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Abstract

This paper presents a discretization of particle dynamics equation based on spectral polynomial
interpolation of the solution. Numerical tests show that the method achieves spectral accuracy in linear
coordinates, and is able to reproduce well the reference solutions in logarithmic coordinates.
Keywords: Aerosol dynamics, spectral interpolation.

1 Introduction

As our understanding expands, new processes are incorporated into air quality computer models. One
example is the particulate matter (aerosol) processes, the importance of which is now widely recognized.
Aerosols are now a priority focus area in environmental science due to the leading role they play as a cause
of adverse human health, and their ability to scatter and absorb incoming solar radiation and thus modify
warming due to greenhouse gases and reduce visibility. Particulate matter (aerosol) processes are “emerging
as a new frontier” in environmental studies (Nobel laureate P. Crutzen et. al. [4]).

To accurately study the effects of aerosols it is necessary to resolve aerosol number and mass distributions
as a function of chemical composition and size. Treatment of aerosol processes leads to (at least) an order of
magnitude increase in the overall computational time of an air quality model; this is mainly due to repeatedly
solving the aerosol chemistry (or chemical equilibria) for different particle sizes. Therefore there is a clear
need for rigorous, reliable and efficient computational techniques for aerosol simulations. In particular, there
is a need for methods that accurately solve aerosol dynamics using a small number of size bins (discretization
points), such that the time for aerosol chemistry calculations (which is proportional to the number of bins)
is manageable.

In this paper we develop a method for solving the aerosol dynamics equations based on a semi-discretization
in particle size followed by the time-stepping method of choice. The semi-discretization in size is based on
a spectral polynomial interpolation of the solution. We also propose a second order linearly-implicit time
stepping method. The presentation of the method is done in the context of single component particle pop-
ulations described by number densities. The method can be directly extended to mass or volume densities
and multiple component particles, as shown in Section 5.7.

The paper is organized as follows. Section 2 presents the particle dynamics equations and Section 3
surveys previous efforts to solve these equations numerically. A brief introduction to spectral interpolation
is given in Section 4. The new spectral discretization approach is introduced in Section 5. Numerical results
are presented in Section 6 and Section 7 draws conclusions and pinpoints future work.

2 The continuous particle dynamics equation

In this paper the continuous particle size distributions are considered functions of particle volume (v) and
time (t). For simplicity we consider single component particles, but the discretization techniques can be
directly generalized to multiple components. The size distribution function (number density) of a family of
particles will be denoted by n(v,t); the number of particles per unit volume of air with the volume between
v and v + dv is n(v,t)dv. This describes completely a population of single-component particles. Similar
formulations can be given in terms of volume, surface, or mass densities [18]. However, recovering mass
from a volume formulation is difficult in practice, as the densities are only approximately known and are a
function of composition and size.

The aerosol population undergoes a series of physical and chemical transformations. Growth processes
include condensation, evaporation, deposition and sublimation (of gases to/from the particle surface). The



growth of each component’s volume takes place at a rate that depends on the particle’s dimension and
composition, dv/dt = I(v,t). Coagulation forms new particles of volume v + w from the collision of two
smaller particles of volumes v and wj; the collision rate 3, ,n(v)n(w) is proportional to the number of
available small particles; the proportionality factor (called the coagulation kernel) is usually a symmetric
function, By,w = Bw,w - Nucleation of gases creates small particles. Emissions increase the number of
particles of a specific composition and size, while deposition processes remove particles from the atmosphere.
In addition, the constituents interact chemically inside each particle, changing the chemical composition (but
not the number) of particles.
Under the above physical transformations the number density changes according to [6]
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The different terms in equation (1) describe, in order, the modification in the number of particles due to
growth, creation of particles of volume v by coagulation, loss of volume v particles due to coagulation,
increase in particle number due to nucleation, emissions and depositions (sources and sinks). The equation
is subject to a specified initial condition n°(v), and to the boundary condition of no zero-volume particles.

In practice one assumes that the particle population has a nonzero minimal volume and a finite maximal
volume, i.e. the dynamic equation is solved on a finite volume interval [Vipin, Vinax]-
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Particle sizes span orders of magnitude, and to reveal the particle distribution logarithmic coordinates
are popular. If we denote
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the dynamics equation becomes
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3 Previous work

Three major approaches are used to represent the size distribution of aerosols: continuous, discrete and
parameterized. In this paper we focus on continuous models (i.e. continuous size distributions and the
general dynamic equations in continuous form).

For computational purposes one needs to use finite-dimensional approximations of the continuous size
distributions. In the sectional approach the size domain v € [0, 00] is divided into size bins v € [V, 1%, V;.h'gh).
In each size bin i there are m; particles per unit volume, all of them having the same mean volume V;.



variations of this approach include the full-moving structure, the quasi-stationary approach, as well as the
moving-center structure [11].

The integro-differential coagulation equation is difficult to solve accurately, due to the quadratic terms
under the integral, as well as the Volterra nature of the first term. The algorithms proposed in the literature
for the coagulation equation include semi-implicit solutions, finite element method, orthogonal collocation
over finite elements, J-space transformations, analytical solutions [11, Section 16], [15] etc. A nice survey of
several popular numerical methods for particle dynamics equations is given in Zhang et. al. [24].

Many models include different processes successively, using a time splitting scheme. This enables the use
of numerical methods tuned to each subprocess but introduces hard-to-quantify splitting errors.

Jacobson [11, Section 16] proposed the semi-implicit scheme to solve the discrete coagulation equation.
Kim and Seinfeld [13] extended the moving sectional method to solve the multicomponent aerosol conden-
sation equation. A nice survey of several popular numerical methods for the growth equations is given in
Zhang et. al. [24]. In UAM-AERO and SAQM-AERO [14] the boundaries of the size sections move at a
rate consistent with the growth rate equation (a Godunov-type advection scheme); CIT, UAM-AIM uses
the Eulerian advection scheme of Bott [3]. In GATOR [10] the mean particle size in each bin ¢ is allowed
to grow. Jacobson [9] developed a highly complex gas, aerosol, transport and radiation model (GATOR).
A combination of cubic splines (coagulation) and moving finite element techniques (growth part) was used
by Tsang and Hippe [23]. Meng, Dabdub and Seinfeld [16] present a size-resolved and chemically-resolved
model for aerosol dynamics in a mass density formulation. Different solution of the growth equations were
proposed in [2, 10, 13, 14]. Gelbard and Seinfeld [6, 7, 8] solved the coupled dynamic equations using or-
thogonal collocation over finite elements. Pilinis [18] derived and solved the equations that govern the time
evolution of mass distribution for a multicomponent particulate system.

4 Spectral Interpolation
In this section we review some important aspects spectral interpolation. Consider the set of s Chebyshev
points in the interval [Vinin, Vinax] (cf. [22])
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Let f(v) be a function on v € [Viin, Vimax], and p(v) the unique interpolation polynomial of degree at
most s — 1 such that

p(V;)=f(Vy), j=1--s.

The polynomial can be expressed in terms of the Lagrange basis functions associated with the Chebyshev
set of points (4); then
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This polynomial is a very accurate approximate of f. We recall the following result from Trefethen [22,
Chapter 5]; for more details the reader is invited to consult Trefethen’s book.

Accuracy of spectral polynomial interpolation. If f(v) is smooth enough* there exist C1,Cs > 0
(independent of s) such that the interpolation error is

|f(v) —p)| < Cre @2 | forall ve [Vinins Vinax] - (6)

This is called “spectral accuracy”.
Moreover, at the interpolation points the derivative of p is a good approximation of the derivative of f,
more exactly there exist Cs,Cy > 0 (independent of s)

of .+, _5_;0

* Analytic in an elliptic region in the complex plane that contains the interval [Vimin, Vmax]-

(V;)| < C3e“*  forall j=1---5.




The derivative of p at the interpolation points can be easily computed with the help of the Chebyshev
differentiation matrix Dy [22, Chapter 6]
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Consequently, the function derivative at the node points can be approximated with spectral accuracy by
[0f/0v(Vi)li<ic<s & Ds - [f (Vi)li<i<s-

5 The discrete formulation of aerosol dynamics

We solve equation (1) by a semi-discretization in particle size (v), followed by a time integration of the
resulting system of ordinary differential equations. The semi-discretization in size is done by approximating
the solution with the spectral polynomial interpolant, i.e. projecting the solution and the equation on
the finite-dimensional subspace spanned by Lagrange basis functions {£4(v),- -, Ls(v)}. For simplicity we
consider single-component particle populations described completely by the number density; but the ideas
can be directly extended to multiple (mass or volume) distributions for multiple-component aerosols.

5.1 Discretization of the particle size distribution

From (5) one can approximate the continuous particle distribution by the spectral interpolation polynomial

n(v,t) = ini(t) Li(v) , ni(t) =n(V;,t) . (8)

The approximation is finite dimensional, with the set of time-dependent values

T
n(t) =[na(t), -+, ns(®)]" 9)
to be determined from the dynamics equation. We extend the terminology of the sectional method and and
refer to n;(t) = n(V;,t) as the number of particles in size bin i.
5.2 Coagulation

The theoretical coagulation equation for single-component particles is [11, Section 16]

U—Vm;n Vmax
Bng;, t) - % / By—w,wn(v —w, t)n(w, t)dw — n(v,t)/ Bow n(w, t)dw (10)

Vmin Vmin

To obtain a discrete form of the coagulation equation one inserts the spectral polynomial approximation
(8) into (10), and imposes the resulting equation to hold exactly at the set of node points V;, 1 < j <'s.
After some calculations one arrives at the discretized coagulation equation

n™(t) (B' = C") n(t)

n'(t) = : , (11)
nT(t) (B® — C*) n(t)



with the matrices

Bi = [(1/2) 0 Vinin 5Vj,w,wck(vj—w)cm(w)dw] , 1<j<s,
' v min 1<k,m<s (12)
J — X max .

c (65 fyrm ij,wﬁm(w)dw]lgk’mgs , 1<j<s.

Here 6;; = 1 for £ = j and 0 otherwise; consequently C' matrices are very sparse. One can regard B and
C as three-tensors and compactly write the discrete equation (11) as

n'(t) = [(B = C) x n(t)] - n(t). (13)

A simpler formulation of the negative coagulation term is possible by a spectral interpolation the integrand
{By,wn(w,t)} in w and an integration of the resulting polynomial. The optimal weights for such integration
are given by the Clenshaw-Curtis quadrature [22, Section 12]. Therefore we have

Vma,x s
n(Vi:t)/ Bviwn(w, tydw ~n(Vi,t) Y &Bvivi n(Vi,t)

Vmin k=1

with the Clenshaw-Curtis weights {&x}1<r<s given by the discrete cosine transform of the vector {(x}1<r<s
with halved first and last components (cf. [5, Section 2])
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Ck:m

for kodd , and (y =0 for k even.

5.3 Growth

The growth equation in number densities

on(v,t)
ot

has the form of an advection equation, with the “flow speed” provided by the time derivative of the volume.
This equation is to be solved subject to an initial distribution n°(v) and the boundary condition of no
zero-sized particles [19, Section 12],

The discrete version of the growth equation is a standard application of spectral methods and is based
on replacing the derivative by the spectral differentiation formula (7). This gives

du(t)

prall n(w=0,t)=0, n(v,t=0)=n0), (14)

:—%[I(v)n(v,t)] , I(v) =

n'(t) = —Gn(t) where G = —% D, - diag [I(VA),---, I(V})] . (15)
max — VYmin

To impose the homogeneous boundary condition at v = 0 (or v = Viuin) one can strip G of its first row and
first column (see [22]).

5.4 Sources and sinks
Sources (emissions, nucleation) have a simple mathematical formulation,
on(v,t)
ot
The simplicity comes from the fact that S terms are not coupled across different volumes. The discrete

evolution equations can be written for each bin as n}(t) = S(V;,t) = Si(t), 1 < i < s. Similarly, the sinks
(deposition processes)

= S(v,t) .

on(v,t)
ot
can be discretized as n}(t) = —R(V;, t)n;(t) = —R;(¢t)n;(t). In vector notation

= —R(v,t) n(v,t)

n'(t) = S(t) — Rn(t), R=dag{Ri(t),--,Rs(t)} . (16)



5.5 Simultaneous discretization of the dynamic equations

A coupled solution of coagulation, growth, nucleation, emissions and deposition is of interest; it will, for
example, better capture the competition between nucleation of new particles and condensation on existing
particles for gas-to-particle conversion [24].

For single component particles combining (11), (15) and (16) gives the semi-discrete aerosol dynamics
equation

n'(t) = —Gn(t) +[(B-C) x n(®)] n(t) + S({t) —Rn(t) . (17)
— N ~ - ~ —\—
growth coagulation nucl.+em  dep.

This is a system of s coupled ordinary differential equations. The discrete initial conditions are
T
n(0) = [n°(V1)---n°(Vs) | . (18)

5.6 Time integration

The system (17)-(18) can be solved by any appropriate time-stepping method. The system has a particular
form: the growth term is linear, while the coagulation term is bilinear. The Jacobian of the coagulation
term can be expressed as

n!{(B' - C") + (B' - OV}
Jcoag(n) —
nT {(B* ~ C*) + (B* = C")"}

Depending on stability restrictions any explicit or implicit method can be applied to solve (17)-(18).
Particularly attractive are linearized versions of the implicit numerical methods which preserve stabil-

ity yet avoid iterative solutions. The following method combines a linearized backward Euler scheme for

coagulation with Crank-Nicholson for growth and sources/sinks to achieve second order time accuracy:

(1= oot - G+ m) nt = (14 5@+ m) ) wh+ S (SE +569) . (9

As usual n*, n*+1 denote the numerical approximations of n(t*) and n(t**1), with the time moments related
by t**1 = t¥ 4 At. G and R are evaluated at t*.

5.7 Multiple chemical components

Complex models treat particles composed of multiple chemical constituents. Let vq(v,t), ¢ = 1,---,m be the
volume of the ¢-th chemical component in particles of volume v; the multi-component aerosol population is
described by the individual volume densities of each constituent VI(v,t) = vq(v,t) n(v, t); the total volume
of component ¢ (per unit volume of air) contained in all particles having individual volumes between v
and v + dv is VI(v,t)dv. Under these transformations the volume densities of each constituent V9(v, ),
g =1,---,m change according to [6, 18]

Vi(v,1)/0t =

(growth) —0[V(v,t) E;” 1 Ie(v, )] JOv + V(v,t) Iy (v, t) /v

(coagulation) + Jy Be =22 V(v — w, )V (w, t)dw — Vg(v,t) [;° BZ’;” V(w,t)dw (20)
(sources) + S4(v,t)

(deposition) — Rq (v,t) V4 (v, t)

(ChemiStry) +K(V17"'7Vm7t)7 q:17"'7m7

where V(v,t) = 37", V9(v,t) is the total volume distribution; the m integro-differential equations are
coupled through V(v,t) and K(V1,---,Vm,t). The system (20) is subject to the initial and boundary
conditions

Vq(vytz()):(]}q)o(v) ) Vq(’UZO,t)ZO, q:]-:"':m' (21)



The equations (20)-(21) can be discretized in size using the same approach. For each component volume one
has

Vq(U,t) = ivzq(t) ‘CZ(U) ) qu(t) = Vq(‘/;7t) ) q= 17' e, (22)

and the semidiscrete system reads
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nucl.4+-em dep. chem.

The matrix G and the tensors B and C are redefined according to (20). Note that the same G, B,C are
used for all ¢’s, which makes the method efficient.

6 Numerical experiments

Test problem. For the numerical experiments we first consider the test problem from [7], which admits
an analytical solution. Let Ny be the total initial number of particles and V4, the mean initial volume. The
initial number distribution is exponential, the coagulation rate is constant, and the growth rate is linear with
the volume:

Ne(v) = (Ne/Van) e/ ", Blo,w) = o, I(v)=0v.

This test problem admits an analytical solution, which is given in [7]

4N, —2vexp (o,t)
A t

= . 0 gt .
" (v,7) Vin (Nt Bot + 2)2 & (Vm(Ntﬂot+2) )

We solve the dynamics equation for 3, = 6.017 x 10~'° em3sec~'particles™, o, = 0.03 hour™!, N, = 10*
particles, Vi, = 0.03 pm3. The value of o, is chosen such that coagulation and growth have effects of
comparable magnitude.

The equation was solved on the time interval [ tg = 0, tfina = 6 hours |, with a small time step, At =
1 second. The volume interval [ Vigin = 7/6 x 1079 um?®, Vipax = 7/6 pm?® | corresponds to a particle diam-
eter range [ Dmin = 1073 pm, Dpax = 1 pm |.

The numerical error is measured against the analytical solution by the root-mean-square (RMS) error
norm

||E|| — 1 i n (‘/;7 tﬁnal) —nA (‘/i7tﬁnal) (23)
s &\ max(n? (Vi tanal) , th) ’

The threshold th = 100 particles makes the error indicator to ignore part of the small long tail of the

exponential distribution. The use of a finite volume interval for the given problem introduces errors in the

coagulation right-hand-side of the order of 10~8. The best accuracy we can hope for is consequently of this

magnitude regardless of how many size bins we use.
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Figure 1: Experiment I (linear coordinates). The exact solution at tfna = 6 hours for coagulation only,
growth only, and coagulation-growth problems and the distribution of relative errors for different numbers
of grid points.

Experiment I - Linear. In this experiment we solve the test problem (2) in the linear volume coordinate.
We consider separately the coagulation-only and growth-only problems in addition to coagulation and growth.

Figure 1 shows the exact solution, the numerical solution with s = 10 as well as the error distribution
with volume. The numerical solutions for s = 10 reproduce quite well the exact solutions for all tests. For
larger numbers of bins the errors decrease rapidly.

Figure 2 plots the error norm of the solution at the end of the simulation versus the number of bins; the
errors decrease rapidly. The error plots are nearly straight lines and the axes are logarithmic in ||E|| and
linear in s; this is in agreement with (6) and illustrates the spectral accuracy of the method.

Experiment IT - Logarithmic. Now we solve the test equation in the logarithmic formulation (3) . The
approach is similar in that we use spectral interpolation in the x = logv variable. The results are shown in
Figure 3. The solution to coagulation problem is fairly accurate for small volumes, but the error increases

Coagulation Growth Coag+Growth
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Figure 2: Experiment I (linear coordinates). RMS Error norms for the solution at ts,a = 6 hours for
coagulation only, growth only, and coagulation-growth problems.
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Figure 3: Experiment II (logarithmic coordinates). The exact solution at tfna = 6 hours for coagulation
only, and growth only problems and the distribution of relative errors for different numbers of grid points.

toward the tail of the exponential distribution. The errors decrease with increasing s but they do not display
spectral accuracy.

The solution to the growth problem is rather disappointing: one needs at least 70 gridpoints to reproduce
the solution at small volumes (for smaller s the solution oscillates at small particle volumes). Clearly the
growth problem in logarithmic coordinates is ill-scaled.

Experiment III - Logarithmic. We now consider a second test problem that is posed in naturally
logarithmic coordinates. Here 3, = 1.083 x 10~3 cm?® hour ! particles !, I(v) = 0.02 pm3hour™" = const,
and N, = 10* particles. The volume interval is Vign = 1072 um®, Ve = 1 pm3, the time interval
[to = 0, tana1 = 6 hours ], and the time step At = 1 second.

The initial concentration is a cosine hill in logarithmic coordinates

no(v) = { % . [1 — Cos (2#%)] , 10g Vinin < Zmin < logv < Tmax < log Vinax -
0, log v < Zmin Or logv > Tmax -

The reference solution was obtained using the standard numerical method for coagulation [11] on the
uniform grid V; = i - Av, Av = 1073 um?, such that Vi = Vinin and Vigoo = Vinax. The reference growth-
coagulation solution is obtained by translating the reference coagulation solution 20 gridpoints to the right.

Figure 4 shows the results. A meaningful solution for coagulation can be obtained with as few as 7
bins. For growth one needs at least 50 points to obtain a good numerical solution. Other experiments (not
reported here) showed that 20 points are sufficient to solve growth in linear coordinates (although part of
the profile is lost due to insufficient resolution.

To solve the coagulation-growth problem the obvious approach is to increase the number of bins to 50,
such that each subproblem is treated correctly; the cost of building 50-dimensional tensors for coagulation
is however significant.

In order to avoid these extra costs we propose the following approach, based on different grids for
coagulation and for growth. Let {z;}, 1 < i < s and {x;}, 1 < j < s’ be two sets of Chebyshev points on
[Vinin, Vmax] (z and y are two grids with different number of points). If the function N is represented on grid
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Figure 4: Experiment III (logarithmic coordinates). The exact solution at tg,a = 1 hours for coagulation,
growth, and coupled problems and the distribution of relative errors for different numbers of grid points.

x as [Ny,---, N,]T then a representation on the grid y is given by spectral interpolation:
N Ny Ny
T 17
. _ (! . . _ s . .
: = [ Li(z}) ]1§igs,15j§s' Lo =T : g
;/ Ns NS

where £; are Lagrange basis polynomials associated with the points {z;}.
This allows us to use a finer grid for growth and a coarser grid for coagulation (say with 50 and 10
gridpoints respectively). The method can be formulated on the fine grid as

<I— %TUP . Jecoas (Tdownnk) .down _ %G) nkt+l — <I+ %G) nk . (24)

where T9°"" and TUP are the transformation matrices from fine to coarse and from coarse to fine (it is easy
to see that coagulation is solved on the coarse grid).

The results are displayed in Figure 4 (rightmost column). The results with 50 gridpoints for growth and
10 gridpoints for coagulation reproduce the reference solution quite well. The error norms — as measured by
(23) - do not decrease below 1072, a value consistent with the growth errors on 50 points.

7 Conclusions

Aerosols are becoming an important topic in air pollution modeling. For a correct representation of particles
in the atmosphere one needs to accurately solve for the size distribution of particle populations.

In this work we develop a discretization method for aerosol dynamics equation based on approximating
the solution by a spectral polynomial interpolant. The resulting semidiscrete system is bilinear and is solved
by a second order order linearly-implicit time stepping method.

The present formulation of the discretization method is based on number densities and single-component
particles. The same ideas apply directly to volume, surface and mass densities, as well as to multiple densities
that model multiple-component aerosols.
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To illustrate the power of the method we employed two test problems: one with analytical solution in
the infinite volume range v € [0, 00]; and a second one with the solution “living” in a finite volume interval
and formulated in logarithmic coordinates.

In the standard formulation (linear coordinates) the numerical solution displays spectral accuracy — the
errors decrease exponentially fast as the number of bins is increased. In logarithmic coordinates (preferred
by environmental modelers) good solutions can be obtained for the coagulation equation; but the growth
problem is ill-scaled and can be solved accurately only by increasing the number of bins. A mixed solution is
proposed to solve growth on a fine grid and coagulation on a coarse grid. Spectral accuracy is not observed
in logarithmic coordinates, although the numerical solutions reproduce quite well the reference solutions.

Future work will focus on testing the spectral discretization method on multiple component particles and
on coupled aerosol dynamics and chemistry models.
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