Research Labs

Biomedical Optics Laboratory

Research in the Biomedical Optics Laboratory is concerned with the way light interacts with human tissue and how this interaction can be used for developing novel ways to image physiological processes and anatomical structures, for developing new laser-based optical diagnostic tools, and even for developing new ways to use light in the treatment of disease. The lab is a fully equipped, modern optics facility that houses vibration-isolated optical benches, numerous types of lasers and other light sources, state-of-the-art optoelectronic equipment, optical components, computers for conducting numerical simulations and for collecting and analyzing data, and an area for preparing and studying biological tissues and samples. 

Location: Minerals and Materials 114/115
Contact: Sean Kirkpatrick

Learn More About the Biomedical Optics Laboratory


Biosensors Laboratory

Research conducted in the Biosensors Laboratory focuses on the development of implantable wireless sensors for taking human physiological measurements, i.e., real-time stress and pressure monitoring. The lab supports rapid prototyping with equipment such as a 3-D scanner and printer. A circuit fabrication and testing station is used in the lab to fabricate sensor-detection devices. Computer-controllable measurement instruments such as multiple impedance/spectrum analyzers, lock-in amplifiers, power supplies, multimeters, and function generators are also available for characterizing sensors. The lab also features a functional machine shop with a computer-controlled milling machine and a polymer-casting facility.

The lab is staffed by a postdoctoral researcher, graduate students, and undergraduate students working on sensor-related research. The staff provides assistance with rapid prototyping and instrumentation to researchers from across the University community.

Location: Minerals and Materials 312
Contact: Keat Ghee Ong

Learn More About the Biosensors Laboratory


Polymeric Biomaterials Laboratory

Laboratory activities include research involving implanted polymer development, implantable sensor development, effects of nitric oxide on cells and tissues, biocompatibility, and biomaterials interfaces. Specialized equipment used in the lab includes a nitric oxide analyzer (chemiluminescence detection), fiber-optic UV-visible and fluorescence spectrometers, and a UV-visible dual-beam spectrometer.

Location: Minerals and Materials 337
Contact: Megan Frost


Tissue Engineering and Biomaterials Facility

The facility’s activities include mammalian cell culture; tissue culture; bioreactor design and operation; biomaterial fabrication; and polymer synthesis.

Location: Minerals and Materials 414
Contacts: Feng Zhao and Bruce P. Lee


Engineered Biomaterials Laboratory

Laboratory activities include biomaterials synthesis and characterization, histological processing, and molecular biological analysis. Studies focus on characterizing native and pathological tissue behavior to develop rationale designs for new biomaterials that regulate cell and tissue regeneration and repair. Areas of expertise include biomimetic materials, cell and tissue mechanics, and the host response to implantable materials.

Location: Minerals and Materials 330/331
Contact: Rupak Rajachar

Learn More About the Engineered Biomaterials Laboratory


Biophotonics Laboratory

Laboratory activities include research in developing novel imaging techniques, focusing on tools based on optical coherence tomography and spectral imaging, in order to enhance medical diagnostics and answer fundamental questions in biology. The lab is equipped with an array of light sources and lasers, vibration-isolation optical benches, optical components, a high-speed line-scan camera, and computers for data collection and analysis.

Location: Minerals and Materials 415
Contact: Niloy Choudhury


Vascular Engineering Laboratory

Laboratory activities are focused on understanding how reduced interstitial flow, following lymphatic injuries, alters lymphatic regeneration and recovery of lymphatic function. The long-term goal of this research is to develop novel biomaterial and tissue engineering strategies for increasing interstitial flow, thereby improving lymphatic regeneration. 

The lab is equipped for small-animal surgeries, tissue cryosectioning, fluorescence and brightfield microscopy, and live lymphatic imaging. Specialized instruments include an Olympus BX51 microscope and a Zeiss Apotome fluorescence microscope, both equipped with a high-resolution color digital camera; two Olympus stereo microscopes, available for small-animal surgeries with affixed DP71 digital color cameras; and a Near Infrared (NIR) imaging system, available for live imaging of lymphatic vessels in both rodents and humans.

Location: Minerals and Materials 332
Contact: Jeremy Goldman


Instrumentation Laboratory

Laboratory activities include the development of biomedical sensors and instrumentation for applications in clinical medicine, focusing on obstetrics and neonatology. Facilities include thick-film microfabrication processing equipment, thin-film thermal evaporation equipment, and apparatus for electronic-circuit design, construction, and evaluation. This lab is augmented by the University-wide microfabrication facility located on the fourth floor of the Minerals and Materials Building.

Location: Minerals and Materials 333
Contact: Mike Neuman