of faults are considered, we assign an appropriate value to the third
fault-class. For example, if only fm and fn (where fm ⊆ fn) are considered then ff is assigned to be equal
to fm. If only ff and fn are considered then fm is assigned to be equal to fn ∩ ff .

Now, using the definition of multitolerant programs, we identify the requirements of the problem of
synthesizing a multitolerant program, p′, from its fault-intolerant version, p. The problem statement is
motivated by the goal of simply adding multitolerance and introducing no new behaviors in the absence of
faults. This problem statement is a natural extension of the problem statement in [6] where fault-tolerance
is added to a single class of faults.

Since we require p′ to behave similar to p in the absence of faults, we stipulate the following conditions:
First, we require S′ to be a non-empty subset of S. Otherwise, there exists a state s ∈ S′ where s /∈ S, and
in the absence of faults, p′ might reach s and perform new computations (i.e., new behaviors) that do not
belong to p. Thus, p′ might include new ways of satisfying spec from s in the absence of faults. Second, we
require (p′|S′) ⊆ (p|S′). If p′|S′ includes a transition that does not belong to p|S′ then p′ can include new
ways for satisfying spec in the absence of faults. Therefore, we define the multitolerance synthesis problem
as follows:

The Multitolerance Synthesis Problem
Given p, S, spec, ff , fn, and fm, identify p′ and S′ such that

S′ ⊆ S,
p′|S′ ⊆ p|S′, and
p′ is multitolerant to ff , fn, and fm from S′ for spec.



We state the corresponding decision problem as follows:

The Multitolerance Decision Problem
Given p, S, spec, ff , fn, and fm:

Does there exist a program p′, with its invariant S′ that satisfy
the requirements of the synthesis problem?

Notations. Given a fault-intolerant program p, specification spec, invariant S and classes of faults ff , fn,
and fm, we say that a program p′ and a predicate S′ solve the (multitolerance) synthesis problem iff p′ and
S′ satisfy the three requirements of the synthesis problem. We say p′ (respectively, S′) solves the synthesis
problem iff there exists S′ (respectively, p′) such that p′, S′ solve the synthesis problem.
Soundness and Completeness. An algorithm A is sound iff for all input instances consisting of a
program p, its invariant S, its specification spec, and classes of faults ff , fn, and fm, if A generates an
output, then its output meets the requirements of the synthesis problem (i.e., solves the multitolerance
synthesis problem). The algorithm A is complete iff when the answer to the multitolerance decision problem
(as defined above) is affirmative, A always finds a multitolerant program p′ with an invariant S′ that solve
the synthesis problem.

4 Impossibility of Stepwise Addition

In this section, we illustrate that, in general, synthesizing multitolerant programs from their fault-intolerant
version is NP-complete. In Section 4.1, we present a polynomial-time mapping between a given instance of
the 3-SAT problem and an instance of the (decision) problem of synthesizing multitolerance for the general
case where failsafe-nonmasking-masking multitolerance is added to a program. Then, in Section 4.2, we
show that the given 3-SAT instance is satisfiable iff the answer to the multitolerance decision problem (see
Section 3) is affirmative; i.e., there exists a multitolerant program synthesized from the instance of the
decision problem of multitolerance synthesis. We then illustrate the NP-completeness of the stepwise design
of failsafe-nonmasking (FN) multitolerance.

4.1 Mapping 3-SAT to Adding Multitolerance

In this section, we present a polynomial-time reduction from any given instance of the 3-SAT problem to
an instance of the decision problem defined in Section 3. A constructed instance of the decision problem of
synthesizing multitolerance consists of the fault-intolerant program, p, its invariant, S, its specification, and
three classes of faults ff , fn, and fm that perturb p. The problem statement for the 3-SAT problem is as
follows:
3-SAT problem.

Given is a set of propositional variables, a1, a2, ..., an, and a Boolean formula c = c1 ∧ c2 ∧ ... ∧ cM , where
each cj is a disjunction of exactly three literals. (A literal is a propositional variable or its negation.)

Does there exist an assignment of truth values to a1, a2, ..., an such that c is satisfiable?

Next, we identify each entity of the instance of the problem of multitolerance synthesis, based on the
given instance of the 3-SAT formula.

The state space and the invariant of the fault-intolerant program, p. The invariant, S, of the
fault-intolerant program, p, includes only one state, say s. Corresponding to the propositional variables
and disjunctions of the given 3-SAT instance, we include additional states outside the invariant. For each
propositional variable ai, we introduce the states xi, x

′
i, yi, vi (see Figure 2). For each disjunction cj =

(ai ∨ ¬ak ∨ ar) (1 ≤ i ≤ n, 1 ≤ k ≤ n, and 1 ≤ r ≤ n), we introduce a state zj outside the invariant
(1 ≤ j ≤ M).

The transitions of the fault-intolerant program. The only transition in p|S is (s, s).
The transitions of fm. The set of fault transitions for which masking fault-tolerance is required can
take the program from s to yi (corresponding to each ai). For each disjunction cj, we also introduce a fault



Program transition

Nonmasking faults

Failsafe faults

Masking faultsfm
ff
fn

Safety−violating transition

Legend:

.

.

.

..
ff fn

s

yi
fm

fm

iv

x’xi i

.zj

Figure 2: The states and the transitions corresponding to the propositional variables in the 3-SAT formula. The
(vi, s) transition violates safety.

transition that perturbs the program from state s to state zj (1 ≤ j ≤ M). Thus, fm is equal to the set of
transitions {(s, yi) : 1 ≤ i ≤ n} ∪ {(s, zj) : 1 ≤ j ≤ M}.

The transitions of ff . The transitions of ff can perturb the program from xi to vi, for 1 ≤ i ≤ n. Given
that failsafe fault-tolerance should also be provided to fm, the class of faults ff would be equal to the set of
transitions fm ∪ {(xi, vi) : 1 ≤ i ≤ n}.

The transitions of fn. The transitions of fn can perturb the program from x′
i to vi. Moreover, recovery

should be provided in the presence of fm, thus fn = fm ∪ {(x′
i, vi) : 1 ≤ i ≤ n}.

The safety specification of the fault-intolerant program, p. None of the fault transitions, namely
ff , fn, and fm identified above violates safety. In addition, for each propositional variable ai (1 ≤ i ≤ n),
the following transitions do not violate safety (see Figure 2):

• (yi, xi), (xi, s), (yi, x
′
i), (x

′
i, s)

For each disjunction cj = ai ∨ ¬ak ∨ ar, the following transitions do not violate safety:
• (zj, xi), (zj , x

′

k), (zj , xr)

The safety specification of the instance of the multitolerance problem forbids the execution of any tran-
sition except those identified above. For example, observe that, in Figure 2, the set of transitions (vi, s), for
1 ≤ i ≤ n, violates safety.

4.2 Reduction From 3-SAT

In this section, we show that the given instance of 3-SAT is satisfiable iff multitolerance can be added to the
problem instance identified in Section 4.1.

Lemma 4.1 If the given 3-SAT formula is satisfiable then there exists a multitolerant program that solves
the instance of the multitolerance synthesis problem identified in Section 4.1.
Proof. Since the 3-SAT formula is satisfiable, there exists an assignment of truth values to the propositional
variables ai, 1 ≤ i ≤ n, such that each cj, 1 ≤ j ≤ M , is true. Now, we identify a multitolerant program,
p′, that is obtained by adding multitolerance to the fault-intolerant program p identified in Section 4.1. The
invariant of p′ is the same as the invariant of p (i.e., {s}). We derive the transitions of the multitolerant
program p′ as follows. (We illustrate a partial structure of p′ where ai = true, ak = false, and ar = true
(1 ≤ i, k, r ≤ n) in Figure 3.)

• For each propositional variable ai, 1 ≤ i ≤ n, if ai is true then we include the transitions (yi, xi) and
(xi, s). Moreover, for each disjunction cj that includes ai, we include the transition (zj , xi). Thus,
in the presence of fm alone, p′ guarantees recovery to s through xi while preserving safety; i.e., safe
recovery to invariant.

• For each propositional variable ai, 1 ≤ i ≤ n, if ai is false then we include (yi, x
′
i) and (x′

i, s) to provide
safe recovery to the invariant. Moreover, corresponding to each disjunction cj that includes ¬ai, we
include transition (zj , x

′
i). In this case, since state vi can be reached from x′

i by faults fn, we include
transition (vi, s) so that in the presence of fn program p′ recovers to s.
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Figure 3: The partial structure of the multitolerant program where ai = true, ak = false and ar = true. For failsafe
ff -tolerance, the deadlock states vi and vr are permitted as they are reachable only in computations of p[]ff .

Now, we show that p′ is multitolerant in the presence of faults ff , fn, and fm.

• p′ in the absence of faults. p′|S = p|S. Thus, p′ satisfies spec in the absence of faults.

• Masking fm-tolerance. If the faults from fm occur then the program can be perturbed to (1) yi,
1≤ i≤n, or (2) zj, 1≤ j≤M . In the first case, if ai is true then there exists exactly one sequence of
transitions, 〈(yi, xi), (xi, s)〉, in p′[]fm. Thus, any computation of p′[]fm eventually reaches a state in
the invariant while preserving safety. If ai is false then there exists exactly one sequence of transitions,
〈(yi, x

′
i), (x

′
i, s)〉, in p′[]fm. By the same argument, any computation of p′[]fm reaches a state in the

invariant without violating safety.

In the second case, since cj evaluates to true, one of the literals in cj evaluates to true. Thus, there
exists at least one transition from zj to some state xk (respectively, x′

k) where ak (respectively, ¬ak) is
a literal in cj and ak (respectively, ¬ak) evaluates to true. Moreover, the transition (zj, xk) is included
in p′ iff ak evaluates to true. Thus, (zj , xk) is included in p′ iff (xk, s) is included in p′. Since from xk

(respectively, x′
k), there exists no other transition in p′[]fm except (xk, s) (respectively, (x′

k, s)), every
computation of p′ reaches the invariant without violating safety. Thus, p′ is masking fm-tolerant.

• Failsafe ff -tolerance. Based on the case considered above, if only faults from fm occur then the
program is also failsafe fault-tolerant. Hence, we consider only the case where at least one fault from
ff−fm has occurred. Faults in ff −fm occur only in state xi, 1≤ i≤n. p′ reaches xi iff ai is assigned
true in the satisfaction of the given 3-SAT formula. Moreover, if ai is true then there is no transition
from vi. Thus, after a fault transition of ff−fm occurs p′ simply stops. Note that a failsafe program
is allowed to halt outside its invariant without violating safety. Therefore, p′ is failsafe ff -tolerant.

• Nonmasking fn-tolerance. Consider the case where at least one fault transition of fn−fm has
occurred. Faults in fn−fm occur only in state x′

i, 1 ≤ i ≤ n. p′ reaches x′
i iff ai is assigned false in

the satisfaction of the given 3-SAT formula. Moreover, if ai is false then the only transition from vi is
(vi, s). Thus, in the presence of fn, p′ recovers to {s}.

Lemma 4.2 If there exists a multitolerant program that solves the instance of the synthesis problem
identified in Section 4.1 then the given 3-SAT formula is satisfiable.

Proof. Suppose that there exists a multitolerant program p′ derived from the fault-intolerant program,
p, identified in Section 4.1. Since the invariant of p′, S′, is non-empty, S = {s} and S′ ⊆ S, S′ must include
state s. Thus, S′ = S. Since each yi, 1 ≤ i ≤ n, is directly reachable from s by a fault from fm, p′ must
provide safe recovery from yi to s. Thus, p′ must include either (yi, xi) or (yi, x

′
i). We make the following

truth assignment as follows: If p′ includes (yi, xi) then we assign ai to be true. If p′ includes (yi, x
′
i) then we



assign ai to be false. This way, each propositional variable in the 3-SAT formula will get at least one truth
assignment. Now, we show that the truth assignment to each propositional variable is consistent and that
each disjunction in the 3-SAT formula evaluates to true.

• Each propositional variable gets a unique truth assignment. Suppose that there exists a propositional
variable ai, which is assigned both true and false, i.e., both (yi, xi) and (yi, x

′
i) are included in p′. Now,

vi can be reached by the following transitions (s, yi), (yi, x
′
i), and (x′

i, vi). In this case, faults from fm

and fn have occurred. Hence, p′ must at least provide recovery from vi to invariant. Moreover, vi can
be reached by the following transitions (s, yi), (yi, xi), and (xi, vi). In this case, faults from fm and ff

have occurred. Hence, p′ must ensure safety. Since it is impossible to provide safe recovery from vi to
s, the propositional variable ai must be assigned only one truth value.

• Each disjunction is true. Let cj = ai ∨ ¬ak ∨ ar be a disjunction in the given 3-SAT formula. Note
that state zj can be reached by the occurrence of fm from s. Thus, p′ must provide safe recovery from
zj. Since the only safe transitions from zj are those corresponding to states xi, x′

k and xr , p′ must
include at least one of the transitions (zj, xi), (zj , x

′
k), or (zj , xr).

Now, we show that the transition included from zj is consistent with the truth assignment of proposi-
tional variables. Consider the case where p′ contains transition (zj , xi). Thus, p′ can reach xi in the
presence of fm alone. Moreover, let ai be false. Then p′ contains the transition (yi, x

′
i). Thus, x′

i can
also be reached by the occurrence of fm alone. Based on the above proof for unique assignment of
truth values to propositional variables, p′ cannot reach xi and x′

i in the presence of fm alone. Hence,
if (zj, xi) is included in p′ then ai must have been assigned the truth value true; i.e., cj becomes true.
Likewise, if (zj , x

′

k) is included in p′ then ak must be assigned false. Thus, each disjunction evaluates
to true.

Theorem 4.3 The problem of synthesizing multitolerant programs from their fault-intolerant versions is
NP-complete.
Proof. Based on Lemmas 4.1 and 4.2, the NP-hardness of the multitolerance synthesis problem follows.
We have omitted the proof of NP membership since it is straightforward. (see Appendix B for the proof of
NP membership).
NP-completeness of failsafe-nonmasking (FN) multitolerance. In order to illustrate the NP-
completeness of FN multitolerance, we extend the NP-completeness proof of synthesizing multitolerance
in that we replace the fm fault transition (s, yi) with a sequence of transitions of ff and fn as shown in Fig-
ure 4. Likewise, we replace fault transition (s, zj) with a structure similar to Figure 4. Thus, yi (respectively,
zi) is reachable by ff faults alone and by fn faults alone. As a result, vi is reachable in the computations of
p′[]ff and in the computations of p′[]fn. Thus, to add multitolerance, safe recovery must be added from vi

to s (see Figure 2). Now, we note that with this mapping, the proofs of Lemmas 4.1 and 4.2, and Theorem
4.3 can be easily extended to show that synthesizing FN multitolerance is NP-complete.

Theorem 4.4. The problem of synthesizing failsafe-nonmasking multitolerant programs from their fault-
intolerant version is NP-complete.
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Figure 4: A proof sketch for NP-completeness of synthesizing failsafe-nonmasking multitolerance.



5 Feasibility of Stepwise Addition

While, in Section 4, we illustrate that the general case problem of synthesizing multitolerant programs is NP-
complete, in our previous work [14], we have presented sound and complete polynomial algorithms for two
special cases, namely, nonmasking-masking (NM) multitolerance and failsafe-masking (FM) multitolerance,
where we add nonmasking (respectively, failsafe) fault-tolerance to one fault-class and masking fault-tolerance
to another class of faults. Our algorithms in [14] for the addition of FM and NM multitolerance use the
existing algorithms (presented by Kulkarni and Arora [6]) for the addition of fault tolerance to a single class
of faults. While our algorithms in [14] are deterministically sound and complete, there are two problems
with the use of these algorithms in practice. First, these are white-box algorithms in that designers should
have knowledge about the internal working of the algorithms in [6]. Second, the algorithms in [14] cannot
be used in a stepwise fashion. For instance, in the design of FM multitolerance, consider the case where
only the class of faults ff is known in early stages of development. As such, we can synthesize a failsafe
ff -tolerant program p1. Now, if we perform some correctness-preserving maintenance or quality-of-service
(e.g., performance) improvements on p1, then, upon detecting the class of faults fm (for which masking fault
tolerance is required), it is desirable to reuse p1 in the design of the FM multitolerant program instead of
the original intolerant program. To address this problem, in this section, we present a stepwise approach
in which we reuse the algorithms in [6] as black boxes. First, in Section 5.1, we represent the properties
of the algorithms presented in [6]. Then, in Sections 5.2 and 5.3, we respectively investigate the stepwise
addition of NM and FM multitolerance. Finally, in Section 5.4, we present some sufficient conditions for
polynomial-time addition of FN multitolerance.

5.1 Addition of Fault-Tolerance to One Fault-Class

In the synthesis of multitolerant programs, we reuse algorithms Add Failsafe, Add Nonmasking, and
Add Masking, presented by Kulkarni and Arora [6]. These algorithms take a program p, its invariant S,
its specification spec, a class of faults f , and synthesize a failsafe/nonmasking/masking f -tolerant program
p′ (if one exists) with a new invariant S′ and an f -span T ′. The synthesized program p′ and its invariant
S′ satisfy the following requirements: (1) S′ ⊆ S; (2) p′|S′ ⊆ p|S′, and (3) p′ is failsafe/nonmasking/masking
f -tolerant from S′ for spec. The Add Failsafe algorithm removes offending states in S and offending transi-
tions in p|S, where from an offending state a sequence of fault transitions alone may violate safety of spec.
An offending transition either violates safety of spec or reaches an offending state. Add Failsafe ensures
that (1) no deadlock states are created in S′, and (2) p′|T ′ does not include any offending transitions. In
addition to removing offending states/transitions, the Add Masking algorithm adds new recovery transitions
from (T ′−S′) to S′ while preserving the safety of spec. The Add Nonmasking algorithm only adds recovery
transitions to the invariant. In this section, we recall the relevant properties of these algorithms. While we
reiterate these algorithms in Appendix A, we note that the description of the multitolerance algorithms and
their proofs depend only on the properties mentioned in this section and not on the actual implementation
of the algorithms in [6].

For Add Failsafe and Add Masking, the invariant S′ has the property of being the largest such possible
invariant for any failsafe (respectively, masking) program obtained by adding fault-tolerance to the given
fault-intolerant program. More precisely, if there exists a failsafe (respectively, masking) fault-tolerant
program p′′, with invariant S′′ that satisfies S′′ ⊆ S, p′′|S′′ ⊆ p|S′′, and p′′ is failsafe (respectively, masking)
f -tolerant from S′′ for spec, then S′′ ⊆ S′. Moreover, if the invariant S does not include any offending
states, then Add Failsafe will not change the invariant of the fault-intolerant program. Now, let the input
for Add Failsafe be p, S, spec and f . Let the output of Add Failsafe be the fault-tolerant program p′ and
invariant S′. We state the following properties:
Property 5.1.1 If any program p′′ with invariant S′′ satisfies (i) S′′ ⊆ S; (ii) p′′|S′′ ⊆ p|S′′, and (iii) p′′ is
failsafe f -tolerant from S′′ for spec, then S′′ ⊆ S′.
Property 5.1.2 If there exist no offending states in S, then S′=S and p′|S′ = p|S′.

Likewise, the f -span of the masking f -tolerant program, say T ′, synthesized by the algorithm Add Masking
is the largest possible f -span for a masking program synthesized from p. Thus, we state the following
properties:



Property 5.1.3 Let the input for Add Masking be p, S, spec and f . Let the output of Add Masking be the
fault-tolerant program p′, invariant S′ ⊆ S, and fault-span T ′. If any program p′′ with invariant S′′ satisfies
(i) S′′ ⊆ S; (ii) p′′|S′′ ⊆ p|S′′, (iii) p′′ is masking f -tolerant from S′′ for spec, and (iv) T ′′ is the fault-span
used for verifying the masking fault-tolerance of p′′ then S′′ ⊆ S′ and T ′′ ⊆ T ′.
Property 5.1.4 Let the input for Add Masking be p, S, spec and f and T be the set of states reachable by
computations of p[]f . Let the output of Add Masking be fault-tolerant program p′, invariant S′ ⊆ S, and
fault-span T ′. If there exist some offending states in T , then T ′ does not include such states, and as a result,
T ′ is a proper subset of T (i.e., T ′ ⊂ T ).

The algorithm Add Nonmasking only adds recovery transitions from states outside the invariant S to S.
Thus, we have the following properties:
Property 5.1.5 Add Nonmasking does not add/remove any state to/from S.
Property 5.1.6 Add Nonmasking does not add/remove any transition to/from p|S.

Based on the Properties 5.1.1– 5.1.6, Kulkarni and Arora [6] show that the algorithms Add Failsafe,
Add Nonmasking, and Add Masking are sound and complete, i.e., the output of these algorithms satisfies the
three requirements (mentioned in the beginning of this section) for adding fault-tolerance to a single class
of faults and these algorithms can find a fault-tolerant version of the fault-intolerant program if one exists.

Theorem 5.1.7 The algorithms Add Failsafe, Add Nonmasking, and Add Masking are sound and complete.
(see [6] for proof.)

5.2 Nonmasking-Masking (NM) Multitolerance

In this section, we present a sound and complete algorithm (see Figure 5) for stepwise design of NM multitol-
erant programs from their fault-intolerant versions that are subject to two classes of faults fn and fm, where
fm ⊆ fn. Formally, given a program p, with its invariant S, its specification spec, our goal is to synthesize a
program p′, with invariant S′ that is NM multitolerant to fn and fm from S′ for spec. By definition, p′ must
be masking fm-tolerant and nonmasking fn-tolerant. Towards this end, we proceed as follows: Using the
algorithm Add Masking, we synthesize a masking fm-tolerant program p1, with invariant S1, and fault-span
Tm (Line 1 in Figure 5). Now, since program p1 is masking fm-tolerant, it provides safe recovery to its
invariant, S1, from every state in (Tm−S1). Thus, in the presence of fn, if p1 is perturbed to (Tm−S1) then
p1 will satisfy the requirements of nonmasking fault-tolerance (i.e., recovery to S1). However, if fn perturbs
p1 to a state s, where s /∈ Tm, then recovery must be added from s. Based on Properties 5.1.5 and 5.1.6,
it suffices to add recovery to Tm as provided recovery by p1 from Tm to S1 can be reused even after adding
nonmasking fault-tolerance. We invoke Add Nonmasking (Line 3 in Figure 5) with Tm as an invariant of p1.

Add Masking Nonmasking(p: transitions, fn, fm: fault,
S: state predicate, spec: safety specification)

{
p1, S1, Tm := Add Masking(p, fm, S, spec); (1)
if (S1 ={}) declare no multitolerant program p′ exists; (2)

return ∅, ∅;
p′, S′, T ′ := Add Nonmasking(p1, fn, Tm, spec); (3)
return p′, S′; (4)

}

Figure 5: Stepwise addition of NM multitolerance.

Theorem 5.2.1 The Add Masking Nonmasking algorithm is sound.
Proof. Based on the soundness of Add Masking (see Theorem 5.1.7), we have S1 ⊆ S. The equality
S1 = S′ follows from the Property 5.1.5. Also, using the soundness of Add Masking, we have p1|S1 ⊆ p|S1

(i.e., p1|S′ ⊆ p|S′). In addition, based on the Property 5.1.6, we have p1|S′ = p′|S′. As a result, we have
p′|S′ ⊆ p|S′.

Now, we show that p′ is multitolerant to fn and fm from S′ for spec:



1. Absence of faults. From the soundness of Add Masking, it follows that p1 satisfies spec from S1

(= S′) in the absence of faults. Add Nonmasking does not add/remove any transitions to/from p1|S′

(Property 5.1.6). Thus, it follows that p′ satisfies spec from S′.

2. Masking fm-tolerance. From the soundness of Add Masking, p1 is masking fm-tolerant from S1(=
S′) for spec. Also, based on the Property 5.1.5 and 5.1.6, since p1|Tm = p′|Tm, Add Nonmasking
preserves masking fm-tolerance property of p1. Therefore, p′ is masking fm-tolerant from S′ for spec.

3. Nonmasking fn-tolerance. From the soundness of Add Nonmasking, we know that p′ is nonmasking
fn-tolerant from Tm for spec. Also, since Add Nonmasking preserves masking fm-tolerance property of
p1, recovery from Tm to S′ is guaranteed in the presence of fn. Therefore, p′ is nonmasking fn-tolerant
from S′ for spec.

Theorem 5.2.2. The algorithm Add Masking Nonmasking is complete.
Proof. Add Masking Nonmasking declares that a multitolerant program does not exist only
when Add Masking does not find a masking fm-tolerant program. Therefore, the completeness of
Add Masking Nonmasking follows from the completeness of Add Masking.

The reader may question what would have happened if nonmasking fn-tolerance and masking fm-
tolerance had been added in a reverse order. One scenario for such a requirement is the case where fm is
unknown at the early stages of design, and we first reuse the algorithm Add Nonmasking (Line 1 in Figure 6)
to synthesize a program p1 that is nonmasking fn-tolerant from S1 for spec. Before detecting fm, we may per-
form some correctness-preserving revisions (e.g., for performance enhancement) on p1. Now, upon detecting
fm, it is desirable to add masking fm-tolerance to p1 instead of the original fault-intolerant program p. Note
that the recovery provided by p1 may not guarantee safety. Hence, we apply the Add Masking Nonmasking
algorithm to p1 (Line 2 in Figure 6) to synthesize a NM multitolerant program. Notice that invoking
Add Masking instead of Add Masking Nonmasking may destroy the nonmasking property of p1. Moreover,
while the algorithm in Figure 6 may seem simple, it illustrates the potential of our stepwise addition method
in building new aggregate algorithms from simpler addition algorithms.

Add Nonmasking Masking(p: transitions, fn, fm: fault,
S: state predicate, spec: safety specification)

{
p1, S1, Tn := Add Nonmasking(p, fn, S, spec); (1)
return Add Masking Nonmasking(p1, fn, fm, S1, spec); (2)

}

Figure 6: Stepwise addition of NM multitolerance in the reverse order.

Theorem 5.2.3 The Add Nonmasking Masking algorithm is sound and complete.

5.3 Failsafe-Masking (FM) Multitolerance

In this section, we investigate the stepwise addition of Failsafe-Masking (FM) multitolerance to high atomicity
programs that tolerate two classes of faults ff and fm for which failsafe and masking fault-tolerance are
respectively required, where fm ⊆ ff . We start by reusing the Add Failsafe algorithm (Line 1 in Figure 7),
where we add failsafe ff -tolerance to p. The resulting program p1 provides failsafe ff -tolerance from its
invariant S1. To add masking fm-tolerance to p1, we use the Add Masking algorithm. Based on Property
5.1.4, Add Masking ensures that Tm does not include any state from where a sequence of fm transitions
alone violates safety. However, since fm ⊆ ff , in the addition of masking fm-tolerance to p1, the fault-span
of the resulting program may include states from where transitions of ff −fm alone violate safety. Even
though such states do not belong to T1, we need to ensure that during the addition of masking fm-tolerance
(Line 4 in Figure 7) they are not included in the fault-span Tm. Towards this end, we strengthen the safety
specification (Line 3 in Figure 7), denoted spec′, by including the transitions that reach outside T1. Finally,
we invoke the Add Masking algorithm to add masking fm-tolerance to p1 from S1 for spec′.



Add Failsafe Masking(p: transitions, ff , fm: fault, S: state predicate, spec: safety specification)
{

p1, S1, T1 := Add Failsafe(p, ff , S, spec); (1)
if (S1 ={}) declare no multitolerant program p′ exists; (2)

return ∅, ∅;
spec′ := spec ∪ {(s0, s1) : s0 ∈ T1 ∧ s1 6∈ T1}; (3)
p′, S′, Tm := Add Masking(p1, fm, S1, spec′); (4)
if (S′={}) declare no multitolerant program p′ exists; (5)

return ∅, ∅;
return p′, S′; (6)

}

Figure 7: Stepwise addition of FM multitolerance.

Theorem 5.3.1. The Add Failsafe Masking algorithm is sound.
Proof. Using the soundness of Add Failsafe, we have S1 ⊆ S. Based on the Property 5.1.3, we have S′ ⊆ S1.
Also, from the soundness of Add Failsafe, it follows that p1|S1 ⊆ p|S1. Since S′ ⊆ S1 and p1|S1 ⊆ p|S1, we
have p1|S

′ ⊆ p|S′. From the soundness of Add Masking, it follows that p′|S′ ⊆ p1|S
′. Therefore, we have

p′|S′ ⊆ p|S′.
Now, we show that p′ (see Figure 7) is indeed multitolerant to ff and fm from S′ for spec.

1. Absence of faults. From the soundness of Add Failsafe, it follows that p1 satisfies spec from S1 in
the absence of faults. Also, based on the soundness of Add Masking, p′ satisfies spec′ from S′ in the
absence of faults. Since spec′ is a strengthened version of spec (i.e., the set of bad transitions ruled
out by spec is a subset of the set of bad transitions ruled out by spec′), it follows that p′ satisfies spec
from S′ in the absence of faults.

2. Failsafe ff -tolerance. From the soundness of Add Failsafe, p1 is failsafe ff -tolerant from S1 for
spec. Thus, no computation of p1 violates safety of specification from T1 (respectively, from S1). Also,
based on the soundness of Add Masking, p′ does not execute any transitions that violate spec′; i.e.,
no state outside T1 becomes reachable due to the addition of masking fm-tolerance. Since S′ ⊆ S1,
no computation of p′ will ever violate spec in the presence of ff from S′. Therefore, p′ is failsafe
ff -tolerant from S′ for spec.

3. Masking fm-tolerance. The soundness of Add Masking guarantees that p′ is masking fm-tolerant
from S′ for spec′. Since spec′ is a strengthened version of spec, it follows that p′ is masking fm-tolerant
from S′ for spec.

Theorem 5.3.2. The Add Failsafe Masking algorithm is complete.
Proof. If there exists a program p′′, with invariant S′′, and fault-span T ′′ that is multitolerant to ff and fm

then p′′ must be failsafe ff -tolerant from S′′ for spec. Our algorithm declares failure only if there is no such
failsafe program synthesized from p (due to the completeness of Add Failsafe). Also, since p′′ is multitolerant,
it must provide masking fm-tolerance from S′′ in the presence of fm faults. Since our algorithm declares
failure only if no program can be synthesized from p that meets both the requirements of failsafe ff -tolerance
and masking fm-tolerance, it follows that Add Failsafe Masking is complete.

Now, we pose the following question: Is the stepwise design of FM multitolerance possible if masking
fm-tolerance is added to p before the addition of failsafe ff -tolerance? To address this question, we present
the Add Masking Failsafe algorithm (see Figure 8)

The Add Masking Failsafe algorithm first adds masking fm-tolerance to p (Line 1 in Figure 8) using
the Add Masking algorithm. If such an addition of masking fm-tolerance succeeds, then we reuse our



Add Masking Failsafe(p: transitions, ff , fm: fault, S: state predicate, spec: safety specification)
{

p1, S1, T1 := Add Masking(p, fm, S, spec); (1)
if (S1 ={}) declare no multitolerant program p′ exists; (2)

return ∅, ∅;
return Add Failsafe Masking(p1, ff , fm, S1, spec); (3)

}

Figure 8: Stepwise addition of FM multitolerance in the reverse order.

Add Failsafe Masking algorithm to generate a FM multitolerant program.

Theorem 5.3.3. The Add Masking Failsafe algorithm is sound and complete. (Proof is straightforward,
hence omitted.)

We emphasize that while the algorithms for adding NM and FM multitolerance combine existing algo-
rithms, the use of our algorithms ensures that the decisions taken in adding fault-tolerance to the known
classes of faults will not adversely affect the ability to tolerate other classes of faults. Our stepwise approach
is also applicable for the case where the same level of fault tolerance is required against two different classes
of faults f1 and f2. To the best of our knowledge, the algorithms in Sections 5.2 and 5.3 are the first
deterministically sound and complete algorithms for stepwise addition of multitolerance.

5.4 Sufficient Conditions for Polynomial-Time Addition of Failsafe-Nonmasking

In order to deal with the exponential complexity of adding failsafe-nonmasking (FN) multitolerance, we pose
the following questions: Under what conditions the addition of FN multitolerance can be done in polynomial
time? In other words, what conditions should be imposed on faults, specifications, and programs so that adding
FN multitolerance could be done in polynomial time? The NP-completeness of adding FN multitolerance
(see Theorem 4.4) is due to the following issues: (i) the existence of states outside the invariant that are
reachable in the presence of ff alone and in the presence of fn alone, and (ii) the impossibility of adding
safe recovery from such states.1

Let p be a program with its invariant S, its specification spec, and classes of faults ff and fn for which
we respectively require failsafe ff -tolerance and nonmasking fn-tolerance. Moreover, let (i) Tf be the set
of states reachable by the computations of p[]ff from S, and (ii) Tn be the set of states reachable by the
computations of p[]fn from S. Further, let the specification spec be fault-safe for faults ff , where fault-safe
specifications identify a class of specifications that are not directly violated by fault transitions.
Definition 5.4.1 A specification spec is fault-safe for faults f (denoted f -safe) iff the following condition
is satisfied.

∀s0, s1 :: ((s0, s1) ∈ f ∧ (s0, s1) violates spec) ⇒ (∀s−1 :: (s−1, s0) violates spec)

We have adopted the definition of fault-safe specifications from [15]. The examples of fault-safe specifi-
cations include important problems such as Byzantine agreement, consensus and commit (see [15]). If the
specification spec is ff -safe then no sequence of ff transitions alone will violate the safety of spec from S.
As a result, the invariant of the multitolerant program, S′, will be equal to S (see Property 5.1.2). If the
set of states that are reachable outside the invariant in the computations of p[]ff is disjoint from the set of
states that are reachable in the computations of p[]fn then the program p can distinguish the occurrence of
ff from the occurrence of fn by respectively detecting the state predicates (Tf −S) and (Tn−S). Thus, in
order to guarantee FN multitolerance, program p should guarantee (i) recovery to S if p detects that fault
fn has occurred, and (ii) safety if p detects that fault ff has occurred.
Definition 5.4.2 We say ff and fn are mutually exclusive with respect to program p and its invariant S if
and only if ((Tf−S) ∩ (Tn−S)) = ∅.

1Without loss of generality, in this section, we concentrate on the cases where ff ∩ fn = ∅; i.e., if ff ∩ fn 6= ∅ and adding

safe recovery against ff ∩ fn is possible, then two disjoint classes of faults can easily be drawn using the symmetric difference

of ff and fn.



Next, we present the Add Failsafe Nonmasking algorithm (see Figure 9) that adds FN multitolerance to
p in polynomial time if (i) faults ff and fn are mutually exclusive with respect to p and its invariant S, and
(ii) the specification spec is ff -safe.

Add Failsafe Nonmasking(p: transitions, ff , fn: fault,
S: state predicate, spec: safety specification)

{
p1, S1, Tf := Add Failsafe(p, ff , S, spec);
p′, S′, Tn := Add Nonmasking(p1, fn, S1, spec);
return p′, S′;

}

Figure 9: Synthesizing failsafe-nonmasking multitolerance for mutually exclusive faults.

The algorithm Add Failsafe Nonmasking reuses the Add Failsafe algorithm from [6] to add failsafe ff -
tolerance to p. Thus, program p1 is failsafe ff -tolerant for spec from S1. Since spec is ff -safe, Add Failsafe
does not remove any states from S, and as a result, S1 = S. For this reason, this step of the algorithm is
always successful; i.e., Add Failsafe always finds a failsafe ff -tolerant program. In the next step, we reuse
the Add Nonmasking algorithm from [6] to add nonmasking fn-tolerance to p1.

Theorem 5.4.4. If ff and fn are mutually exclusive and spec is ff -safe then the algorithm
Add Failsafe Nonmasking is sound.
Proof. Since spec is ff -safe, based on the Properties 5.1.2 and 5.1.6, Add Failsafe and Add Nonmasking
do not add/remove any states (respectively, transitions) to/from S (respectively, p|S). Hence, we have
S1 = S = S′ and p1|S1 = p′|S′ = p|S′. Now, we show that p′ is multitolerant to ff and fn from S′ for spec:

1. Absence of faults. Since the equalities S = S′ and p′|S′ = p|S hold, it follows that every computation
of p′ starting in S′ is a computation of p. Thus, p′ satisfies spec from S′.

2. Failsafe ff -tolerance. From the soundness of Add Failsafe, p1 is failsafe ff -tolerant from S1 for
spec. Since S′ = S1, p1 is failsafe ff -tolerant from S′ for spec. Based on the Properties 5.1.5 and 5.1.6,
Add Nonmasking does not add (respectively, remove) any transition in p1|S. Also, since (Tf −S) and
(Tn−S) are disjoint (by mutual exclusivity of ff and fn), Add Nonmasking does not add any transitions
to p1|(Tf −S). Hence, we have p1|Tf = p′|Tf . Therefore, in the presence of ff , p′ will never execute a
safety violating transition, and as a result, p′ is failsafe ff -tolerant from S′ for spec.

3. Nonmasking fn-tolerance. Since S′ = S and recovery is provided from (Tn −S) to S, p′ is
nonmasking fn-tolerant from S′ for spec.

Theorem 5.4.5. The algorithm Add Failsafe Nonmasking has polynomial-time complexity.

6 Examples

In this section, we present two examples for stepwise addition of multitolerance. First, in Section 6.1, we
present a failsafe-nonmasking-masking multitolerant token ring program that is subject to three classes of
faults. Second, in Section 6.2, we present a nonmasking-masking repetitive Byzantine agreement protocol.
(The Promela [16] model of the intermediate and final multitolerant programs of these examples are available
in Appendixes C and D.)

6.1 Multitolerant Token Passing

In this section, we demonstrate how our stepwise algorithms facilitate the addition of multitolerance to a
token ring program that is subject to three classes of faults.



The Two-Ring Token Passing (TRTP) program. The TRTP program includes 8 processes located in
two rings A and B (see Figure 10). In Figure 10, the arrows show the direction of token passing. Process PAi

(respectively, PBi), 0 ≤ i ≤ 2, is the predecessor of PAi+1 (respectively, PBi+1). Process PA3 (respectively,
PB3) is the predecessor of PA0 (respectively, PB0). Each process PAi (respectively, PBi), 0 ≤ i ≤ 3, has
an integer variable ai (respectively, bi) with the domain {-1, 0, 1, 2, 3}, where -1 represents a detectably
corrupted value. Moreover, process PAi (respectively, PBi), 0 ≤ i ≤ 3, has a Boolean variable, denoted upai

(respectively, upbi), that represents whether or not that process has crashed.
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Figure 10: The two-ring token passing program.

Process PAi, for 1 ≤ i ≤ 3, has the token iff (ai−1 = ai ⊕ 1) ∧ upai ∧ (ai−1 6= −1) ∧ (ai 6= −1), where ⊕
denotes addition modulo 4. Intuitively, PAi has the token iff ai is one unit less ai−1, PAi has not crashed,
and ai and ai−1 are not detectably corrupted. Process PA0 has the token iff (a0 = a3) ∧ (b0 = b3) ∧ (a0 =
b0) ∧ upa0 ∧ (a0 6= −1) ∧ (a3 6= −1); i.e., PA0 has the same value as its predecessor and that value is
equal to the values held by PB0 and PB3, PA0 has not crashed and a0 and a3 are not corrupted. Process
PB0 has the token iff (b0 = b3) ∧ (a0 = a3) ∧ ((b0 ⊕ 1) = a0) ∧ upb0 ∧ (b0 6= −1) ∧ (b3 6= −1). That is,
PB0 has the same value as its predecessor and that value is one unit less than the values held by PA0 and
PA3, PB0 has not crashed and b0 and b3 are not corrupted. Process PBi (1 ≤ i ≤ 3) has the token iff
(bi−1 = bi ⊕ 1) ∧ upbi ∧ (bi−1 6= −1) ∧ (bi 6= −1). The TRTP program also has a Boolean variable turn;
ring A executes only if turn = true, and if ring B executes then turn = false. We use Dijkstra’s guarded
commands language [17] as a shorthand for representing the set of program transitions. A guarded command
(action) is of the form grd → stmt, where grd is a state predicate and stmt is a statement that updates
program variables. The guarded command grd → stmt includes all program transitions {(s0, s1) : grd holds
at s0 and the atomic execution of stmt at s0 takes the program to state s1}. Using the following actions,
the processes circulate the token in rings A and B (i = 1, 2, 3):

AC0 : (a0 = a3) ∧ turn −→ if (a0 = b0) a0 := a3 ⊕ 1;
else turn := false;

ACi : (ai−1 = ai ⊕ 1) −→ ai := ai−1;

Notice that the action ACi is a parameterized action for processes PA1, PA2 and PA3. The actions of
the processes in ring B are as follows (i = 1, 2, 3):

BC0 : (b0 = b3) ∧ ¬turn −→ if (a0 6= b0) b0 := b3 ⊕ 1;
else turn := true;

BCi : (bi−1 = bi ⊕ 1) −→ bi := bi−1;

Invariant. Consider a state s where (∀i : 0 ≤ i ≤ 3 : (ai = 0) ∧ (bi = 0)) and turn holds in s. The
invariant of the TRTP program contains all the states that are reached from s by the execution of actions
ACi and BCi, for 0 ≤ i ≤ 3. Let v(s) denotes the value of a variable v in s. Starting from a state s0 where
(turn(s0) = true) ∧ (∀i : 0 ≤ i ≤ 3 : (ai(s0) = 0) ∧ (bi(s0) = 0)), process PA0 has the token and starts
circulating the token until the program reaches the state s1, where (turn(s1) = false) ∧ (∀i : 0 ≤ i ≤ 3 :
(ai(s1) = 1) ∧ (bi(s1) = 0)); i.e., PB0 has the token. Process PB0 circulates the token until the program
reaches a state s2, where (turn(s2) = true)∧ (∀i : 0 ≤ i ≤ 3 : (ai(s2) = 1)∧ (bi(s2) = 1)), process PA0 again
has the token. This way the token circulation continues in both rings. The invariant ITRTP = Iup ∧ IA ∧ IB

includes all states satisfying the following conditions:



Iup = ∀i : 0 ≤ i ≤ 3 : (upai ∧ upbi ∧ (ai 6= −1) ∧ (bi 6= −1))

IA = (∀i : 0 ≤ i ≤ 3 : ai = ai⊕1) ∨ ((turn = true) ∧ (∃j : 1 ≤ j ≤ 3 : (aj−1 = aj ⊕ 1) ∧
(∀k : 0 ≤ k < j − 1 : ak = ak+1) ∧ (∀k : j ≤ k < 3 : ak = ak+1))

IB = (∀i : 0 ≤ i ≤ 3 : bi = bi⊕1) ∨ ((turn = false) ∧ (∃j : 1 ≤ j ≤ 3 : (bj−1 = bj ⊕ 1) ∧
(∀k : 0 ≤ k < j − 1 : bk = bk+1) ∧ (∀k : j ≤ k < 3 : bk = bk+1))

The predicate Iup represents the set of states where no process has crashed and no variable is corrupted.
The states where either all a (respectively, b) values are equal or it is the turn of ring A (respectively, B)
and there is only one token in ring A (respectively, B) belong to the predicate IA (respectively, IB).
Safety specification. The safety specification of TRTP stipulates that in each state at most one token
exists. This requirement could be due to some practical constraints where, for example, TRTP is used as
an underlying protocol for assuring mutual exclusion and the process that has the token is allowed to access
a shared resource. Additionally, no non-faulty process is allowed to copy the value of its detectably faulty
predecessor.
Read/write constraints. While in the model represented in Section 2, each process can read/write all
program variables in an atomic step, we consider the TRTP example under certain read/write constraints
(imposed on processes with respect to the variables of other processes) in order to illustrate the applicability
of our approach in the design of multitolerant programs in more concrete models. Specifically, process PAi

(respectively, PBi), 1 ≤ i ≤ 3, is allowed to read the state of its predecessor and write only ai (respectively,
bi). Process PA0 (respectively, PB0) can read the state of its predecessor, PB0 and PB3 (respectively, PA0

and PA3) and turn. Process PA0 (respectively, PB0) is permitted to write only a0 (respectively, b0) and
turn.
Faults fm The class of faults fm may detectably corrupt the state of only one process (i.e., set its value to
-1) in one of the rings if no process is corrupted. Such faults may represent cases where a process fails and
restarts.

FM: (∀j : 0 ≤ j ≤ 3 : (aj 6= −1) ∧ (bj 6= −1))
−→ a0 := −1 | a1 := −1 | a2 := −1 | a3 := −1 |

b0 := −1 | b1 := −1 | b2 := −1 | b3 := −1;

The notation | represents the non-deterministic execution of only one of the assignments separated by |.
Faults ff In addition to corrupting the state of only one process in a specific ring (by the action FM), this
class of faults may also cause a process to crash in a detectable manner; i.e., set its up value to false. In
addition to the action FM, the fault ff includes the following action:

FF: (∀j : 0 ≤ j ≤ 3 : (upaj ∧ upbj))
−→ upa0 := false | upa1 := false | upa2 := false | upa3 := false |

upb0 := false | upb1 := false | upb2 := false | upb3 := false;

Faults fn The TRTP program is also subject to undetectable transient faults, denoted fn, that may perturb
the value of a and b variables non-deterministically. Note that since fn transitions may generate multiple
tokens, it is impossible to ensure that there is only one token at all times (i.e., safety is directly violated by
faults fn).

FNA: true −→ a0 := 0|1|2|3, a1 := 0|1|2|3, a2 := 0|1|2|3, a3 := 0|1|2|3;
FNB: true −→ b0 := 0|1|2|3, b1 := 0|1|2|3, b2 := 0|1|2|3, b3 := 0|1|2|3;

In addition to corrupting the state of processes by the action FM , the class of faults fn may non-
deterministically assign a value between 0 and 3 to any variable.
Adding Failsafe Masking. We use our stepwise algorithm in Figure 7 to add failsafe ff -tolerance and
masking fm-fault tolerance. When we apply the Add Failsafe algorithm, we generate the following failsafe



program TRTP’ (i = 1, 2, 3). The bold font represents the new constraints/actions added to the intolerant
program.

AC′
0 : (a0 = a3) ∧ upa0 ∧ (a3 6= −1) ∧ turn −→

if (((a0 = b0)∧(b0 6= −1)) ∨ ¬upb0) a0 := a3 ⊕ 1;
else turn := false;

AC01 : ¬upa3 ∧ upa0 −→ upa0 := false;2

AC02 : ¬upb0 ∧ ¬upb1 ∧ ¬upb2 ∧ ¬upb3 ∧ upa0 ∧ ¬turn
−→ turn := true;

AC′
i : (ai−1 = ai ⊕ 1) ∧ upai ∧ (ai−1 6= −1) −→ ai := ai−1;

ACi1 : ¬upai−1 ∧ upai −→ upai := false;

Observe that the failsafe program contains new actions and new constraints in the guards of original
actions. Specifically, the guards of actions AC0 and ACi have been strengthened in AC′

0 and AC′
i to

prevent a crashed process from executing and from copying a corrupted value. Moreover, if the process
PB0 has crashed then the token continues to be circulated in ring A (see action AC′

0). If a process has not
crashed but its predecessor has crashed, then that process changes its state to crashed (see actions AC01

and ACi1)
2. If all processes in ring B have crashed and the value of turn is not true, then turn will be

set to true to permit token circulation in ring A. Due to space constraints, we omit the revised actions
BC′

0, BC01, BC02, BC′
i, BCi1 (1 ≤ i ≤ 3) of processes in ring B as symmetric revisions are performed on

them in the failsafe ff -tolerant program TRTP’.
After strengthening the safety specification as prescribed in Step 3 of Figure 7, we use Add Masking to

add masking fm-tolerance to TRTP’ in order to generate the program TRTP”. The guard of the action
AC′

0 (respectively, BC′
0) is weakened (see actions AC′′

0 and BC′′
0 below) to include recovery transitions that

correct the state of the process PA0 (respectively, PB0) once corrupted by the fault action FM .

AC′′
0 : ((a0 = a3) ∨ (a0 = −1)) ∧ upa0 ∧ (a3 6= −1) ∧ turn −→

if (((a0 = b0) ∧ (b0 6= −1)) ∨ (a0 = −1) ∨ ¬upb0) a0 := a3 ⊕ 1;
else turn := false;

BC′′
0 : ((b0 = b3) ∨ (b0 = −1)) ∧ upb0 ∧ (b3 6= −1) ∧ ¬turn −→

if (((a0 6= b0) ∧ (a0 6= −1)) ∨ (b0 = −1) ∨ ¬upa0) b0 := b3 ⊕ 1;
else turn := true;

In the final step, we add nonmasking fn-tolerance to TRTP” to generate a failsafe-masking-nonmasking
program. Note that the TRTP example meets the sufficient conditions identified in Section 5.4 for polynomial-
time addition of failsafe-nonmasking multitolerance. The final multitolerant program includes new recovery
actions ACi2 and BCi2 respectively added to the set of actions of processes PAi and PBi, for 1 ≤ i ≤ 3.

ACi2 : (ai−1 6= ai ⊕ 1) ∧ (ai−1 6= ai) ∧ upai ∧ (ai−1 6= −1) −→ ai := ai−1;
BCi2 : (bi−1 6= bi ⊕ 1) ∧ (bi−1 6= bi) ∧ upbi ∧ (bi−1 6= −1) −→ bi := bi−1;

Observe that the final program has the following properties (see Figure 11): (1) If faults fm occur, then
there is at most one token at all times (i.e., safety) and every process is guaranteed to receive the token; (2) If
faults ff occur, then there is at most one token at all times and it is circulated amongst a subset of processes;
(3) If faults fn occur, then there may be multiple tokens, nonetheless, the program will eventually recover
to states from where at most one token exists and every process will receive the token, and (4) If faults from
ff ∪ fn occur, then the program will eventually recover to states from where at most one token exists and a
subset of processes will receive the token. In this case, the program is the same as the self-stabilizing token
ring program designed by Dijkstra [11] if we abstract out the up variables.

2We have overloaded the meaning of the up variables in that if the predecessor of a process has crashed, then that process

is considered to be crashed as well. We could use another variable for this purpose, but for simplicity we have overloaded up.



Property 
 
       Fault-class 

Always at most 
one token? 

Token circulation 
among 

Recovery to at 
most one token? 

fm Yes All processes Yes 

ff Yes Subset of processes Yes 

fn No All processes Yes 

ff ∪ fn No Subset of processes Yes 

 

Figure 11: The properties of the multitolerant program TRTP”.

Remark. While we have presented the TRTP program in the context of 4 processes in each ring, the
example can be generalized for any fixed number of processes. Moreover, observe that the number of rings
can also be increased, where one process from each ring participates in a higher level ring of processes in
which token circulation determines which ring is active. This example can also be extended so that every
process participates in several rings, thereby ensuring that non-faulty processes receive the token even if one
or more processes fail.

6.2 Nonmasking-Masking Repetitive Byzantine Agreement

In this section, we synthesize a repetitive agreement protocol that provides masking fault tolerance to
Byzantine faults and nonmasking fault tolerance to transient faults; i.e., nonmasking-masking multitolerant.
The fault-intolerant Repetitive Byzantine (RB) program. The RB program includes a general
process, denoted Pg, and three non-general processes, denoted P1, P2, P3. The program computations consist
of consecutive rounds of decision making, where in each round Pg casts a binary decision and the non-generals
copy the decision of the general and finalize their decision in the current round with an agreement on the
same value. The process Pg has a decision variable, denoted dg, with the domain {0, 1}. Each process Pi,
for 1 ≤ i ≤ 3, also has a decision variable, denoted di, with the domain {-1, 0, 1}, where -1 represents an
undecided state for that process. To distinguish consecutive rounds of decision making from each other, each
non-general process Pi uses Boolean variables sni and sn oldi respectively representing the sequence number
of the current round and that of the previous round. Process Pg has a Boolean variable sng representing
the sequence number of the general. Process Pi copies its decision in an output decision variable d oldi

that should be read at the end of the current round. To determine whether or not a process is Byzantine,
each process has a Boolean variable b. Now, if all sequence numbers are equal, the general starts the next
round by toggling sng (see action G below) and resetting all b values. Since we allow the Byzantine process
to change in every round, when the general begins a new round by executing action G, all processes are
assumed to be non-Byzantine. Subsequently, a fault BF1 (described later) can cause one of the processes
to become Byzantine. Thus, our definition of Byzantine faults is a generalization of that in [18], where the
same process is assumed to be Byzantine at all times.

G: (sng = sn1 = sn2 = sn3) −→ sng := ¬sng; dg := 0|1;
bg := false; b1 := false; b2 := false; b3 := false;

Each non-general process Pi copies the decision of the general when it starts a new round (i.e., sni 6= sng)
and it has not yet decided (see action Ai0). If Pi has not yet output its decision in the current round, then
it will do so (see action Ai1). After outputting its decision, Pi finalizes the current round by toggling its
sequence number and resetting di (see action Ai2).

Ai0: (di = −1) ∧ (sni 6= sng) −→ di := dg;
Ai1: (di 6= −1) ∧ (sni = sn oldi) −→ d oldi := di; sn oldi := ¬sn oldi;
Ai2: (di 6= −1) ∧ (sni 6= sn oldi) −→ di := −1; sni := ¬sni;

Byzantine faults (fm). At the start of each round, the Byzantine faults fm may cause at most one
process to become Byzantine if no process is Byzantine. At any time, a Byzantine process may arbitrarily
change its decision in the round it has become Byzantine.



BF1: (sn1 = sn2 = sn3) ∧ (sn1 6= sng) ∧
¬bg ∧ ¬b1 ∧ ¬b2 ∧ ¬b3 −→ bg := true |

bi := true;
BF2 : bg −→ dg := 0|1;
BF3i : bi −→ di := 0|1; d oldi := 0|1;

Safety specification. The safety specification requires validity and agreement in every round. In other
words, at the end of every round (i.e., when the guard of action G is enabled), if the general is non-Byzantine
then its decision (dg) must match the decision of all non-Byzantine non-generals (d old) from that round
(i.e., validity). If the general is Byzantine then the decision of all non-Byzantine non-generals (d old) must
match each other (i.e., agreement).
Adding masking fm-tolerance. We use the Add Masking algorithm to generate masking program. The
action Ai0 remains unchanged. However, the algorithm revises the actions Ai1 and Ai2 to A′

i1 and A′
i2, and

adds a new action Ai3 as follows (1 ≤ i ≤ 3):

A′
i1: (di 6= −1) ∧ (sn oldi = sni) ∧ (sn1 = sn2 = sn3) ∧

(∀i : 1 ≤ i ≤ 3 : di 6= −1) ∧ (sni 6= sng) −→ d oldi := di;
sn oldi := ¬sn oldi;

A′
i2: (di 6= −1) ∧ (∀i : 1 ≤ i ≤ 3 : sn oldi = sng) ∧ (di = maj) ∧

(sni 6= sng) −→ di := −1;
sni := ¬sni;

Ai3: (di 6= −1) ∧ (∀i : 1 ≤ i ≤ 3 : sn oldi = sng) ∧ (di 6= maj) ∧
(sni 6= sng) −→ di := maj;

d oldi := maj;
where maj = majority(d old 1, d old 2, d old 3).

Observe that the program RB′ consisting of actions G, Ai0, A
′
i1, A

′
i2 and Ai3, for 1 ≤ i ≤ 3, is masking

fm-tolerant.
Transient faults. In addition to the class of faults fm, the transient faults fn perturb the state of program
RB′ and change the decision values and sequence numbers by the following action (Notice that the faults
may perturb several processes; i.e., 1 ≤ i ≤ 3.):

TF: true −→ di := 0|1; d oldi := 0|1;
sni := 0|1; sn oldi := 0|1;
dg := 0|1; sng := 0|1;

Due to the occurrence of transient faults, the masking program may find itself in a state where some non-
general process Pi wrongly believes that it has finalized its current round; i.e., (di = −1) ∧ (sni 6= sn oldi)
or (di 6= −1) ∧ (sni = sng) holds. Further, Pi may incorrectly believe that it has not yet finalized its
current round while the other non-generals have; i.e., ((di 6= −1)∧ (sni = sn oldi)) ∧ (((dj = −1) ∧ (snj =
sng)) ∨ ((dk = −1) ∧ (snk = sng))). In such states, RB′ simply deadlocks. To ensure that the masking
program will eventually continue its repetitive rounds of decision making, we add nonmasking fault tolerance
to Byzantine and transient faults such that from any arbitrary state, the program recovers to its invariant
roundInv ≡ (Inv1 ∧ Inv2), where

Inv1 = (∀i : 1 ≤ i ≤ 3 : (di = −1) ⇒ (sni = sn oldi)) ∧
(∀i : 1 ≤ i ≤ 3 : (sni = sng) ⇒ (di = −1))

Inv2 = ∀i : 1 ≤ i ≤ 3 : (∀j : (1 ≤ j ≤ 3) ∧ (i 6= j) :
((di 6= −1) ∧ (sni = sn oldi) ∧ (dj = −1)) ⇒ (snj 6= sng)))

The following new recovery actions are added to the set of program actions, where (1 ≤ i, j, k ≤ 3) and
in action Rijk the condition (i 6= j) ∧ (i 6= k) ∧ (k 6= j) holds.



R1i: (di 6= −1) ∧ (sni = sng) −→ di := −1;
R2i: (di = −1) ∧ (sni 6= sn oldi) −→ sn oldi := sni;
Rijk: (di 6= −1) ∧ (sni = sn oldi) ∧

(((dj = −1) ∧ (snj = sng)) ∨ ((dk = −1) ∧ (snk = sng)))
−→ sni = sng;

sn oldi := sng;
di := −1

The above actions guarantee that from any arbitrary state, the nonmasking-masking multitolerant pro-
gram RB′′ recovers to roundInv; i.e., RB′′ is self-stabilizing [11] to Byzantine and transient faults.

7 Conclusions and Future Work

In this paper, we investigated the problem of stepwise design of multitolerant programs from their fault-
intolerant versions. A program that is subject to multiple classes of faults, and provides a different level of
fault-tolerance to each fault-class is a multitolerant program. We considered three levels of fault-tolerance,
failsafe, nonmasking and masking. Our contribution in this paper is two-fold: First, for cases where one
needs to add failsafe fault-tolerance to one class of faults and nonmasking fault-tolerance to a different class
of faults, we found a surprising result that this problem is NP-complete (in program state space). Since
adding fault-tolerance to a single class of faults is in P [6], this implies that a stepwise method, where
the number of steps is constant, for failsafe-nonmasking multitolerance does not exist (unless P=NP). To
deal with this NP-completeness result, we identified classes of programs, specifications and faults for which
failsafe-nonmasking multitolerance can be designed in a stepwise manner (in polynomial time).

Second, we investigated the feasibility of a stepwise method that is sound and deterministically complete.
Such a method is highly desirable, as it is difficult to anticipate all classes of faults while designing fault-
tolerant programs, and upon detecting new classes of faults, new levels of fault-tolerance should be added
to the design at hand while preserving existing levels of fault-tolerance. We presented such a sound and
deterministically complete design method for special cases where one adds failsafe (respectively, nonmasking)
fault-tolerance to one class of faults and masking fault-tolerance to another class of faults. More importantly,
we showed that such an addition is feasible regardless of the order in which different faults are considered.
This result has a significant impact for designers in that they can reuse an existing design in future additions
of fault-tolerance no matter what classes of faults are currently known!

Our algorithms for adding multitolerance reuse existing algorithms in [6] based on certain properties
of them; they do not rely on the implementation of the existing algorithms. Thus, improvements to the
implementation of algorithms for adding fault-tolerance to a single class of faults (presented in [6]) can
be automatically applied in synthesis of multitolerant protocols. In this regard, we have illustrated that
approaches in symbolic synthesis [19] and distributed synthesis algorithms [20] can be effectively used to
synthesize programs with reachable states exceeding 2100. We are currently utilizing such techniques for the
addition of multitolerance.
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8 Appendix A: Synthesis Algorithms For Adding Fault-Tolerance
to One Class of Faults

As mentioned in Section 5.1, the knowledge of the implementation of Add Failsafe, Add Nonmasking, and
Add Masking is not required for the understanding of the algorithms presented in this paper. Our results
only use the properties in Section 5.1. However, for the convenience of the interested reviewer, we recall the
implementation of these algorithms, next.

The algorithm Add Failsafe takes a fault-intolerant program p, its invariant S, its safety specification spec,
and a class of faults f . The output of the algorithm is a failsafe f -tolerant program p′ with its invariant S′.

Add Failsafe(p, f : transitions, S : state predicate, spec : specification)
{

ms := {s0 : ∃s1, s2, ...sn :
(∀j : 0≤j<n : (sj , s(j+1)) ∈ f) ∧ (s(n−1), sn) violates spec };

T ′:= true−ms;
mt := {(s0, s1) : ((s1∈ms) ∨ (s0, s1) violates spec) };
S′ := ConstructInvariant(S − ms, p−mt);
if (S′={}) declare no failsafe f-tolerant program p′;

return ∅, ∅;
else p′ :=ConstructTransitions(p−mt, S′); // One can add any subset of transitions in

// ((T ′−S′) × T ′)−mt to p′ without violating the properties V-A.1 and V-A.2
return p′, S′, T ′;

}

ConstructInvariant(S : state predicate, p : transitions)
// Returns the largest subset of S such that computations of p within that subset are infinite

{ while (∃s0 : s0∈S : (∀s1 : s1∈S : (s0, s1) 6∈p)) S := S − {s0} }

ConstructTransitions(p : transitions, S : set of states)
{ return p−{(s0, s1) : s0∈S ∧ s1 6∈ S} }

Figure 12: The synthesis algorithm for adding failsafe fault-tolerance.

The routine ConstructInvariant calculates the largest subset of the state predicate S where the computa-
tions of program p are infinite. Also, ConstructTransition routine removes transitions of its first parameter,
p, that violate the closure of its second parameter, state predicate S.

Add Nonmasking(p, f : transitions, S : state predicate, spec : specification)
{

S′ := S;
T ′ := {s : s is reachable from S by computations of p[]f};
p′ := (p|S) ∪ {(s0, s1) : s0 6∈S ∧ s1∈S}
return p′, S′, T ′;

}

Figure 13: The synthesis algorithm for adding nonmasking fault-tolerance.

The algorithm Add Nonmasking adds nonmasking fault-tolerance to a fault-intolerant program p.
The algorithm Add Masking takes a fault-intolerant program p, its invariant S, its safety specification

spec, and a class of faults f , and synthesizes a masking f -tolerant program p′ with its invariant S′. The
routine ConstructFaultSpan calculates the largest subset of its first parameter, state predicate T , that is
closed in faults f .



Add Masking(p, f : transitions, S : state predicate, spec : specification)
{

ms := {s0 : ∃s1, s2, ...sn : (1)
(∀j : 0≤j<n : (sj , s(j+1)) ∈ f) ∧ (s(n−1), sn) violates spec };

mt := {(s0, s1) : ((s1∈ms) ∨ (s0, s1) violates spec) }; (2)
S1 := ConstructInvariant(S − ms, p−mt); (3)
T1 := true−ms; (4)

repeat (5)
T2, S2 := T1, S1; (6)
p1 := p|S1 ∪ {(s0, s1) : s0 6∈S1 ∧ s0∈T1 ∧ s1∈T1}−mt; (7)
T1 := ConstructFaultSpan(T1 − {s : S1 is not reachable from s in p1 }, f); (8)
S1 := ConstructInvariant(S1 ∧ T1, p1); (9)
if (S1 ={} ∨ T1 ={}) (10)

declare no masking f-tolerant program p′ exists; (11)
return ∅, ∅, ∅; (12)

until (T1 =T2 ∧ S1 =S2); (13)

For each state s : s∈T1 : (14)
Rank(s) = length of the shortest computation prefix of p1 (15)

that starts from s and ends in a state in S1;
p′ := {(s0, s1) : ((s0, s1)∈p1) ∧ (s0∈S1 ∨ Rank(s0)>Rank(s1)}); (16)
S′ := S1; (17)
T ′ := T1 (18)
return p′, S′, T ′; (19)

}

ConstructFaultSpan(T : state predicate, f : transitions)
// Returns the largest subset of T that is closed in f .
{

while (∃s0, s1 : s0∈T ∧ s1 6∈T ∧ (s0, s1)∈f) T := T − {s0}
}

Figure 14: The synthesis algorithm for adding masking fault-tolerance.

9 Appendix B: Non-Deterministic Addition of Multitolerance

In this section, we first identify the difficulties of adding multitolerance to three classes of faults ff , fn, and
fm, where fm = ff ∩ fn, failsafe fault-tolerance is required to ff , nonmasking fault-tolerance is required to
fn and masking fault-tolerance is required to fm. Then, we present a non-deterministic solution (see Figure
15) for adding multitolerance to fault-intolerant programs.

For a program p that is subject to three classes of faults ff , fn, and fm, consider the cases where there
exists a state s such that (i) s is reachable in the computations of p[]ff from invariant, (ii) s is reachable
in the computations of p[]fn from invariant, and (iii) no safe recovery (i.e., recovery during which safety is
preserved) is possible from s to the invariant.

In such cases, we have the following options: (1) ensure that s is unreachable in the computations of
p[]ff and add a recovery transition (that violates safety) from s to the invariant, or (2) ensure that s is
unreachable in the computations of p[]fn and leave s as a deadlock state. Moreover, the choice made for this
state affects other similar states. Hence, one needs to explore all possible choices for each such state s, and
as a result, brute-force exploration of these options requires exponential time in the state space.

Now, given a program p, with its invariant S, its specification spec, and three classes of faults ff , fn,
and fm, we present the non-deterministic algorithm Add Multitolerance. In our non-deterministic algorithm,
first, we guess a program p′, its invariant S′, and three fault-spans Tf , Tn, and Tm. Then, we verify a set of
conditions that ensure the multitolerance property of p′. We have shown our algorithm in Figure 15.
Theorem B.1 The algorithm Add Multitolerance is sound and complete.
Proof. Since this algorithm simply verifies the conditions needed for multitolerance, the proof is straight-
forward.
Theorem B.2 The problem of synthesizing multitolerant programs from their fault-intolerant versions is
in NP.



Add Multitolerance (p: transitions, ff , fn, fm: fault, S: state predicate,
spec: safety specification)

{
ms := {s0 : ∃s1, s2, ...sn : (∀j : 0≤j<n : (sj , s(j+1)) ∈ (ff ∪ fm)) ∧

(s(n−1), sn) violates spec }; (1)
mt := {(s0, s1) : ((s1∈ms) ∨ (s0, s1) violates spec) }; (2)

Guess p′, S′, Tf , Tn, Tm; (3)
Verify the following conditions:

S′ ⊆ S; S′ 6= {}; S′ ⊆ Tf ; S′ ⊆ Tn; S′ ⊆ Tm; (4)
(∀s0 : s0 ∈ S′ : (∃s1 :: (s0, s1) ∈ p′)); (5)
p′|S′ ⊆ p|S′; S′ is closed in p′; (6)

Tm is closed in p′[]fm; (7)
Tm ∩ ms = ∅; (p′|Tm) ∩ mt = ∅; (8)
(∀s0 : s0 ∈ Tm : (∃s1 :: (s0, s1) ∈ p′)); (p′|(Tm−S′)) is acyclic; (9)

Tf is closed in p′[]ff ; (10)
Tf ∩ ms = ∅; (p′|Tf ) ∩ mt = ∅; (11)

Tn is closed in p′[]fn; (12)
(∀s0 : s0 ∈ Tn : (∃s1 :: (s0, s1) ∈ p′)); (p′|(Tn−S′)) is acyclic; (13)

}

Figure 15: A non-deterministic polynomial algorithm for synthesizing multitolerance.

10 Appendix C: The Promela Models of the Multitolerant Two-
Ring Token Passing (TRTP)

In this section, we present the Promela models of the failsafe, failsafe-masking and failsafe-nonmasking-
masking multitolerant TRTP programs presented in Section 6.1. The following code represents the failsafe
program.

1 short a0 ;

2 short a1 ;

3 short a2 ;

4 short a3 ;

5

6 bool up_a0 = true;

7 bool up_a1 = true;

8 bool up_a2 = true;

9 bool up_a3 = true;

10

11 short b0 ;

12 short b1 ;

13 short b2 ;

14 short b3 ;

15

16 bool turn;

17

18 short count = 30;

19

20 bool up_b0 = true;

21 bool up_b1 = true;

22 bool up_b2 = true;

23 bool up_b3 = true;

24



25 bool ringAperturbed = false;

26 bool ringBperturbed = false;

27

28 #define N 4 /* number of states in each process */

29

30 #define allEqualA ((a0 == a1) && (a1 == a2) && (a2 == a3) && (a0 != -1) &&

31 up_a0 && up_a1 && up_a2 && up_a3)

32

33 #define allEqualB ((b0 == b1) && (b1 == b2) && (b2 == b3) && (b0 != -1) &&

34 up_b0 && up_b1 && up_b2 && up_b3)

35

36 #define workA ((((a1 == a2) && (a2 == a3) && (a0 == ((a1+1) % N)) ) ||

37 ((a0 == a1) && (a2 == a3) && (a1 == ((a2+1)%N)) ) ||

38 ((a0 == a1) && (a1 == a2) && ( ((a3+1) % N) == a2) ) ) &&

39 (up_a0 && up_a1 && up_a2 && up_a3) &&

40 (a0 != -1) && (a1 != -1)&& (a2 != -1) && (a3 != -1))

41

42 #define workB ((((b1 == b2) && (b2 == b3) && (b0 == ((b1+1) % N)) ) ||

43 ((b0 == b1) && (b2 == b3) && (b1 == ((b2+1)%N)) ) ||

44 ((b0 == b1) && (b1 == b2) && ( ((b3+1) % N) == b2) ) ) &&

45 (up_b0 && up_b1 && up_b2 && up_b3) &&

46 (b0 != -1) && (b1 != -1)&& (b2 != -1) && (b3 != -1))

47

48

49 #define tokenA0 ((a0 == a3) && (b0 == b3) && (a0 == b0) && up_a0 && (a0 != -1) && (a3 != -1))

50 #define tokenA1 ((a0 == ((a1+1)%N)) && up_a1 && (a0 != -1) && (a1 != -1))

51 #define tokenA2 ((a1 == ((a2+1)%N)) && up_a2 && (a1 != -1) && (a2 != -1))

52 #define tokenA3 ((a2 == ((a3+1)%N)) && up_a3 && (a2 != -1) && (a3 != -1))

53

54 #define tokenB0 ((b0 == b3) && (a0 == a3) && (((b0 + 1) %N) == a0) && up_b0 && (b0 != -1) && (b3 != -1))

55 #define tokenB1 ((b0 == ((b1+1)%N)) && up_b1 && (b0 != -1) && (b1 != -1))

56 #define tokenB2 ((b1 == ((b2+1)%N)) && up_b2 && (b1 != -1) && (b2 != -1))

57 #define tokenB3 ((b2 == ((b3+1)%N)) && up_b3 && (b2 != -1) && (b3 != -1))

58

59 #define atmostOneTokenInRingA ((tokenA0 && !tokenA1 && !tokenA2 && !tokenA3) ||

60 (!tokenA0 && tokenA1 && !tokenA2 && !tokenA3) ||

61 (!tokenA0 && !tokenA1 && tokenA2 && !tokenA3) ||

62 (!tokenA0 && !tokenA1 && !tokenA2 && tokenA3) ||

63 (!tokenA0 && !tokenA1 && !tokenA2 && !tokenA3))

64

65 #define atmostOneTokenInRingB ((tokenB0 && !tokenB1 && !tokenB2 && !tokenB3) ||

66 (!tokenB0 && tokenB1 && !tokenB2 && !tokenB3) ||

67 (!tokenB0 && !tokenB1 && tokenB2 && !tokenB3) ||

68 (!tokenB0 && !tokenB1 && !tokenB2 && tokenB3) ||

69 (!tokenB0 && !tokenB1 && !tokenB2 && !tokenB3))

70

71 #define atMostOneToken ((!tokenB0 && !tokenB1 && !tokenB2 && !tokenB3) &&

72 ((tokenA0 && !tokenA1 && !tokenA2 && !tokenA3) ||

73 (!tokenA0 && tokenA1 && !tokenA2 && !tokenA3) ||

74 (!tokenA0 && !tokenA1 && tokenA2 && !tokenA3) ||

75 (!tokenA0 && !tokenA1 && !tokenA2 && tokenA3) ||

76 (!tokenA0 && !tokenA1 && !tokenA2 && !tokenA3)) ) ||

77 ((!tokenA0 && !tokenA1 && !tokenA2 && !tokenA3) &&

78 ((tokenB0 && !tokenB1 && !tokenB2 && !tokenB3) ||

79 (!tokenB0 && tokenB1 && !tokenB2 && !tokenB3) ||

80 (!tokenB0 && !tokenB1 && tokenB2 && !tokenB3) ||

81 (!tokenB0 && !tokenB1 && !tokenB2 && tokenB3) ||

82 (!tokenB0 && !tokenB1 && !tokenB2 && !tokenB3)) )

83

84 #define inv ((allEqualA || (workA && turn)) && (allEqualB || (workB && !turn)))

85

86 #define ringAup (up_a0 && up_a1 && up_a2 && up_a3)

87 #define ringBup (up_b0 && up_b1 && up_b2 && up_b3)

88

89 #define ringAcorrupted ((a0 == -1) || (a1 == -1) || (a2 == -1) || (a3 == -1) )

90 #define ringBcorrupted ((b0 == -1) || (b1 == -1) || (b2 == -1) || (b3 == -1) )

91



92 /* Properties to check in the absence of faults */

93 /* [] inv */

94 /* [] (atMostOneToken) */

95 /* [] (!workA || !workB) if one works, the other does not. */

96 /* [] (allEqualA -> <> workA) */

97 /* [] (allEqualB -> <> workB) */

98 /* [] (workA -> <> allEqualA) */

99 /* [] (workB -> <> allEqualB) */

100 /* [] (workA -> <> workB) */

101 /* [] (workB -> <> workA) */

102

103 /* Properties to check in the presence of failsafe and failsafe-masking faults */

104 /* [] atMostOneToken */

105 /* [] (!ringAup -> <> workB) */

106 /* [] (!ringBup -> <> workA) */

107 /* [] (!ringAup -> <> allEqualB) */

108 /* [] (!ringBup -> <> allEqualA) */

109

110 /* Properties to check in the presence of masking faults */

111 /* [] atMostOneToken && (<> [] inv) */

112

113 /* Properties to check in the presence of non-masking faults */

114 /* <> [] inv */

115

116 proctype process_a0 ()

117 {
118 do

119 ::atomic{
120 (a0 == a3) && up_a0 && turn && (a3 != -1)

121 -> if

122 ::((a0 == b0) && (b0 != -1)) || !up_b0 -> a0 = (a3+1) % N;

123 :: else if

124 :: up_b0 -> turn = false;

125 :: else skip;

126 fi;

127 fi;

128 }
129

130 ::atomic{ !up_a3 && up_a0 -> up_a0 = false; }
131

132 ::atomic{ (!up_b0 && !up_b1 && !up_b2 && !up_b3) && up_a0 && !turn -> turn = true; }
133 od

134 }
135

136 proctype process_a1 ()

137 {
138 do

139 ::atomic{
140 (a0 == ((a1+1)%N)) && up_a1 && (a0 != -1) -> a1 = a0; }
141

142 ::atomic{ !up_a0 && up_a1 -> up_a1 = false; }
143 od

144 }
145

146 proctype process_a2 ()

147 {
148 do

149 ::atomic{
150 (a1 == ((a2+1)%N)) && up_a2 && (a1 != -1) -> a2 = a1; }
151

152 ::atomic{ !up_a1 && up_a2 -> up_a2 = false; }
153 od

154 }
155

156 proctype process_a3 ()

157 {
158 do



159 ::atomic{
160

161 (a2 == ((a3+1)%N)) && up_a3 && (a2 != -1) -> a3 = a2; }
162

163 ::atomic{ !up_a2 && up_a3 -> up_a3 = false; }
164 od

165 }
166

167

168 /* Processes of ring B */

169 proctype process_b0 ()

170 {
171 do

172

173 ::atomic{
174 (b0 == b3) && up_b0 && !turn && (b3 != -1)

175 -> if

176 :: ((a0 != b0) && (a0 != -1)) || !up_a0 -> b0 = (b3+1) % N;

177 :: else if :: up_a0 -> turn = true;

178 :: else skip;

179 fi;

180 fi

181 }
182 ::atomic{ !up_b3 && up_b0 -> up_b0 = false; }
183 ::atomic{ (!up_a0 && !up_a1 && !up_a2 && !up_a3) && up_b0 && turn -> turn = false; }
184 od

185 }
186

187 proctype process_b1 ()

188 {
189 do

190 ::atomic{
191 (b0 == ((b1+1)%N)) && up_b1 && (b0 != -1) -> b1 = b0; }
192

193 ::atomic{ !up_b0 && up_b1 -> up_b1 = false; }
194 od

195 }
196

197 proctype process_b2 ()

198 {
199 do

200 ::atomic{
201 (b1 == ((b2+1)%N)) && up_b2 && (b1 != -1) -> b2 = b1; }
202

203 ::atomic{ !up_b1 && up_b2 -> up_b2 = false;}
204 od

205 }
206

207 proctype process_b3 ()

208 {
209 do

210 ::atomic{
211 (b2 == ((b3+1)%N)) && up_b3 && (b2 != -1) -> b3 = b2; }
212

213 ::atomic{ !up_b2 && up_b3 -> up_b3 = false;}
214 od

215 }
216

217 proctype failsafe_fault() {
218 if

219 :: atomic{ up_a0 && up_b0 && up_b1 && up_b2 && up_b3 && !ringBcorrupted -> up_a0 =

220 false;}
221 :: atomic{ up_a1 && up_b0 && up_b1 && up_b2 && up_b3 && !ringBcorrupted -> up_a1 =

222 false;}
223 :: atomic{ up_a2 && up_b0 && up_b1 && up_b2 && up_b3 && !ringBcorrupted -> up_a2 =

224 false;}
225 :: atomic{ up_a3 && up_b0 && up_b1 && up_b2 && up_b3 && !ringBcorrupted -> up_a3 =



226 false;}
227 :: atomic{ up_b0 && up_a0 && up_a1 && up_a2 && up_a3 && !ringAcorrupted -> up_b0

228 = false;}
229 :: atomic{ up_b1 && up_a0 && up_a1 && up_a2 && up_a3 && !ringAcorrupted-> up_b1 =

230 false;}
231 :: atomic{ up_b2 && up_a0 && up_a1 && up_a2 && up_a3 && !ringAcorrupted-> up_b2 =

232 false;}
233 :: atomic{ up_b3 && up_a0 && up_a1 && up_a2 && up_a3 && !ringAcorrupted-> up_b3 =

234 false;}
235 fi;

236 }
237

238 proctype masking_fault() {
239 if

240 :: atomic{ (a0 != -1) && (b0 != -1) && (b1 != -1) && (b2 != -1) && (b3 != -1) &&

241 ringBup -> a0 = -1;}
242 :: atomic{ (a1 != -1) && (b0 != -1) && (b1 != -1) && (b2 != -1) && (b3 != -1) &&

243 ringBup -> a1 = -1;}
244 :: atomic{ (a2 != -1) && (b0 != -1) && (b1 != -1) && (b2 != -1) && (b3 != -1) &&

245 ringBup -> a2 = -1;}
246 :: atomic{ (a3 != -1) && (b0 != -1) && (b1 != -1) && (b2 != -1) && (b3 != -1) &&

247 ringBup -> a3 = -1;}
248 :: atomic{ (b0 != -1) && (a0 != -1) && (a1 != -1) && (a2 != -1) && (a3 != -1) &&

249 ringAup -> b0 = -1;}
250 :: atomic{ (b1 != -1) && (a0 != -1) && (a1 != -1) && (a2 != -1) && (a3 != -1) &&

251 ringAup -> b1 = -1;}
252 ::atomic{ (b2 != -1) && (a0 != -1) && (a1 != -1) && (a2 != -1) && (a3 != -1) &&

253 ringAup -> b2 = -1;}
254 :: atomic{ (b3 != -1) && (a0 != -1) && (a1 != -1) && (a2 != -1) && (a3 != -1) &&

255 ringAup -> b3 = -1;}
256 fi;

257 }
258

259 proctype nonmasking_fault() {
260 do

261 ::atomic{
262 count != 0 -> count-- ;

263 if

264 ::true -> a0 = 0;

265 ::true -> a0 = 1;

266 ::true -> a0 = 2;

267 ::true -> a0 = 3;

268

269 ::true -> a1 = 0;

270 ::true -> a1 = 1;

271 ::true -> a1 = 2;

272 ::true -> a1 = 3;

273

274 ::true -> a2 = 0;

275 ::true -> a2 = 1;

276 ::true -> a2 = 2;

277 ::true -> a2 = 3;

278

279 ::true -> a3 = 0;

280 ::true -> a3 = 1;

281 ::true -> a3 = 2;

282 ::true -> a3 = 3;

283 fi

284 }
285

286 ::atomic{
287 count != 0 -> count-- ;

288 if

289 ::true -> b0 = 0;

290 ::true -> b0 = 1;

291 ::true -> b0 = 2;

292 ::true -> b0 = 3;



293

294 ::true -> b1 = 0;

295 ::true -> b1 = 1;

296 ::true -> b1 = 2;

297 ::true -> b1 = 3;

298

299 ::true -> b2 = 0;

300 ::true -> b2 = 1;

301 ::true -> b2 = 2;

302 ::true -> b2 = 3;

303

304 ::true -> b3 = 0;

305 ::true -> b3 = 1;

306 ::true -> b3 = 2;

307 ::true -> b3 = 3;

308 fi

309 }
310 od

311 }
312

313 init {
314 run process_a0();

315 run process_a1();

316 run process_a2();

317 run process_a3();

318

319 run process_b0();

320 run process_b1();

321 run process_b2();

322 run process_b3();

323

324 run failsafe_fault();

325 run masking_fault();

326 run nonmasking_fault()

327 }

The processes of the failsafe-masking program are as follows:
1 proctype process_a0 ()

2 {
3 do

4 ::atomic{
5 ((a0 == a3) || (a0 == -1)) && up_a0 && turn && (a3 != -1)

6 -> if

7 ::((a0 == b0) && (b0 != -1)) || (a0 == -1) || !up_b0 -> a0 = (a3+1) % N;

8 :: else if

9 :: up_b0 -> turn = false;

10 :: else skip;

11 fi;

12 fi;

13 }
14

15 ::atomic{ !up_a3 && up_a0 -> up_a0 = false; }
16

17 ::atomic{ (!up_b0 && !up_b1 && !up_b2 && !up_b3) && up_a0 && !turn -> turn = true; }
18 od

19 }
20

21 proctype process_a1 ()

22 {
23 do

24 ::atomic{ (a0 == ((a1+1)%N)) && up_a1 && (a0 != -1) -> a1 = a0; }
25

26 ::atomic{ !up_a0 && up_a1 -> up_a1 = false; }
27 od

28 }
29

30 proctype process_a2 ()

31 {



32 do

33 ::atomic{ (a1 == ((a2+1)%N)) && up_a2 && (a1 != -1) -> a2 = a1; }
34

35 ::atomic{ !up_a1 && up_a2 -> up_a2 = false; }
36 od

37 }
38

39 proctype process_a3 ()

40 {
41 do

42 ::atomic{ (a2 == ((a3+1)%N)) && up_a3 && (a2 != -1) -> a3 = a2; }
43

44 ::atomic{ !up_a2 && up_a3 -> up_a3 = false; }
45 od

46 }
47

48

49 /* Processes of ring B */

50 proctype process_b0 ()

51 {
52 do

53

54 ::atomic{
55 ((b0 == b3) || (a0 == -1)) && up_b0 && !turn && (b3 != -1)

56 -> if

57 :: ((a0 != b0) && (a0 != -1)) || (a0 == -1) || !up_a0 -> b0 = (b3+1) % N;

58 :: else if :: up_a0 -> turn = true;

59 :: else skip;

60 fi;

61 fi

62 }
63 ::atomic{ !up_b3 && up_b0 -> up_b0 = false; }
64 ::atomic{ (!up_a0 && !up_a1 && !up_a2 && !up_a3) && up_b0 && turn -> turn = false; }
65 od

66 }
67

68 proctype process_b1 ()

69 {
70 do

71 ::atomic{ (b0 == ((b1+1)%N)) && up_b1 && (b0 != -1) -> b1 = b0; }
72

73 ::atomic{ !up_b0 && up_b1 -> up_b1 = false; }
74 od

75 }
76

77 proctype process_b2 ()

78 {
79 do

80 ::atomic{ (b1 == ((b2+1)%N)) && up_b2 && (b1 != -1) -> b2 = b1; }
81

82 ::atomic{ !up_b1 && up_b2 -> up_b2 = false;}
83 od

84 }
85

86 proctype process_b3 ()

87 {
88 do

89 ::atomic{ (b2 == ((b3+1)%N)) && up_b3 && (b2 != -1) -> b3 = b2; }
90

91 ::atomic{ !up_b2 && up_b3 -> up_b3 = false;}
92 od

93 }

The processes of the failsafe-nonmasking-masking program are as follows:

1 proctype process_a0 ()

2 {
3 do



4 ::atomic{
5 ((a0 == a3) || (a0 == -1)) && up_a0 && turn && (a3 != -1)

6 -> if

7 ::((a0 == b0) && (b0 != -1)) || (a0 == -1) || !up_b0 -> a0 = (a3+1) % N;

8 :: else if

9 :: up_b0 -> turn = false;

10 :: else skip;

11 fi;

12 fi;

13 }
14

15 ::atomic{ !up_a3 && up_a0 -> up_a0 = false; }
16

17 ::atomic{ (!up_b0 && !up_b1 && !up_b2 && !up_b3) && up_a0 && !turn -> turn = true; }
18 od

19 }
20

21 proctype process_a1 ()

22 {
23 do

24 ::atomic{ ( (a0 == ((a1+1)%N)) || (a1 == -1) ) && up_a1 && (a0 != -1)

25 -> a1 = a0; }
26

27 ::atomic{ (a0 != ((a1+1)%N)) && (a0 != a1) && up_a1 && (a0 != -1)

28 -> a1 = a0; }
29 ::atomic{ !up_a0 && up_a1 -> up_a1 = false; }
30 od

31 }
32

33 proctype process_a2 ()

34 {
35 do

36 ::atomic{
37 ( (a1 == ((a2+1)%N)) || (a2 == -1)) && up_a2 && (a1 != -1) -> a2 = a1; }
38

39 ::atomic{
40 (a1 != ((a2+1)%N)) && (a2 != a1) && up_a2 && (a1 != -1)

41 -> a2 = a1; }
42 ::atomic{ !up_a1 && up_a2 -> up_a2 = false; }
43 od

44 }
45

46 proctype process_a3 ()

47 {
48 do

49 ::atomic{ ((a2 == ((a3+1)%N)) || (a3 == -1)) && up_a3 && (a2 != -1)

50 -> a3 = a2; }
51

52 ::atomic{ (a2 != ((a3+1)%N)) && (a3 != a2) && up_a3 && (a2 != -1)

53 -> a3 = a2; }
54 ::atomic{ !up_a2 && up_a3 -> up_a3 = false; }
55 od

56 }
57

58

59 /* Processes of ring B */

60 proctype process_b0 ()

61 {
62 do

63

64 ::atomic{
65 ((b0 == b3) || (b0 == -1)) && up_b0 && !turn && (b3 != -1)

66 -> if

67 :: ((a0 != b0) && (a0 != -1)) || (b0 == -1) || !up_a0 -> b0 = (b3+1) % N;

68 :: else if :: up_a0 -> turn = true;

69 :: else skip;

70 fi;



71 fi

72 }
73 ::atomic{ !up_b3 && up_b0 -> up_b0 = false; }
74 ::atomic{ (!up_a0 && !up_a1 && !up_a2 && !up_a3) && up_b0 && turn -> turn = false; }
75 od

76 }
77

78 proctype process_b1 ()

79 {
80 do

81 ::atomic{ ((b0 == ((b1+1)%N)) || (b1 == -1)) && up_b1 && (b0 != -1)

82 -> b1 = b0; }
83

84 ::atomic{ (b0 != ((b1+1)%N)) && (b0 != b1) && up_b1 && (b0 != -1)

85 -> b1 = b0; }
86 ::atomic{ !up_b0 && up_b1 -> up_b1 = false; }
87 od

88 }
89

90 proctype process_b2 ()

91 {
92 do

93 ::atomic{ ((b1 == ((b2+1)%N)) || (b2 == -1)) && up_b2 && (b1 != -1)

94 -> b2 = b1; }
95

96 ::atomic{ (b1 != ((b2+1)%N)) && (b1 != b2) && up_b2 && (b1 != -1)

97 -> b2 = b1; }
98 ::atomic{ !up_b1 && up_b2 -> up_b2 = false;}
99 od

100 }
101

102 proctype process_b3 ()

103 {
104 do

105 ::atomic{ ((b2 == ((b3+1)%N)) || (b3 == -1)) && up_b3 && (b2 != -1)

106 -> b3 = b2; }
107

108 ::atomic{ (b2 != ((b3+1)%N)) && (b2 != b3) && up_b3 && (b2 != -1)

109 -> b3 = b2; }
110 ::atomic{ !up_b2 && up_b3 -> up_b3 = false;}
111 od

112 }



11 Appendix D: The Promela Model of the Multitolerant Repet-
itive Byzantine Agreement

In this section, we present the Promela model of the nonmasking-masking multitolerant version of the repet-
itive Byzantine agreement program presented in Section 6.2. The masking program includes all processes
except the stabilize() process that includes necessary actions for recovery in the presence of transient faults.

1 short dg;

2 short d1 = -1 ;

3 short d2 = -1;

4 short d3 = -1;

5

6 short d1_new ;

7 short d2_new ;

8 short d3_new ;

9

10 bool sng ;

11 bool sn1 ;

12 bool sn2 ;

13 bool sn3 ;

14

15 bool sn1_new ;

16 bool sn2_new ;

17 bool sn3_new ;

18

19 bool bg ;

20 bool b1 ;

21 bool b2 ;

22 bool b3 ;

23

24 int count = 10;

25

26 #define equalSnSg ((sn1 == sn2) && (sn2 == sn3) && (sn1 == sng))

27

28 #define equalSn ((sn1 == sn2) && (sn2 == sn3))

29

30 #define equalSn_new ((sn1_new == sn2_new) && (sn2_new == sn3_new))

31

32 #define allBot ((d1 == d2) && (d2 == d3) && (d1 == -1))

33

34 #define allNotBot ((d1 != -1) && (d2 != -1) && (d3 != -1))

35

36

37 #define initRound (equalSN && allBot)

38

39 #define allAgree ((d1 == d2) && (d2 == d3) && (d1 != -1))

40

41 #define faultInv ((!bg && !b1 && !b2 && !b3) || (bg && !b1 && !b2 && !b3) ||

42 (!bg && b1 && !b2 && !b3) || (!bg && !b1 && b2 && !b3) ||

43 (!bg && !b1 && !b2 && b3))

44

45 #define validityIP ((!equalSn || (sn1 == sng) || bg) ||

46 ((b1 || (d1 == -1) || (d1 == dg)) &&

47 (b2 || (d2 == -1) || (d2 == dg)) &&

48 (b3 || (d3 == -1) || (d3 == dg)) ) )

49

50 #define agreementIP ((!equalSn || (sn1 == sng) || !bg ) ||

51 (d1 == -1) || (d2 == -1) || (d3 == -1) ||

52 ((d1 == d2) && (d2 == d3)) )

53

54 #define validityTP ((!equalSn_new || (sn1_new != sng) || bg) ||

55 ((b1 || (d1 == -1) || (d1_new == dg)) &&

56 (b2 || (d2 == -1) || (d2_new == dg)) &&

57 (b3 || (d3 == -1) || (d3_new == dg)) ) )

58

59 #define agreementTP ((!equalSnSg || (d1 != -1) || (d2 != -1) || (d3 != -1) || !bg) ||



60 ((d1_new == d2_new) && (d2_new == d3_new)) )

61

62 #define inv1 (((d1 != -1) || (sn1 == sn1_new)) &&

63 ((sn1 != sng) || (d1 == -1)) && ((d2 != -1) || (sn2 == sn2_new)) &&

64 ((sn2 != sng) || (d2 == -1)) && ((d3 != -1) || (sn3 == sn3_new)) &&

65 ((sn3 != sng) || (d3 == -1)) )

66

67 #define inv2 (((d1 == -1) || (sn1 != sn1_new) || (d2 != -1) || (sn2 != sng)) &&

68 ((d1 == -1) || (sn1 != sn1_new) || (d3 != -1) || (sn3 != sng)) &&

69 ((d2 == -1) || (sn2 != sn2_new) || (d1 != -1) || (sn1 != sng)) &&

70 ((d2 == -1) || (sn2 != sn2_new) || (d3 != -1) || (sn3 != sng)) &&

71 ((d3 == -1) || (sn3 != sn3_new) || (d1 != -1) || (sn1 != sng)) &&

72 ((d3 == -1) || (sn3 != sn3_new) || (d2 != -1) || (sn2 != sng)) )

73

74 #define roundInv inv1 && inv2

75

76 /* Properties to check in the absence of faults */

77 /* []<> (equalSnSg && allBot) */

78 /* [] validityIP */

79 /* [] agreementIP */

80

81 /* Properties to check in the presence of Byzantine faults */

82 /* []<> equalSnSg */

83 /* [] validityTP */

84 /* [] agreementTP */

85

86 /* Properties to check in the presence of non-masking faults */

87 /* <> [] roundInv */

88 /* [] (inv1 -> <>equalSnSg) */

89 /* [] (roundInv -> <>(allBot&& equalSnSg)) */

90 /* [] (inv1 -> <> [] validityTP) */

91 /* [] (inv1 -> <> [] agreementTP) */

92

93 proctype process_g ()

94 {
95 do

96 ::atomic{
97 equalSnSg -> sng = !sng; bg = false; b1 = false; b2 = false; b3 = false;

98 if

99 :: true -> dg = 0;

100 :: true -> dg = 1;

101 fi

102 }
103 od

104 }
105

106 proctype process_1 ()

107 {
108 do

109 ::atomic{ (d1 == -1) && (sn1 != sng) -> d1 = dg; }
110

111 :: atomic{ (d1 != -1) && (sn1_new == sn1) && equalSn && allNotBot && (sn1 != sng)

112 -> d1_new = d1;

113 sn1_new = !sn1_new; }
114

115 ::atomic{ (d1 != -1) && ((sn1_new == sng) && (sn2_new == sng) && (sn3_new == sng) ) &&

116 ((d1 != d2_new) && (d2_new == d3_new)) && (sn1 != sng)

117 -> d1 = d2_new;

118 d1_new = d2_new; }
119

120 ::atomic{ (d1 != -1) && ((sn1_new == sng) && (sn2_new == sng) && (sn3_new == sng) ) &&

121 ((d1 == d2_new) || (d1 == d3_new)) && (sn1 != sng)

122 -> d1 = -1;

123 sn1 = !sn1; }
124 od

125 }
126



127 proctype process_2 ()

128 {
129 do

130

131 ::atomic{ (d2 == -1) && (sn2 != sng) -> d2 = dg; }
132

133 :: atomic{ (d2 != -1) && (sn2_new == sn2) && equalSn && allNotBot && (sn2 != sng)

134 -> d2_new = d2;

135 sn2_new = !sn2_new; }
136

137 ::atomic{ (d2 != -1) && ((sn1_new == sng) && (sn2_new == sng) && (sn3_new == sng)) &&

138 ((d2 != d1_new) && (d1_new == d3_new)) && (sn2 != sng)

139 -> d2 = d1_new;

140 d2_new = d1_new; }
141

142 ::atomic{ (d2 != -1) && ((sn1_new == sng) && (sn2_new == sng) && (sn3_new == sng)) &&

143 ((d2 == d1_new) || (d2 == d3_new)) && (sn2 != sng)

144 -> d2 = -1;

145 sn2 = !sn2; }
146 od

147 }
148

149 proctype process_3 ()

150 {
151 do

152 ::atomic{ (d3 == -1) && (sn3 != sng) -> d3 = dg; }
153

154 :: atomic{ (d3 != -1) && (sn3_new == sn3) && equalSn && allNotBot && (sn3 != sng)

155 -> d3_new = d3;

156 sn3_new = !sn3_new; }
157

158 ::atomic{ (d3 != -1) && ((sn1_new == sng) && (sn2_new == sng) && (sn3_new == sng)) &&

159 ((d3 != d2_new) && (d2_new == d1_new)) && (sn3 != sng)

160 -> d3 = d2_new;

161 d3_new = d2_new; }
162

163 ::atomic{ (d3 != -1) && ((sn1_new == sng) && (sn2_new == sng) && (sn3_new == sng)) &&

164 ((d3 == d2_new) || (d3 == d1_new)) && (sn3 != sng)

165 -> d3 = -1;

166 sn3 = !sn3; }
167 od

168 }
169

170 proctype stabilize(){
171

172 do

173 :: atomic{(d1 == -1) && (sn1 != sn1_new) -> sn1_new = sn1 ; }
174 :: atomic{(d1 != -1) && (sn1 == sng) -> d1 = -1; }
175

176 :: atomic{(d2 == -1) && (sn2 != sn2_new) -> sn2_new = sn2; }
177 :: atomic{(d2 != -1) && (sn2 == sng) -> d2 = -1; }
178

179 :: atomic{(d3 == -1) && (sn3 != sn3_new) -> sn3_new =sn3; }
180 :: atomic{(d3 != -1) && (sn3 == sng) -> d3 = -1; }
181

182 :: atomic{ (d1 != -1) && (sn1 == sn1_new) &&

183 (((d2 == -1) && (sn2 == sng) ) || ((d3 == -1) && (sn3 == sng)) )

184 -> sn1 = sng ; sn1_new = sng ; d1 = -1; }
185

186 :: atomic{ (d2 != -1) && (sn2 == sn2_new) &&

187 (((d1 == -1) && (sn1 == sng) ) || ((d3 == -1) && (sn3 == sng)) )

188 -> sn2 = sng ; sn2_new = sng; d2 = -1; }
189

190 :: atomic{ (d3 != -1) && (sn3 == sn3_new) &&

191 (((d1 == -1) && (sn1 == sng) ) || ( (d2 == -1) && (sn2 == sng)) )

192 -> sn3 = sng ; sn3_new = sng; d3 = -1; }
193 od



194 }
195

196 proctype process_ByzFaults ()

197 {
198 do

199 ::atomic{ (sn1 == sn2) && (sn3 == sn2) && (sng != sn1) && (!bg && !b1 && !b2 && !b3) ->

200

201 if

202 :: true -> bg = true;

203 if :: true -> dg = 0;

204 :: true -> dg = 1;

205 fi;

206 :: true -> b1 = true;

207 if :: true -> d1 = 0;

208 :: true -> d1 = 1;

209 fi;

210 :: true -> b2 = true;

211 if :: true -> d2 = 0;

212 :: true -> d2 = 1;

213 fi;

214 :: true -> b3 = true;

215 if :: true -> d3 = 0;

216 :: true -> d3 = 1;

217 fi;

218

219 fi

220 }
221 od

222 }
223

224 proctype process_transFaults ()

225 {
226 do

227 ::atomic{
228 count != 0 -> atomic{ count-- ;

229 if

230 :: true -> sn1 = 0;

231 :: true -> sn1 = 1;

232

233 :: true -> sn2 = 0;

234 :: true -> sn2 = 1;

235

236 :: true -> sn3 = 0;

237 :: true -> sn3 = 1;

238

239 :: true -> d1 = 0;

240 :: true -> d1 = 1;

241

242 :: true -> d2 = 0;

243 :: true -> d2 = 1;

244

245 :: true -> d3 = 0;

246 :: true -> d3 = 1;

247

248 :: true -> sn1_new = 0;

249 :: true -> sn1_new = 1;

250

251 :: true -> sn2_new = 0;

252 :: true -> sn2_new = 1;

253

254 :: true -> sn3_new = 0;

255 :: true -> sn3_new = 1;

256

257 :: true -> d1_new = 0;

258 :: true -> d1_new = 1;

259

260 :: true -> d2_new = 0;



261 :: true -> d2_new = 1;

262

263 :: true -> d3_new = 0;

264 :: true -> d3_new = 1;

265

266 :: true -> dg = 0;

267 :: true -> dg = 1;

268

269 :: true -> sng = 0;

270 :: true -> sng = 1;

271

272 fi;

273 }
274 }
275 od

276 }
277

278 init {
279 run process_g();

280 run process_1();

281 run process_2();

282 run process_3();

283

284 run stabilize();

285

286 run process_ByzFaults ();

287 run process_transFaults ()

288 }



12 Appendix E: Multitolerant Cruise Control Program

In this section, we present an example of adding multitolerance to existing programs. Specifically, we add
failsafe-masking multitolerance to the controlling software of a cruise control system. The cruise control
example in this section is a simplified version of the example in [21]. First, we introduce the Cruise Control
(CC) program, its specification, its invariant, and the classes of faults that perturb the CC program. Then,
we illustrate how we use Add Failsafe Masking algorithm (see Figure 7) to add multitolerance to the CC
program.
The fault-intolerant CC program. The CC program has 4 input variables Ignition, EngState, Brake,
and Lever that represent the values of the input signals. (To distinguish variables from their values, system
variables start with capitalized letters.) The domain of the variable Ignition contains values of on and off
that represent the state of the ignition switch. The variable EngState represents the working state of the
engine with the domain { running, off }. The variable Brake illustrates the state of an input signal from
the brakes that shows whether or not the driver has applied the brakes. The domain of Brake is equal to
{ notApplied, applied, unknown }. The Lever variable represents the position of the cruise control lever set
by the driver. The cruise control lever can be in three positions off, constant, and resume. Also, the CC
program has a variable SysMode that stores its operating mode. The CC program can be in the following
modes: off, inactive, cruise, and override. If the CC program is in none of the above-mentioned modes then
its mode is unknown. We represent the fault-intolerant CC program by the actions A1-A9.

If the program is in off mode and the ignition is on then the program transitions to the inactive mode
(Action A1). The program transitions to the off mode if it is in the inactive mode and the ignition turns
off (Action A2). In the inactive mode, if (i) the lever is set on constant, (ii) the ignition is on, (iii) the
engine is running, and (iv) the driver has not applied the brakes then the program transitions to the Cruise
mode (Action A3). In the cruise mode, the program transitions to the off mode if the ignition turns off
(Action A4). Also, in the cruise mode, the program transitions to the inactive mode when the engine turns
off (Action A5). If the lever is off or the driver applies the brakes then the program moves to the override
mode from cruise mode (Actions A6). In the override mode, the program goes to the off mode if the ignition
turns off (Action A7). If the engine turns off then the program will transition to the inactive mode from the
override mode (Action A8). Finally, in the override mode, the program transitions to the cruise mode if (i)
the ignition is on, (ii) the engine is running, (iii) the brakes have not been applied, and (iv) the lever is on
constant or resume (Action A9).

A1 : ((SysMode = off) ∧ (Ignition = on)) −→ SysMode := inactive;
A2 : ((SysMode = inactive) ∧ (Ignition = off )) −→ SysMode := off;
A3 : ((SysMode = inactive) ∧ (Lever = constant) ∧ (Ignition = on) ∧

(EngState = running) ∧ (Brake = notApplied))
−→ SysMode := cruise;

A4 : ((SysMode = cruise) ∧ (Ignition = off)) −→ SysMode := off;
A5 : ((SysMode = cruise) ∧ (EngState = off)) −→ SysMode := inactive;
A6 : ((SysMode = cruise) ∧ ((Brake = applied) ∨ (Lever = off)) )

−→ SysMode := override;
A7 : ((SysMode = override) ∧ (Ignition = off)) −→ SysMode := off;
A8 : ((SysMode = override) ∧ (EngState = off)) −→ SysMode := inactive;
A9 : ((SysMode = override) ∧ (Ignition = on) ∧ (EngState = running) ∧

(Brake = notApplied) ∧ ((Lever = constant) ∨ (Lever = resume)))
−→ SysMode := cruise;

The invariant of the CC program. In general, the CC program should be in one of the modes off,
inactive, cruise, or override, and the brakes subsystem should also be working properly. Also, if the program
is in the off mode then the ignition should be off. If the program is in the inactive mode then the ignition
should be on. If the program is in the cruise mode, then ignition should be on, the engine should be running,
the lever should not be off, and the brakes must not be applied. In the override mode, the ignition is on and



the engine should be running. Hence, we represent the invariant of the CC program by the state predicate
INVCC , where

INVCC= { s : ((SysMode(s) 6= unknown) ∧ (Brake(s) 6= unknown)) } ∩I1, where

I1 = {s: ((SysMode(s) = off) ∨ (SysMode(s) = inactive) ∨
(SysMode(s) = cruise) ∨ (SysMode(s) = override)) ∧

((SysMode(s) = off) ⇒ (Ignition(s) = off)) ∧
((SysMode(s) = inactive) ⇒ (Ignition(s) = on)) ∧
((SysMode(s) = cruise) ⇒ ((ignition(s) = on) ∧ (EngState(s) = running) ∧

(Brake(s) 6= applied) ∧ (Lever(s) 6= off)) ) ∧
((SysMode(s) = override) ⇒ ((Ignition(s) = on)∧ (EngState(s) = running))) }

Notation. x(s) denotes the value of a program variable x in state s.
The class of ff faults. The malfunction of the brake subsystem may corrupt the value of Brake to an
unknown value. In addition, faults may perturb the cruise control system to an unknown operating mode.
We represent the set of transitions of ff by the following actions:

FS : (Brake 6= unknown) −→ Brake := unknown;
FM : (SysMode 6= unknown) −→ SysMode := unknown ;

The class of fm faults. Embedded computing systems are deployed in harsh environments, and as a
result, such systems are subject to the faults that perturb the internal state of the system. The mode of
the CC program may be perturbed to an unknown state when the program is in one of its regular modes.
In such situations, the system should recover to one of its regular modes without violating safety. Thus,
masking fault-tolerance should be provided to the fault action FM , which denotes the class of fm faults
(observe that fm ⊆ ff holds).
The safety specification of the CC program. The specification of the CC program stipulates that as
long as the driver has applied the brakes the CC program must never transition to the cruise mode. Also, in
cases where the signal coming from the brake subsystem is corrupted then it is not safe for the program to
transitions to the cruise mode. Finally, the program must not transition to the cruise mode in cases where
it is in an unknown mode. Hence, we represent the safety specification of the CC program by the following
set of bad transitions:

specCC = { (s0, s1) :
((Brake(s0) = applied) ∧ (Brake(s1) = applied) ∧ (SysMode(s1) = cruise)) ∨

((Brake(s0) = unknown) ∧ (SysMode(s1) = cruise)) ∨
((SysMode(s0) = unknown) ∧ (SysMode(s1) = cruise)) }

We trace the application of the Add Failsafe Masking algorithm (see Figure 7) for the CC program. After
the addition of multitolerance, we require the synthesized program to be (i) failsafe fault-tolerant in the
presence of ff (i.e., the set of transitions represented by actions FS and FM), and (ii) masking fault-
tolerant in the presence of fm (i.e., the set of transitions represented by the action FM).
Adding failsafe ff -tolerance from S for spec. The fault transitions of ff may perturb the state of
the program from INVCC to states where both SysMode and Brake are unknown. Thus, the fault-span T1

would be equal to ((SysMode(s) = unknown) ∨ (Brake(s) = unknown)). The program CC transitions
to the Cruise mode either by the action A3 or by the action A9. The guards of these actions are enabled
if Brake = notApplied. As a result, by construction, program CC will not execute any safety-violating
transition from states where Brake = unknown or SysMode = unknown.
Calculating spec′. Since, in the context of this example, the transitions of ff do not directly violate
specCC and T1 is closed in program transitions (by definition), we have spec = spec′.
Adding masking fm-tolerance from INVCC for specCC. The invocation of Add Masking generates
a program p′ that is masking fm-tolerance from INVCC for spec. The invariant S′ of p′ is equal to the
invariant of the fault-intolerant program; i.e., INVCC . The program p′ contains a set of transitions that
recover p′ from an unknown mode. We represent these transitions by actions M10 and M11 as follows:



M1 : A1

· · ·
M9 : A9

M10 : ((SysMode = unknown) ∧ (Ignition = off)) −→ SysMode := off;
M11 : ((SysMode = unknown) ∧ (Ignition = on)) −→ SysMode := inactive;

We leave it to the readers to investigate that the application of the Add Masking Failsafe algorithm in
Figure 8 also creates the same failsafe-masking multitolerant program3.

3Even though in this case reversing the order of adding failsafe and masking creates the same program, it may not be the

case in general.


